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Abstract: As a spatial selective attention-based brain-computer interface (BCI) paradigm, steady-state
visual evoked potential (SSVEP) BCI has the advantages of high information transfer rate, high
tolerance to artifacts, and robust performance across users. However, its benefits come at the
cost of mental load and fatigue occurring in the concentration on the visual stimuli. Noise, as a
ubiquitous random perturbation with the power of randomness, may be exploited by the human
visual system to enhance higher-level brain functions. In this study, a novel steady-state motion
visual evoked potential (SSMVEP, i.e., one kind of SSVEP)-based BCI paradigm with spatiotemporal
visual noise was used to investigate the influence of noise on the compensation of mental load
and fatigue deterioration during prolonged attention tasks. Changes in α, θ, θ + α powers, θ/α

ratio, and electroencephalography (EEG) properties of amplitude, signal-to-noise ratio (SNR), and
online accuracy, were used to evaluate mental load and fatigue. We showed that presenting a
moderate visual noise to participants could reliably alleviate the mental load and fatigue during online
operation of visual BCI that places demands on the attentional processes. This demonstrated that
noise could provide a superior solution to the implementation of visual attention controlling-based
BCI applications.

Keywords: brain-computer interface; steady-state visual evoked potential (SSVEP); steady-state
motion visual evoked potential (SSMVEP); visual noise; mental load; fatigue

1. Introduction

Brain-computer interfaces (BCIs) traditionally harness intentionally-generated brain signals to
control devices that can, in turn, be potentially helpful for disabled individuals by replacing the usual
channels of communication and control [1]. A variety of methods for monitoring brain activities might
serve as a BCI. In addition to electroencephalography (EEG), these include magnetoencephalography
(MEG) [2], functional magnetic resonance imaging (fMRI) [3], functional near-infrared spectroscopy
(fNIRS) [4–6], and more invasive electrophysiological methods. Among them, EEG and related
methods have high time resolution, lower environmental limits, require relatively inexpensive
equipment [7], and have been largely used in practical BCI applications. Generally, two types of
EEG patterns of the P300 component of the event-related potential (ERP) [8,9] and steady-state visual
evoked potential (SSVEP) are more practically used to develop visual BCI systems because they
support large numbers of output commands, and need little training time [10]. The P300-based BCI
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has relatively robust performance for target detection. Although its information transfer rate (ITR) is
at a medium level, unlike an SSVEP-based BCI, it does not cause some participants to feel annoyed or
fatigued by the flickering stimuli [11]. On the other hand, due to the advantages of high-level ITR,
high tolerance to artifacts, and robust performance across users, the SSVEP-based paradigm has been
widely used in BCI applications. As a visual spatial selective attention-based BCI paradigm, SSVEP
BCI requires users to concentrate on the visual stimulus to generate sufficiently strong responses.
However, due to high brightness, overstimulation, and repetitive attentional demands, SSVEP BCI
may easily result in a high mental load and users may become fatigued. In the present context, mental
load can be defined as a measure of the amount of mental resources engaged in a task. The mental load
level is considered as an index of task difficulty [12]. In addition, the visual or mental fatigue, which is
partially induced by cognitive load [13,14], is associated with tiredness or exhaustion and results in a
decrease in cortical arousal and BCI performance [15]. When people experience high mental load and
become fatigued in SSVEP-BCI tasks, they might be easily disturbed by distracting stimulations, which
distract their attention from targets due to the competition for attentional resources [16]. Therefore,
mental load and visual fatigue should be considered when designing spatial selective attention-based
SSVEP BCIs.

To assess mental load and fatigue, EEGs in α band (~8–13 Hz) and θ band (~4–7 Hz) can be
used to distinguish different levels of mental states. The occurrence of θ activity is associated with
drowsiness, attention, and processing of cognitive and perceptual information. The α waves appear
during relaxed conditions, at decreased attention levels, and in a drowsy, but wakeful, state. An overall
decrease in α power has been linked to increased alertness and task load, in general [17–19]. Global
increases in attentional demands and corresponding mental load are most associated with a decrease
in α power and an increase in θ activity [20,21]. Furthermore, changes in α and θ powers seem to
be the most robust objective indicators of not only mental load but also fatigue. Under decreased
attention and arousal levels, there are progressive increases in α and θ activities in resting spontaneous
EEGs [22–24], this probably reflecting a decrease in cortical activation and task performance [25,26].
Therefore, α and θ activities can be adopted to evaluate the degree of mental load and fatigue in the
context of BCI applications.

Noise is a ubiquitous random perturbation commonly found in neural systems of humans and
other mammals [27]. Noise is typically considered as detrimental to cognitive performance. However,
recent studies were able to demonstrate that, somewhat counter-intuitively, irrelevant noise exposure
can be beneficial for performance in cognitive tasks [28]. This phenomenon is labeled as stochastic
resonance (SR), or stochastic facilitation, in a broader sense [29,30], which was introduced in the early
1980s by Benzi [31], describes the phenomenon whereby random fluctuations or noise can enhance
the detectability and/or synchronization of a weak signal in certain non-linear dynamic systems, i.e.,
noise paradoxically does not worsen, but improves, system capability, and can be used to account
for noise-induced improvement in cognitive performance [32]. The “beneficial” effects of noise in
both experimental studies and theoretical investigations of neural systems have shown particular
circumstances in which synchronization of neuronal firing was enhanced by the presence of random
fluctuations [33,34]. A moderate level of noise is beneficial for achieving perception, cognition, or action
tasks [35]. This is due to nerve cells in sensory organs being described as a thresholding system, so the
neuronal membrane voltage which is not large enough to cross the intrinsic threshold non-linearity
alone would be properly assisted with noise at a moderate intensity to accomplish threshold-crossings.
Therefore, the appearance of SR can be roughly explained by that addition of noise that effectively
turns neurons from sub- to supra-threshold. However, too little noise does not add the power required
to bring the signal over the threshold, whereas too much noise overpowers the signal, leading to
deterioration in attention and performance [27,36].

