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Abstract: An estimate on the reliability of prediction in the applications of electronic nose is essential,
which has not been paid enough attention. An algorithm framework called conformal prediction is
introduced in this work for discriminating different kinds of ginsengs with a home-made electronic
nose instrument. Nonconformity measure based on k-nearest neighbors (KNN) is implemented
separately as underlying algorithm of conformal prediction. In offline mode, the conformal predictor
achieves a classification rate of 84.44% based on 1NN and 80.63% based on 3NN, which is better
than that of simple KNN. In addition, it provides an estimate of reliability for each prediction.
In online mode, the validity of predictions is guaranteed, which means that the error rate of region
predictions never exceeds the significance level set by a user. The potential of this framework for
detecting borderline examples and outliers in the application of E-nose is also investigated. The result
shows that conformal prediction is a promising framework for the application of electronic nose to
make predictions with reliability and validity.
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1. Introduction

Two main problems that the electronic nose (E-nose) faces are classification and regression.
Lots of techniques, such as support vector machine (SVM) [1], k-nearest neighbors (KNN) [2–4],
artificial neural network (ANN) [5,6], linear discriminant analysis (LDA) [2–4,7,8] and other
methodologies, have been successfully applied for predictions with E-nose. However, there are
still two drawbacks: (1) the lack of reliable measure of the confidence in their individual prediction;
and (2) the accuracy of overall prediction is not guaranteed. Many approaches have been developed
to complement these drawbacks by predicting with additional information, such as probably
approximately correct learning (PAC), Bayesian learning, generalized least square regression in
combination with a stepwise backward selection [9] and hold-out estimate or cross-validation.

In PAC learning, upper bounds on the probability of error often exceed one even for a relatively
clean data set, which makes it useless in practical applications. In addition, PAC learning does
not provide any information on the reliability of individual prediction [10]. In contrast, Bayesian
learning and other probability algorithms, such as logistic regression [11] and Platt’s method [12],
can complement every individual prediction with information of probability to indicate how every
potential label is correct. However, the main disadvantage of these algorithms is that they depend
on a strong statistical assumption for the model. Once the data does not conform well to statistical
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model, the prediction may be invalid and misleading. Data generated from E-nose is usually difficult
to be described by a precise statistical model because most gas sensors suffer from sensor drift
caused by variation of temperature and humidity, sensor aging, lack or partial selectivity and sensor
poisoning [13,14]. Though lots of work have been devoted to drift calibration, there is still no effective
approach to compensate the drift [15–17]. Hold-out estimate and cross-validation provide information
about the accuracy of overall prediction. Usually, the dataset is divided into training set and testing set;
then, the average prediction accuracy of the testing set is used to estimate the performance of the
model. However, this performance estimation usually provides overoptimistic results in real-world
applications, since testing samples measured afterwards may suffer from sensor drift, sensor aging
or sensor poisoning. ‘External validation’ is strongly recommended for artificial olfaction by some
researchers, where other testing sets generated in different experiment conditions from the training set
should be used [18]. However, the performance of ‘external validation’ is still unsure and also depends
on the experiment conditions. Therefore, the accuracy of overall prediction cannot be guaranteed by
hold-out estimate or cross-validation.

Conformal prediction was proposed and developed by Vladimir Vovk and his co-workers since
2005 [10,11,19,20]. It is based on a consistent and well-defined mathematical framework and measures
how well the new example is conformed to the group of observations. The algorithm produces
each individual prediction with additional information of confidence and credibility. The most
important property of conformal prediction is automatic validity under the randomness assumption:
the objects and their labels are assumed to be generated from the identical probability distribution.
Informally, validity means that conformal predictor never overrates the accuracy and reliability of
their prediction. The randomness assumption is a much weaker condition than statistical assumption
and can easily be satisfied by real-world data, such as E-nose data.

In this paper, a home-made electronic nose is introduced to discriminate nine different kinds
of ginsengs and conformal prediction is used to make reliable and valid predictions. The definition
of conformal prediction and nonconformity measure is introduced in Section 2. Then, the sampling
experiment with a homemade E-nose and data pre-processing process is presented in Section 3.
The results and discussions are shown in Section 4. Finally, we draw the conclusions of our research in
Section 5.