Given that noise has been shown to facilitate sensory processing in visual BCI applications [37],
its influence on neural processing would rather permeate every level of the nervous system and
should, likewise, be relevant to the implementation of higher cognitive functions, such as arousal and
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attention [38]. In this work, we proposed the use of a novel steady-state motion visual evoked potential
(SSMVEP, i.e., one kind of SSVEP)-based online BCI paradigm associated with spatiotemporal visual
noise to investigate the influence of stochastic facilitation on the capacity of mental load and fatigue
experienced during prolonged attention tasks. To benchmark the effect of mental load and fatigue
occurring in non-noise and noise-tagged stimulation procedures, we evaluated changes in SSMVEP
amplitudes and signal-to-noise ratios (SNRs), spectral indices in the α and θ bands, as well as online
accuracy and correct response time, which characterize BCI accuracy and efficiency.

2. Materials and Methods

2.1. Participants and Recordings

Twelve graduate students (seven males and five females) from Xi’an Jiaotong University (Shaanxi,
China), aged between 23 and 29 years old, participated in this study. All participants had normal or
corrected-to-normal vision and had experienced SSVEP BCIs before. However, they were new as to the
visual noise-masked SSMVEP-based BCI paradigm. They had no history of psychiatric or neurological
disorders and no visual perception disturbances or impairments were reported. Before starting the
experiment, all participants gave their informed written consent in compliance with the guidelines
approved by the institutional review board of Xi’an Jiaotong University.

EEG signals were recorded from the occipital head (Oz) using a g.USBamp system (g.tec Medical
Engineering GmbH, Schiedlberg, Austria) at a sampling rate of 1200 Hz in order to ensure that trials
encompassed single cycles of three stimulation frequencies exactly. This allowed each stimulation
frequency to be fully contained within an individual FFT “bin”, thus alleviating spectral leakage [39,40].
EEG signals were referenced to a unilateral earlobe and grounded at the forehead (Fpz). An online
band-pass filter from 2 to 100 Hz and a notch filter between 48–52 Hz were applied to remove artifacts
and power line interference.

2.2. Stimulation Designs

Motion-reversal visual stimulations were introduced into the spatial selective attention-based
steady-state BCI paradigm. Here the “steady-state” brain responses were evoked by mirror movements
which oscillated in two opposite directions. For the presentation of such oscillating motion, each of
the two motion directions would be presented at half cycle time and then be replaced by the other
direction motion, comprising one stimulus period. The direction change rate served as the stimulation
frequency. Its first subharmonic frequency equaled the sinusoid frequency [41].

In this study, three motion-reversal targets were simultaneously presented to participants through
a gamma-corrected 22-inch Dell LCD monitor at a resolution of 1024 × 768 pixels. Each participant
was situated 70 cm from the screen with the center at eye level. Three targets were uniformly arranged
in an equilateral triangle. The eccentricity from the center of the monitor to that of each target was
in a visual angle of 7.2◦. Each target was created using a motion ring object whose width was kept
constant as half the radius of the circular region (Michelson contrast of 98.8%) throughout the motion
reversal procedure. The circular area was 4.8◦ in diameter, in accordance with previous studies
showing that a stimulus size beyond 3.8◦ would saturate VEP responses [42]. The phase of the motion
ring was temporally sinusoidally shifted so as to produce the motion reversal procedure, which
included the inward contraction and outward expansion motions alternately. Here the contraction
of the motion ring was implemented by its phase shift from 0 to π, and then expansion motion
was achieved with phase shift from π back to 0. The three targets moved at unique, constant, and
mutually-irrational stimulation frequencies. In accordance with the integer division of the 60-Hz
refresh rate, motion-reversal frequencies of 15 Hz, 12 Hz, and 8.57 Hz were assigned to the lower right,
lower left, and upper targets, respectively. With the same paradigm, but adding a moderate visual
noise, a noise-masked visual stimulation was applied as illustrated in Figure 1. In the present study,
the spatiotemporal noise referred to as dynamic changes of spatial noise speckles. Each noise speckle
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subtended a square area of 5 min of visual angle and obeyed Gaussian intensity distributions with
a mean gray level of 128 and a standard deviation of 40. The spatiotemporal noise was masked to
targets and was updated in 1/60 s. The stimulation design and the motion reversal procedure were
scheduled according to our earlier studies [37,43]. Presentation of the stimulation was controlled by
the Psychophysics Toolbox (http://psychtoolbox.org/) [44,45].
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Figure 1. Distribution of three noise masked targets on the computer screen with noise standard
deviations of 0 and 40. The cross indicating the center of the monitor was not presented on the screen.
The eccentricity from the center of the monitor to that of each target was in a visual angle of 7.2◦.

2.3. Online BCI Tasks

The overall BCI system diagram was illustrated in Figure 2. The online BCI tasks were categorized
into non-noise and noise-tagged tasks. Participants were asked to attend to every 15 Hz, 12 Hz, and
8.57 Hz stimulation sequentially, which constitutes a stimulation sequence. For each participant, each
task contained 4–8 runs and each run consisted of five stimulation sequences with 15 trials. The
experimental tasks alternated every two runs like “Non-noise run – Non-noise run – Noise-tagged
run – Noise-tagged run – Non-noise run – Non-noise run . . . ”, as illustrated in Figure 3. The online
BCI tasks were implemented in a semi-synchronous way wherein the duration of stimulation varied
from 2 to 10 s in steps of 0.5 s, with a fixed 5 s inter-trial interval (ITI). In every trial, a one-second
red cue displayed above a specific target and instructed participants to pay attention to that target.
The duration of stimulation increased until the target was identified twice as being the same target in
succession (either correct or not). Once the target was identified, a one-second green cue appeared in
the center of the screen to mark the result and this trial ended. If brain responses failed to meet the
detection criteria beyond 10 s for any of the three targets, this trial would end with no cue. Resting
spontaneous EEGs were collected at ITIs. Participants were not allowed to blink eyes or move their
bodies during each run and they were asked to fixate on the center of screen during the ITI periods.
Therefore, the horizontal or vertical electrooculogram (EOG) signals were not recorded and trials
contaminated by few artifacts were also not excluded.

http://psychtoolbox.org/
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2.4. Online Target Identification

For each trial, a GT2
circ test [46] was used to check the presence of SSMVEP on the statistics

of responses at each stimulation frequency. Three rectangular windows involving three cycles of
each stimulation frequency, i.e., 480 data points for 15 Hz stimulation, 600 data points for 12 Hz,
and 840 data points for 8.57 Hz, were sequentially slid over each trial with one-cycle overlap, i.e.,
160 data points for 15 Hz, 200 data points for 12 Hz, and 280 data points for 8.57 Hz. The resulting
data segments were submitted to the fast Fourier transform (FFT), creating four-feature vectors with
complex Fourier components from each stimulation frequency and its sub-harmonic. The GT2

circ test
provides a probability to determine whether feature vectors are consistent with random fluctuations
alone or if they infer the presence of periodic components beyond a given confidence level. In our
study, the confidence level was set at 0.99. The stimulation with the maximal confidence probability
exceeding the confidence level would be statistically identified as the attended target.
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2.5. Statistical Analysis

To investigate the mental load and fatigue effects in both non-noise and noise-tagged BCI tasks,
the changes of α and θ powers and the θ/α ratio were used in mental load evaluation, and α, θ, θ + α

powers, SSMVEP properties of amplitude, SNR, and online accuracy were used to evaluate potential
fatigue effects. In this study, Fourier powers of α and θ were quantified by calculating the band
power with Welch’s power spectral density estimation in bins of 0.4 Hz. To avoid the overlap of α

rhythms (~8–13 Hz) with 8.57 Hz stimulation, and to avoid the overlap of θ rhythms (~4–7 Hz) with
the sub-harmonic of 8.57 Hz (i.e., the 4.28 Hz component), the α and θ powers were extracted through
the frequency band 9–13 Hz and 4.5–7 Hz, respectively. For the convenience of the analysis, the 12 Hz
stimulation was not included in the scope of this study due to the fact that this stimulation frequency
and its sub-harmonic were both involved in the dominant bands of α and θ rhythms. The SSMVEP
amplitude spectra at stimulation frequencies of 15 Hz and 8.57 Hz, and their respective sub-harmonics,
were extracted by FFT. Similarly, the SNRs at stimulation frequencies of 15 Hz and 8.57 Hz and their
respective sub-harmonics were computed as the ratio between the Fourier power obtained at the target
frequency f and the mean power value of its adjacent frequencies f ± 0.4 Hz [47,48].

Repeated analysis of variance (ANOVA) procedure with Bonferroni correction was applied for
the statistical significance analysis of the indices. The Bonferroni correction was employed by means
of adjusting for all pairwise comparisons of dependent variables (e.g., noise mode, SSMVEP strength,
and EEG band index). ANOVA with polynomial curve fitting (i.e., least-squares regression) statistics
was conducted to evaluate the trend in the association between the experimental order and indices.
The objective of this trend analysis was to study the trend of the index means across the experimental
order and the separate contributions of linearity and nonlinearity. The latter were evaluated by testing
each linear and quadratic coefficient against the null hypothesis that the best fitting straight line has a
slope of 0 [49]. The level of significance for the statistical tests was set at p < 0.05.

3. Results

In the following, we first focused on the mental load. It was hypothesized that in BCI tasks,
α activity would decrease and θ power increase along with the increase in mental load [50]. As a
consequence of the prolonged BCI usage, participants were then expected to experience mental fatigue,
which would be reflected by lower BCI performance, along with reduced SSMVEP amplitude, SNR,
and online accuracy.

3.1. Influence of Visual Noise on Mental Load

The mental load analysis was restricted to the grand average of α and θ powers and the θ/α ratio
changes for all participants. The SSMVEP findings concerning mental load were carried out in within
on-task EEGs and between non-task and on-task EEGs. To facilitate the subsequent comparison of
mental load between non-noise and noise-tagged BCI tasks, we first validated the hypothesis stating
that a lower mental load is associated with an increase in α power and a decrease in θ power in non-task
resting spontaneous EEGs rather than in on-task EEGs during goal-directed cognitive tasks [51].

Figure 4 shows the grand-averaged power spectra in α and θ bands and corresponding θ/α