2. Conformal Prediction

2.1. Definition

Let X be a measurable space (the object space) and Y be a finite set (the label space). Every sample,
zi = (xi, yi), is composed of a object xi ∈ X and a label yi ∈ Y. The observation space is defined as
Z := X ∗ Y, and zi ∈ Z. We find a measurable function A that changes every sequence of observations,
(z1, z2, ..., zn) ∈ Z, to a same-length sequence (α1, ...αn) ∈ R, which is formed by positive real numbers
and is equivariant with respect to permutations: for any nand any permutation π of {1, ..., n}

(α1, ..., αn) = A(z1, ..., zn)→ (απ(1), ..., απ(n)) = A(zπ(1), ..., zπ(n)).

The conformal predictor determined by A meets the exchangeability assumption and is defined by

Γε(z1, ..., zl , x) := {y|py > ε}, (1)

where (z1, ..., zl) ∈ Z is a training sequence that is a part of observation space (z1, z2, ..., zn), x is
a test object, and y ∈ Y is potential labels for x. In this work, E-nose was used to deal with
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classification problem, so Y is the set of labels of all sample categories, Γε is a corresponding predict
region with a given significance level ε ∈ (0, 1) . For each y ∈ Y , the corresponding p-value is defined by

py =
|{i = 1, ..., l + 1|αy

i ≥ α
y
l+1}|

l + 1
. (2)

The corresponding sequence of nonconformity scores is defined by

(α
y
1 , ..., α

y
l , α

y
l+1) = A(z1, ..., zl , (x, y)). (3)

Generally speaking, the lower the α
y
l+1 is, the more confidence we have. The lower the py is,

the less we can trust this prediction.
It is clearly that the predict region in a conformal predictor is nested, i.e., for any ε1 < ε2,

Γε2(z1, ..., zl , x) ⊆ Γε1(z1, ..., zl , x). (4)

The property of validity of conformal predictor is that for any l, the probability of the event

yl+1 ∈ Γε(z1, ..., zl , xl+1)

is at least 1− ε, i.e.,
P(yl+1 /∈ Γε(z1, ..., zl , xl+1)) ≤ ε. (5)

2.2. Nonconformity Measure

In theory, any other prediction algorithms can be modified and developed as underlying
algorithms (nonconformity measure). Vladimir Vovk once used k-nearest neighbors as the underlying
algorithm to compute nonconformity measure for the conformal prediction [10]; so, in this work,
we implement a typical nonconformity measure based on KNN. For simplicity, we define CP-1NN and
CP-3NN as conformal predictor based on 1NN and 3NN, while simple predictors are 1NN and 3NN.

Given a sequence of examples (z1, ..., zn), the nonconformity score measure by CP-KNN is

αi :=
∑k

j=1 d+
ij

∑k
j=1 d−ij

i = 1, ..., n, (6)

with the example zi = (xi, yi), where d+
ij is the jth shortest distance from xi to other objects labelled

the same as xi, and d−ij is the jth shortest distance from xi to other objects labelled different from xi.
The parameter k is the number of elements taken into account. The larger αi is, the stranger zi is, and it
shows zi is more non-conformal than other elements.

2.3. Prediction in Online Mode

Online learning is the most popular and practical learning protocol in machine learning. In online
learning mode, examples are presented one by one. Every time, we observe a new object xi and predict
its label yi with old examples (z1, ..., zi−1). Then, we observe the label yi, and put (xi, yi) into the
sequence of old examples. Then, we observe another new object xi+1 and predict its label yi+1 with
old examples (z1, ..., zi). The quality of prediction would be improved as more and more old examples
are accumulated. This is the way of how the online mode are learning.
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The process of conformal prediction can be summarized by the following protocol [10]:

cONLINE PREDICTION PROTOCOL :

Errε
0 := 0, ε ∈ (0, 1);

Multε
0 := 0, ε ∈ (0, 1);

Empε
0 := 0, ε ∈ (0, 1);

Training set = {(x1, y1), ..., (xi, yi)}
FOR n = l + 1, l + 2, ... :

Reality outputs xn ∈ X;

Predictor outputs Γε
n ⊆ Y f or all ε ∈ (0, 1)

Reality outputs yn ∈ Y

errε
n = {1 i f yn /∈Γε

n
0 otherwise

Errε
n = Errε

n + errε
n

multε
n = {1 i f |Γε

n |>1
0 otherwise

Multε
n = Multε

n + multε
n

empε
n = {1 i f |Γε

n |=0
0 otherwise

Empε
n = Empε

n + empε
n

Training set = {Training set, (xn, yn)}
End FOR.