ratio across twelve participants. The power spectra were measured from non-task and on-task EEGs
under both non-noise and noise-tagged stimulation procedures, for which each run consisted of
10 consecutive on-task trials at stimulation frequencies of 15 Hz and 8.57 Hz and 14 non-task inter-trial
intervals (ITIs) of 5 s, respectively. To test the above hypothesis in α and θ powers and corresponding
θ/α ratio, a two-way repeated ANOVA including the factors of noise mode using non-noise vs.
noise-tagged conditions on non-task and on-task EEGs was conducted. We found a main effect
of non-task ITIs vs. on-task trials (p < 0.05 for all comparisons), but no interaction (p > 0.05 for
all comparisons), implying that for α and θ powers and corresponding θ/α ratios, respectively, the
relative magnitudes among non-task ITIs vs. on-task trials did not change with the noise mode.
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Subsequent one-way ANOVA revealed a significant α band synchronization in non-task ITIs rather than
in on-task trials for both non-noise and noise-tagged BCI applications (p < 0.001 for all comparisons).
A reversed phenomenon was found significant in θ power for both non-noise and noise-tagged
conditions (one-way ANOVA: p < 0.001 for all comparisons). The corresponding θ/α ratio revealed
significantly lower values during non-task ITIs than during on-task trials across all participants under
both non-noise and noise-tagged conditions (one-way ANOVA: p < 0.001 for all comparisons). These
implied that when performing BCIs, the idle condition, during which participants did not attend
any stimulation, would result in apparent lower mental load than the visual attention condition that
includes a task.
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Figure 4. Comparison of mental load indices between non-task ITIs and on-task trials in both non-noise
and noise-tagged conditions across participants. The mean values and standard deviation (SD) of α

and θ powers and the θ/α ratio were calculated across twelve participants. All statistics were assessed
by one-way ANOVA, *** p < 0.001 between non-task ITIs and on-task trials in both non-noise and
noise-tagged BCI applications.

Figure 5 shows the mental load indices of α and θ powers and θ/α ratio that were calculated
from on-task EEGs in both non-noise and noise-tagged BCI tasks across twelve participants. Since
participants were asked to attend to every 15 Hz, 12 Hz, and 8.57 Hz stimulation sequentially,
which constitutes a stimulation sequence, and also because each run consisted of five stimulation
sequences and the experimental tasks alternated every two runs like “Non-noise run – Non-noise
run – Noise-tagged run – Noise-tagged run – Non-noise run – Non-noise run . . . ”, the α and θ

powers and θ/α ratio were summed over the stimulation frequencies of 15 Hz and 8.57 Hz in the
10 consecutive stimulation sequences (i.e., belonging to two sequential runs) with the same order across
twelve participants. To evaluate the interaction effect between the noise mode and the stimulation
sequence, a two-way repeated ANOVA including the factors of noise mode using non-noise vs.
noise-tagged conditions on consecutive stimulation sequences 1–10 was conducted. We found a
significant interaction effect between the noise mode and the stimulation sequence in θ/α ratio
(p = 0.010), implying that the tendency of θ/α ratio over 10 consecutive stimulation sequences changed
with the noise mode. Here, the overall rising tendency of the θ/α ratio in the non-noise task and
decreased tendency in the noise-tagged task could be noticed in sequence order 6–10 of Figure 5.
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Figure 5. Comparison of mental load indices between on-task stimulation sequences in both non-noise
and noise-tagged BCI tasks across participants. The mean values and SD of α and θ powers and θ/α

ratio were calculated from 10 consecutive stimulation sequences with the same order across twelve
participants. All statistics were assessed by one-way ANOVA, ** p < 0.01 between five consecutive
stimulation sequences in either the first or the second runs of two sequential runs, *** p < 0.001 between
five consecutive sequences.

Specifically, for the second runs (i.e., sequence order 6–10; Figure 5) of the non-noise BCI task,
a trend representing the increase in mental load as the decrease in α power and the increase in θ

power, and in the θ/α ratio, seemed to be present among the successive sequences, but did not reach
statistical significance (F(4, 95) = 0.66, p = 0.618 for α power; F(4, 95) = 0.34, p = 0.848 for θ power;
F(4, 95) = 1.47, p = 0.217 for θ/α ratio; one-way ANOVA with Bonferroni-corrected post-hoc tests). For
the second runs of the noise-tagged task, the reversed phenomena of an overall rise tendency of α power
could be noticed across successive sequences (ANOVA testing for linear trend: p < 0.001), whereas θ

power and θ/α ratio decreased progressively with increasing sequence order (p = 0.025 for θ power;
p < 0.001 for θ/α ratio). The sequence differences in α power and in θ/α ratio were also significant
(F(4, 95) = 3.57, p = 0.009 for α power; F(4, 95) = 5.68, p < 0.001 for θ/α ratio; one-way ANOVA
with Bonferroni-corrected post-hoc tests), whereas the difference in θ power was not significant
(F(4, 95) = 1.47, p = 0.216). These demonstrated a facilitation of visual noise in alleviating the mental
load, as indicated by the increase in α power and the decrease in θ power and in θ/α ratio. Additionally,
the mental load was worsened in the normal non-noise BCI task.

For the first runs (i.e., sequence order 1–5; Figure 5) of the non-noise BCI task, the findings
regarding α power and θ/α ratio presented the characteristics of notably-significant inverted-U- and
U-shaped quadratic (i.e., non-monotonic) trends, respectively, as a function of the sequence order.
To test the U-shaped relation between the sequence order and the two indices, we entered both linear
and quadratic terms in trend analyses. The analysis indicates a U-shaped relation if the quadratic term
is significantly different from 0. Here, a positive and statistically significant quadratic term would
indicate a U-shaped correlation while a negative and statistically significant quadratic term would
indicate an inverted-U-shaped correlation. The polynomial trend analysis on α power resulted in a
significant negative quadratic term, indicating a significant inverted-U-shaped relationship (ANOVA
testing for quadratic trend: p = 0.043) against the linear association (insignificant; ANOVA testing for
linear trend: p = 0.444) between the sequence order and α power. This demonstrated that a quadratic
trend, in this case an inverted-U-shaped relationship, better fitted α power than a linear relationship.
Unlike α power, θ/α ratio showed a significant U-shaped relationship associated with the sequence
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order (ANOVA testing for quadratic trend: p = 0.029). For θ power, no significant quadratic relationship
was noticed (ANOVA testing for quadratic trend: p = 0.543). Specifically, in the non-noise BCI task,
the magnitude of the grand-averaged α power progressively increased and then decreased, while the
magnitude of the grand-averaged θ/α ratio progressively decreased and then increased; both findings
illustrate the same phenomenon: mental load first decreased shortly but then increased during the last
stimulation sequences of the first runs and until the second runs. In the noise-tagged task, the α and θ