Combining Formula (5) and the strong law of large numbers, we can deduce that

limn→∞sup
Errε

n
n
≤ ε, (7)

holding with probability one for the conformal predictor [20].

2.4. Prediction in Offline Mode

Validity of conformal prediction is only proved for the online mode, in which every example
is predicted one by one and every prediction is made based on the examples that have been
considered before, rather than generating a certain rule from a fixed set of examples. However,
the conformal prediction can still work in the offline mode and provide additional information about
reliability for every prediction.

In offline mode, we can set a significance level to force the conformal predictor to output
a prediction, which is the label with the highest p-value. This approach is called f orced prediction,
similar to simple prediction, which is designed to output singleton label. However, in this case,
the significance level varies across different examples and the validity does not hold [19].

Two indicators, con f idence and credibility, are used to provide additional information about
the prediction. They are defined as:

con f idence : sup{1− ε :| Γε |≤ 1},

credibility : in f{ε :| Γε |= 0}.

In the classification case, con f idence equals 1 minus the second maximum p-value, which shows
how confident we are rejecting other labels. Credibility equals the highest p-value, which shows how
well the chosen label conforms to the rest of the set. The forced prediction is considered to be reliable if
its confidence is close to 1 and credibility is not close to 0 [19].
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3. Experiment and Methods

3.1. Sample Preparation

Nine categories of ginsengs (35 pieces for every category), which are showed in Table 1,
were purchased from Changchun Medicinal Material Market (Changchun, China) randomly.
Every ginseng sample was pulverized into powder, and 10 g powder of every sample was put
into 100 mL empty glass bottles, which has been washed with clean air for 30 min separately before.
Then, all of the bottles were sealed and placed at 50 ◦C for 30 min. Finally, 10 mL head-space gas was
extracted from the top of the bottle for measurement with an injector.

Table 1. Details of the ginseng samples.

No. Ginseng Samples Places of Production

1 Chinese red ginseng Ji’an
2 Chinese red ginseng Fusong
3 Korean red ginseng Ji’an
4 Chinese white ginseng Ji’an
5 Chinese white ginseng Fusong
6 American ginseng Fusong
7 American ginseng USA
8 American ginseng Canada
9 American ginseng Tonghua

3.2. E-Nose Equipment and Measurement

All of the samples were measured with a homemade E-nose consisting of 16 metal-oxide
semi-conductive sensors of TGS type purchased from Figaro Engineering Inc. (Osaka, Japan).
TGS sensors have been used in the field of food classification [21,22]. The response characteristics
of sensors are listed in Table 2. The schematic of E-nose system is shown in Figure 1. All sensors
were fixed on a printed circuit board and placed in a 200 mL stainless chamber. A three-way valve
was used to switch between target gas and clean dry air. Two mini vacuum pumps were fixed for air
washing with a constant air flow of 1 L/min. A data acquisition (DAQ) unit USB6211, purchased from
National Instruments Inc. (Austin, TX, USA), is equipped to record the signals of different sensors and
control the pumps. Heating temperature for metal-oxide semi-conductive sensor is very important,
and heater voltage of 5 V DC was applied for each sensor, as recommended by Figaro Engineering Inc.
to guarantee the best performance of the sensors.

Table 2. The response characteristics of sensors.