powers and the θ/α ratio in the first runs behaved with similar tendencies as compared to its respective
second runs, but showing an insignificant trend of mental load alleviation for α and θ powers (ANOVA
testing for linear trend: p = 0.748 for α power; p = 0.472 for θ power), but a significant trend of mental
load alleviation for the θ/α ratio (ANOVA testing for linear trend: p = 0.015). This implied that the
very first mental load alleviation in the non-noise task may be derived from its preceding noise-tagged
task, and the reason why the mental load alleviation was not so significant in the first runs of the
noise-tagged task may result from its preceding non-noise task.

3.2. Influence of Visual Noise on Fatigue

Figure 6 indicates the amplitude, SNR, and accuracy differences between different trial orders for
both non-noise and non-tagged tasks at different stimulation frequencies across twelve participants.
The SSMVEP amplitudes and SNRs at stimulation frequencies of 15 Hz and 8.57 Hz, and their respective
sub-harmonics, were extracted from the spectral power of multiple runs of successive trials with the
same order. Inter-participant normalization was attained by dividing the amplitude and SNR estimates
by the average computed from all amplitude and SNR values of both non-noise and noise-tagged
conditions, respectively, but separately for each participant [52]. Three-way repeated ANOVA with
Bonferroni correction, which included the factors of “noise mode”, “stimulation frequency”, and
“on-task trial”, showed a significant interaction effect between the noise mode and the on-task trial in
SSMVEP amplitude and accuracy (p = 0.039 for amplitude; p > 0.023 for accuracy), implying that the
tendencies of SSMVEP amplitude and accuracy over five consecutive on-task trials changed with the
noise mode. Here the overall decreased tendencies of SSMVEP amplitude and accuracy in non-noise
tasks and their stable tendencies in noise-tagged tasks could be noticed across consecutive on-task
trials in Figure 6.

Overall, the normalized response traces for the noise-tagged BCI task remained stable regarding
amplitude, SNR, and accuracy over the range of successive trials at both stimulation frequencies (i.e.,
15 Hz and 8.57 Hz). There was no significant linear (p > 0.05 for 15 Hz and 8. 57 Hz) or quadratic
(p > 0.05 for 15 Hz and 8.57 Hz) association between the trial order and amplitude. Similar results were
found for SNR and accuracy at both stimulation frequencies (ANOVA testing for linear trend: p > 0.05
for all comparisons; ANOVA testing for quadratic trend: p > 0.05 for all comparisons). The SSMVEP
amplitude, SNR and accuracy differences were analyzed with one-way ANOVA, and the significance
level was adjusted by means of Bonferroni correction controlling for all pairwise comparisons of
the successive trials. Here, one-way ANOVA with Bonferroni-corrected post-hoc tests also revealed
no significant fatigue effect in amplitude (p > 0.05 for 15 Hz and 8.57 Hz), SNR (p > 0.05 for 15 Hz
and 8.57 Hz) and accuracy (p > 0.05 for 15 Hz and 8.57 Hz) between different trial orders within the
noise-tagged task. Furthermore, the overall amplitude and SNR performance under the noise-tagged
condition was significantly more superior beyond the non-noise condition at 15 Hz (one-way ANOVA:
p < 0.001 for all comparisons). These indicated that visual noise could facilitate the alleviation of
mental fatigue during the noise-tagged BCI task.
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state to the fatigue state; however, this effect did not reach statistical significance (one-way ANOVA: 
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2.72 ± 0.46 s vs. fatigue state: 2.93 ± 0.92 s; one-way ANOVA: F(1, 108) = 2.39, p = 0.125), and a 
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(two-sample F-test: p < 0.001). The results indicated that the brain slowed its activity due to the 
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Figure 6. Comparison of fatigue indices of normalized amplitude, SNR, and online accuracy between
five consecutive on-task trials in both non-noise and noise-tagged BCI tasks across participants. The
grand-averaged mean values and SD of amplitude, SNR, and accuracy were calculated from five
consecutive trials of the same order in each run across twelve participants. All statistics were assessed
by one-way ANOVA, * p < 0.05 between five consecutive trials in both non-noise and noise-tagged
tasks, ** p < 0.01 between five consecutive trials, *** p < 0.001 between five consecutive trials.

For the non-noise task, the performance at 15 Hz still presented a roughly stable tendency
regarding amplitude, SNR and corresponding online accuracy across successive trials. No significant
SSMVEP amplitude, SNR and accuracy differences were found between different trial orders
(F(4, 270) = 1.63, p = 0.167 for amplitude; F(4, 270) = 0.96, p = 0.430 for SNR; F(4, 55) = 1.25, p = 0.299
for accuracy; one-way ANOVA with Bonferroni-corrected post-hoc tests). Exceptions were found
at 8.57 Hz as dramatically-significant decreasing trends in amplitude (ANOVA testing for linear
trend: p < 0.001), SNR (p = 0.004), and accuracy (p = 0.005) were observed as time elapsed. The
SSMVEP amplitude, SNR and accuracy differences between different trial orders were also significant
(F(4, 270) = 4.78, p < 0.001 for amplitude; F(4, 270) = 3.43, p = 0.009 for SNR; F(4, 270) = 3.15, p = 0.021
for accuracy; one-way ANOVA with Bonferroni-corrected post-hoc tests), i.e., the lowest amplitude,
SNR, and accuracy were associated with the highest trial order. All these findings demonstrated that
the noise-tagged paradigm exhibited a superior anti-fatigue efficacy and even better performance than
the conventional non-noise paradigm during prolonged BCI usage.