No. Sensor Type Response Characteristic

1 TGS800 Carbon monoxide, ethanol, methane, hydrogen, ammonia
2 TGS813 Carbon monoxide, ethanol, methane, hydrogen, isobutane
3 TGS813 Carbon monoxide, ethanol, methane, hydrogen, isobutane
4 TGS816 Carbon monoxide, ethanol, methane, hydrogen, isobutane
5 TGS821 Carbon monoxide, ethanol, methane, hydrogen
6 TGS822 Carbon monoxide, ethanol, methane, acetone, n-Hexane, benzene, isobutane
7 TGS822 Carbon monoxide, ethanol, methane, acetone, n-Hexane, benzene, isobutane
8 TGS826 Ammonia, trimethyl amine
9 TGS830 Ethanol, R-12, R-11, R-22, R-113

10 TGS832 R-134a, R-12 and R-22, ethanol
11 TGS800 Carbon monoxide, ethanol, methane, hydrogen, isobutane
12 TGS2620 Methane, Carbon monoxide, isobutane, hydrogen
13 TGS2600 Carbon monoxide, hydrogen
14 TGS2602 Hydrogen, ammonia ethanol, hydrogen sulfide, toluene
15 TGS2610 Ethanol, hydrogen, methane, isobutane/propane
16 TGS2611 Ethanol, hydrogen, isobutane, methane
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Figure 1. The schematics of the E-nose system.

The procedure of measurement is as follows: firstly, the test chamber loaded with sensor array
was washed by a clean-dry-air flow of 1 L/min for 360 s to allow the sensors to return to the baseline.
Such flow can wash the sensors clean in 100–200 s, just near the time of reaction and won’t damage
the E-nose. Then, washing-air flow was stopped and 10 mL target gas was taken and injected into the
chamber through an injector. The target gas was left in the chamber obtained for 200 s, so that the gas
sample diffused in the whole chamber freely to a steady condition. After that, the valve of washing-air
flow was open to wash away the target gas. Responses of 16 sensors were recorded for 340 s, which
included 20 s before the injection of the target gas, 200 s of the whole reaction time and 120 s after the
washing flow was opened. The sampling frequency is of 10 Hz. The procedure of measurement is
shown in Figure 2.

A total of 315 samples taken from nine categories of ginsengs were measured at room temperature
(22–25 ◦C) and humidity (50–70%). During each measurement, the temperature and humidity of
ambient environment were relatively stable.

Finally, all of the statistical analysis were performed by using Matlab 9.0.0.341360 (R2016a)
(MathWorks, Natick, MA, USA).

Figure 2. The procedure of measurement.

3.3. Data Preprocessing

The typical response curve of 16 sensors to a ginseng sample is shown in Figure 3. The voltage
signal of each sensor was converted to resistance signal and then the resistance signal of each sensor
was calibrated separately by:

R = (Rs − R0)/R0, (8)
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where Rs is the original resistance signal and R0 is the value of baseline. Five commonly used features
were extracted (a total of 80 features with 16 sensors) and discussed as follows:

1. The maximal absolute response value, Rmax = max(|R|).
2. The area under the full response curve, Rint =

∫ T
0 R(t)dt, where T is the total measurement

time, T = 340 s.
3–5. Exponential moving average of derivative of R, Ea(R) = max(|y(k)|), k ∈ [1, 400]. The

discretely sampled exponential moving average is defined as y(k) = (1 − a)y(k − 1) +
a(R(k))− R(k− 1) with smoothing factors a = 0.005, 0.05, 0.5 (sampling frequency: 10 Hz).
Thus, three different smooth factors “a” give us the last three features.
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Figure 3. Typical response curves of 16 metal-oxide semi-conductive sensors to a sample.

4. Results and Discussion

4.1. Comparison of Forced Conformal Prediction with Simple Prediction

In offline mode, a forced conformal predictor can be used as a simple predictor to output only
one label with the maximum p-value. It also provided indicators of confidence and credibility for
the predicted label, compared to simple predictor. To compare the characteristics of forced conformal
predictor and simple predictor, 1NN and 3NN were used as nonconformity measure methods and
simple predictors separately.