To support the above-mentioned accuracy results in Figure 6, more sophisticated statistical
analysis with correct response time, which characterized BCI efficiency, were assessed under different
noise strengths, as illustrated in Figure 7. The differences in correct response time upon a certain online
accuracy value for both alert and fatigue states were analyzed in the non-noise and noise-tagged BCI
tasks across twelve participants. This accuracy value was calculated as the grand-averaged percentage
of correctly judged trials, and the correct response time at stimulation frequencies of 15 Hz and 8.57 Hz
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in the first and last single trials of all experimental runs was extracted to represent the alert and fatigue
states, respectively.
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ANOVA with Bonferroni correction, which included the factors of “noise mode”, “stimulation 
frequency”, and “accuracy mode” using TPR vs. FPR conditions, showed a significant FPR 
difference between non-noise and noise-tagged tasks (p < 0.001). Specifically, the FPRs significantly 
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Figure 7. Online accuracy and correct response time in the alert versus fatigue state in both non-noise
and noise-tagged BCI tasks across participants. The grand-averaged online accuracy and corresponding
correct response time were calculated in semi-synchronous online BCI tasks performed across twelve
participants. Results are shown in black for the noise-tagged task and in gray for the non-noise task.
Each error bar characterizes the distribution of correct response time upon a certain online accuracy
value, which was calculated as the grand-averaged percentage of correctly-judged trials. The upper
and lower bounds of each error bar were set with maxima and minima of the time distribution, and the
central point (circle and square) represents the mean. For convenience, the upper end of the ordinate
was set above 100%.

After the 15-Hz stimulation, both accuracy and efficiency prevailed in the alert state rather than
in the fatigue state in the normal non-noise task. Online accuracies decreased by 11% from the alert
state to the fatigue state; however, this effect did not reach statistical significance (one-way ANOVA:
F(1, 22) = 2.93, p = 0.101). A less significant 8% increment in the requirement of correct response time
was also found in the fatigue state as compared to the alert state in the non-noise task (alert state:
2.72 ± 0.46 s vs. fatigue state: 2.93 ± 0.92 s; one-way ANOVA: F(1, 108) = 2.39, p = 0.125), and
a significantly larger variation in the correct response time could be observed in the fatigue state
(two-sample F-test: p < 0.001). The results indicated that the brain slowed its activity due to the
reduced cognitive capacity during fatigue. For the noise-tagged task, the online accuracy and
correct response time between the alert and fatigue states seemed to exhibit comparable performance
(F(1, 22) = 0.01, p = 0.908 for accuracy; alert state: 2.74 ± 0.75 s vs. fatigue state: 2.75 ± 0.48 s, one-way
ANOVA: F(1, 108) = 0.01, p = 0.905 for correct response time). A significantly smaller variation of the
correct response time was observed in the fatigue state as compared to the alert state (two-sample
F-test: p < 0.001).

A similar phenomenon occurred at 8.57 Hz: the fatigue state resulted in comparable online
accuracy and correct response time to the alert state in the noise-tagged task (F(1, 22) = 0.57,
p = 0.458 for accuracy; alert state: 3.09 ± 0.93 s vs. fatigue state: 2.96 ± 0.71 s, one-way ANOVA:
F(1, 108) = 0.51, p = 0.475 for correct response time). The non-noise task still presented higher accuracy
during the alert state than during the fatigue state. The online accuracies dramatically decreased by
30% from the alert state to the fatigue state (one-way ANOVA: F(1, 22) = 15.92, p < 0.001), whereas
the changes in the correct response time between the alert and fatigue states did not reach statistical
significance (one-way ANOVA: F(1, 108) = 1.87, p = 0.175).
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The above online accuracy results refer to each target being correctly detected corresponding
to the cue on the screen, i.e., the true positive rate (TPR). A more sophisticated analysis of the false
positive rate (FPR, i.e., a target was detected, but it was different from the cue on the screen) was
conducted in addition to the TPR analysis. The FPR obtained at 15 Hz indicated the percentage of trials
judged as 15 Hz when 8.57-Hz or 12-Hz cues were displayed on the screen. FPR at 8.57 Hz indicated
the percentage of trials judged as 8.57 Hz when 12-Hz or 15-Hz cues were displayed on the screen. The
TPR and FPR results of individual participants are presented in Table 1. One-way ANOVA revealed
that almost all participants exhibited TPR improvement in the noise-tagged task at 15 Hz except for
Participant 3. A comparable, or even reversed, phenomenon could be observed at 8.57 Hz, which may
be due to the low-pass property of the sensory systems highlighted in our previous study [23] and to
the fact that the visual noise strength adopted in the present study wielded little beneficial influence
on this specific frequency. More interestingly, three-way repeated ANOVA with Bonferroni correction,
which included the factors of “noise mode”, “stimulation frequency”, and “accuracy mode” using
TPR vs. FPR conditions, showed a significant FPR difference between non-noise and noise-tagged
tasks (p < 0.001). Specifically, the FPRs significantly decreased during the application of the visual
noise task as compared to the non-noise task at 8.57 Hz (noise-tagged: 8.72% ± 8.33 vs. non-noise:
35.04% ± 17.25, one-way ANOVA: F(1, 22) = 22.65, p < 0.001). The same trend also existed at 15 Hz
(noise-tagged: 16.76% ± 8.42 vs. non-noise: 31.74% ± 8.75, one-way ANOVA: F(1, 22) = 18.24, p < 0.001),
but to a significant smaller extent (one-way ANOVA: F(1, 22) = 5.53, p = 0.028). This may be due to the
fact that the performance obtained at 15 Hz benefitted largely from the visual noise which, in turn,
resulted in the FPR decrement at 8.57 Hz. Similarly, the small performance improvement observed
during the noise-tagged task at 8.57 Hz brought less beneficial influence on the FPR decrement at 15 Hz.

Table 1. The TPR and FPR results of individual participants.

Participants

15 Hz 8.57 Hz

Non-Noise Noise-Tagged Non-Noise Noise-Tagged

TPR (%) FPR (%) TPR (%) FPR (%) TPR (%) FPR (%) TPR (%) FPR (%)

1 95 40 100 0 88 36 56 0
2 90 15 95 5 85 35 92.5 2.5
3 90 35 85 25 65 20 70 5
4 90 40 96.67 13.33 56.67 23.33 66.67 3.33
5 86.67 20 93.33 13.33 70 20 50 15
6 76.67 33.33 86.67 23.33 84 52 68 8
7 53.33 26.67 80 20 53.33 46.67 80 20
8 80 36 96 20 70 20 100 0
9 73.33 43.33 100 16.67 66.67 26.67 56.67 6.67

10 60 30 100 25 35 40 65 10
11 62.5 37.5 80 27.5 62.5 77.5 60 27.5
12 60 24 72 12 80 23.33 53.33 6.67

In addition to the absolute amplitude, SNR, and accuracy, the EEG power indices (i.e., α, θ, and
θ + α) within ITIs might provide information about the fatigue-like modulation of visual stimulation.
The increasing literature on this topic showed that the resting brain functions are linked to individual
differences in cognitive function and behavioral performance, including visual cognition and attention,
memory recall, language processing, and decision-making [26]. Moreover, resting spontaneous EEGs
have been observed in response to changes in mental fatigue [12]. With the same paradigms, but by
examining the spontaneous oscillations rather than on-task EEGs, the stacked histograms presented in
Figure 8 revealed how the grand-averaged α, θ, and θ + α powers evolved along the 14 ITIs within five
stimulation sequences in multiple runs of twelve participants. In each panel, the two ITIs enclosed in
each subgroup in purple represented the intervals within one stimulation sequence.
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from 14 consecutive non-task ITIs of the same order in each run across twelve participants. The 
polyline in blue represented the time course of the grand-averaged α power along with the 14 ITIs 
within five stimulation sequences of multiple runs. The polyline in magenta represented the time 
course of the grand-averaged θ + α power. All statistics were assessed by one-way ANOVA, ** p < 
0.01 between 14 consecutive ITIs. 
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in the user's arousal level and in task performance. In addition, increases in task difficulty and in 
mental load may lead to drowsiness which may, in turn, increase the mental effort necessary to stay 
alert and, thus, cause fatigue. Fatigued people often experience difficulties in focusing their attention 
and appear more easily distractible. In this work, we showed that presenting a moderate 
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fatigue during online operation of a periodic visual stimulation-based BCI task that places demands 
on the attentional processes. This implies that the human visual system may exploit the power of 
randomness to enhance higher brain functions, such as the visual attention control. Two elaborate 
analyses were implemented in this study. First, we did observe a decreased α band power with the 
increment in cognitive load during the non-noise BCI task. We also reported an expected rise in θ 
power with the increase in mental load, although its effect seemed to be present, but less clear. The 
reason why we reported an obvious α power change rather than a θ power change may be due to the 
fact that θ waves often occur in the frontal and/or fronto-central sites, whereas α rhythms were 
dominated by the parietal and/or parieto-occipital areas [23], which is the exact place we recorded 
the SSMVEP signals. Second, the SSMVEP amplitude, SNR, and online accuracy significantly 
declined as affected by participants’ fatigue in the non-noise BCI task. Additionally, a much larger 
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Figure 8. Stacked histograms showing the comparison of different fatigue indices (i.e., α, θ, and θ + α

powers) between 14 consecutive non-task ITIs in both non-noise and noise-tagged conditions across
participants. The grand-averaged mean values and SD of α, θ, and θ + α powers were calculated from
14 consecutive non-task ITIs of the same order in each run across twelve participants. The polyline
in blue represented the time course of the grand-averaged α power along with the 14 ITIs within five
stimulation sequences of multiple runs. The polyline in magenta represented the time course of the
grand-averaged θ + α power. All statistics were assessed by one-way ANOVA, ** p < 0.01 between
14 consecutive ITIs.

Across all participants, consistent tendencies were obtained in α and θ + α powers as these
two indices increased positively and significantly from the start to the end of the stimulation in the
non-noise task (ANOVA testing for linear trend: p < 0.001 for all comparisons). However, there was
no significant correlation trend between the ITI order and θ power in the non-noise task (ANOVA
testing for linear trend: p = 0.392), as well as between ITI order and α, θ, and θ + α powers in the
noise-tagged task (ANOVA testing for linear trend: p > 0.05 for all comparisons). The α, θ, and θ + α

power differences were analyzed with one-way ANOVA, and the significance level was adjusted by
means of Bonferroni correction controlling for all pairwise comparisons of the successive ITI subgroups.
Here one-way ANOVA with Bonferroni-corrected post-hoc tests revealed an expected increase of
mental fatigue with a significantly larger α power in the fifth ITI subgroup than in the first ITI subgroup
occurred within the non-noise task (F(4, 655) = 4.21, p = 0.002). The subsequent θ + α power was
also significant (F(4, 655) = 3.52, p = 0.007), whereas the fatigue effect on θ power was non-significant
(F(4, 655) = 0.69, p = 0.601). For the noise-tagged task, no significant fatigue effect could be observed
(F(4, 655) = 0.56, p = 0.693 for α power; F(4, 655) = 1.36, p = 0.246 for θ power; F(4, 655) = 0.95, p = 0.436
for θ + α power; one-way ANOVA with Bonferroni-corrected post-hoc tests).

4. Discussion

Considering the previous studies on mental load, a high mental load may result in a decrement
in the user's arousal level and in task performance. In addition, increases in task difficulty and in
mental load may lead to drowsiness which may, in turn, increase the mental effort necessary to
stay alert and, thus, cause fatigue. Fatigued people often experience difficulties in focusing their
attention and appear more easily distractible. In this work, we showed that presenting a moderate
spatiotemporal visual noise to participants can reliably alleviate the mental load and the level of
fatigue during online operation of a periodic visual stimulation-based BCI task that places demands
on the attentional processes. This implies that the human visual system may exploit the power of
randomness to enhance higher brain functions, such as the visual attention control. Two elaborate
analyses were implemented in this study. First, we did observe a decreased α band power with the
increment in cognitive load during the non-noise BCI task. We also reported an expected rise in θ

power with the increase in mental load, although its effect seemed to be present, but less clear. The
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reason why we reported an obvious α power change rather than a θ power change may be due to
the fact that θ waves often occur in the frontal and/or fronto-central sites, whereas α rhythms were
dominated by the parietal and/or parieto-occipital areas [23], which is the exact place we recorded the
SSMVEP signals. Second, the SSMVEP amplitude, SNR, and online accuracy significantly declined as
affected by participants’ fatigue in the non-noise BCI task. Additionally, a much larger variation of
the correct response time could be observed in the post-viewing as compared to the initial viewing in
the non-noise task. Furthermore, the number of missed targets also increased significantly during the
non-noise task. The rather dramatic increase in missed targets was not only due to a simple reduction
in the number of correct responses: the number of responses to non-targets even increased. This
suggested that the observed performance deterioration in the non-noise BCI task was not only caused
by a task disengagement, but may also derive from a reduction in goal-directed attention, leaving
participants performing in a more stimulus-driven fashion. To a large extent, this effect seems to
be caused by an inability of fatigued participants to efficiently recruit and allocate their attentional
resources [53]. However, for the noise-tagged BCI task, the SSMVEP amplitude, SNR, and online
accuracy benefited from the addition of visual noise and did not show any significant changes during
prolonged BCI usage. Furthermore, in the noise-tagged condition, the α and θ + α powers of resting
spontaneous EEGs exhibited roughly stable tendencies, whereas tendencies toward increased α and
θ + α powers could be observed in the non-noise condition with the increase in ITI order. These
suggested that with the modulation of attention by noise, there may exist less demands of
continuous attention toward specific targets when performing the visual attention task, leading to the
compensation of performance deterioration that occurs in the conventional stimulation paradigm.

Stochastic resonance (SR), or stochastic facilitation, occurs in a wide range of non-living and
living systems. Several studies have shown an importantly beneficial role of noise in information
processing at a neuronal level and in the primary sensory systems of animals. In humans, SR has
been demonstrated in peripheral organs and in tactile, hearing, and vision processing within the
brain [54–60]. Additionally, SR has even been found in higher cognitive functions (e.g., visual
attention and arousal level controlling) which would involve widely separated brain regions above
the “low-level” sensory systems [61]. For the visual perception, the dynamic interaction between
noise and visual signals in the human brain may make noise mediate the visual selective attention
and arousal by which the activities in lower- and higher-level visual and association areas are
temporarily coordinated [27,62]. In 2003, Kitajo et al. [63] suggested that the added noise enhances
phase synchronization both within the visual areas of the brain where the noise and the signal
representation are combined, and between the visual areas and other brain areas responsible for
generating visual attention control. Here, noise plays a role as an integral part of inter-neuronal
communication and less than optimal amounts have less of an effect, and larger than optimal amounts
dissolve synchronization [64–66]. Regarding the effects of noise on synchronization, noise, in a general
way, increases arousal, which makes the participants more alert, and less drowsy.

In addition to the role of noise in neural synchronization, which establishes transient networks
that implement perceptual and cognitive processes, such as memory, attention, and even conscious
awareness [35,67], the multi-stable nature of visual attention would let noise influence the switching
among different attention states in a visual scene. Visual attention is a dynamic multi-stable process
where the attention “spotlight” typically shifts from one spatial location or target in a visual scene to
another one over a period of less than a second to a few seconds, either voluntarily or passively, or
exclusively or intermittently [68]. Thus, we can regard the movement of the focus of attention as the
movement among stable points in a visual scene. In this case, each stable point would represent a
particular location or target. Due to this multi-stable nature of visual attention, noise at the cognitive
level is associated with enhanced switching behavior among attention states [69]. Thus, with optimal
noise strength, the hopping among the multiple stable points should be stochastically synchronized
with the input signals and the visual attention ability should be improved.
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5. Conclusions

Taken together, our work suggests that participants developed increasing difficulties in staying
alert and sustaining attention in the conventional non-noise paradigm. However, they could continue
to successfully accomplish the BCI usage at an acceptable mental load and fatigue level with the
addition of visual noise. This finding will help us to understand how the noise-facilitated attention
control alleviates mental load and fatigue. In addition to EEG characteristics that were used in
the evaluation of mental load and fatigue, other measures can be considered to provide additional
information for monitoring the mental states more efficiently in future directions of the current study,
e.g., incorporating other monitoring techniques to construct a hybrid BCI system such as hybrid
fNIRS-EEG BCI [70,71] and BCI/eye-tracker systems [11]. Moreover, more noise strengths and larger
frequency ranges with decreased frequency differences could be involved in future work for further
sophisticated studies of SR fingerprinting in arousal-mediated BCI applications.
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