Results of four typical individual predictions by forced predictor with CP-1NN are shown in
Table 3. The p-value for each potential label, confidence, and credibility of forced conformal predictor
are given. For Sample 1, both confidence and credibility are close to one, which means that we are
confident of rejecting other potential labels, and the new object with predicted label conforms well to
the old examples. This is the ideal case where we can strongly believe in our prediction. For Samples
2 and 3, the confidence is high (>0.90) while the credibility is rather low (<0.16). It tells us that the new
object with a predicted label does not conform well to old examples. However, the new object with
other potential labels conforms much worse to the old examples. Therefore, we have less confidence
in rejecting other potential labels because no other label is appropriate or even close to the predicted
label. For Sample 4, the confidence is low, which means that we are not so confident of rejecting other
potential labels, so error prediction is very likely to occur in this case.



Sensors 2017, 17, 1869 8 of 12

Table 3. Typical individual prediction with CP-1NN (conformal prediction based on 1NN).

Sample Serial True Lable Forced Prediction Confidence Credibility Simple Prediction

1 1 1 0.9968 0.9397 1
2 1 1 0.9047 0.1143 1
3 2 2 0.9587 0.1587 2
4 2 1 0.7714 0.2349 1

Compared to forced conformal prediction, simple prediction only outputs the predicted label
with no comment on the reliability of the prediction.

In addition, we compare the average classification rate of forced conformal predictors and
simple predictors. The average classification rate was achieved with leave-one-out validation: in every
cycle, only one sample was taken as a testing set, and the remaining as a training set; the cycle
was repeated until all samples had been treated as testing samples once. The result is shown in
Table 4. We can see that when using forced prediction, the conformal predictors have the approximate
classification accuracy as simple predictors, but provide additional information about the reliability of
the prediction. Thus, we can demonstrate that the framework will not sacrifice the classification rate
while it gives us prediction reliability information.

Table 4. Comparison of average classification rate of forced conformal predictors and simple predictors.

Predictors 1NN 3NN

Forced conformal predictor 84.44% 80.63%
Simple predictor 84.13% 77.46%

4.2. Validity of Online Conformal Prediction

CP-1NN and CP-3NN are used for online conformal prediction of discriminating ginseng samples
according to the protocol in Section 2.3. Five samples were randomly taken from each class and
treated as initial training sets. The rest of the samples were randomly sorted, predicted and added
to the training set one by one. The cumulative error (Errε

n) , multiple predictions (Multε
n) and empty

predictions (Empε
n) for CP-1NN with confidence level of 80% are shown in Figure 4. As the number of

samples in the training set increased, the predictor is more and more stable. Increasing of multiple
predictions becomes slow gradually and even stops when the number of training samples is over 133.
Then, the conformal predictor only outputs singleton prediction, just like a simple predictor dose,
while keeping validity, which we will discuss below. The number of empty predictions starts to show
up when the size of the training set is over 159, which can be explained by the fact that with enough
training samples, the conformal predictor is confident of judging that these certain samples do not
belong to any other class under the confidence level of 80%, and it is very likely that they are outliers.

Two main properties of conformal predictor are validity and efficiency. The ratio of errors Errε
n/n

is a measure of validity of conformal predictor. The cumulative error Errε
n for CP-1NN with different

confidence levels of 80%, 85% and 90% are shown in Figure 5. For all n and different confidence levels,
we have Errε

n < εn , which testify to the validity of online conformal predictors.
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Figure 4. Online conformal prediction with confidence level of 80%.
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Figure 5. The cumulative errors of online prediction with CP-1NN (conformal prediction based on
1NN) at confidence levels of 80%, 85% and 90%.

Besides guaranteeing the validity of conformal prediction, multiple prediction and empty
prediction can provide the information about the distribution of the samples in feature space. For binary
classification, multiple prediction with both labels may seem useless, but it demonstrates that both
of the labels are reliable with a certain level of confidence, and this sample is very likely to be the
borderline example between the two classes. For multi-label classification, multiple prediction can
exclude those labels that are not reliable with a certain confidence level, and the sample is very likely
to be the borderline example among the classes in this predicted region. Empty prediction tells that,
with a certain confidence level, no label is reliable for the sample, and it is very likely to be an outlier.
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4.3. Efficiency of Online Conformal Prediction

By choosing different confidence levels 1− ε, the error ratio is guaranteed to be under significance
level ε. However, it does not means that if we choose the higher confidence level, the predictor will
perform better. As the predicted region by a conformal predictor is nested (stated in Section 2.1), higher
confidence levels lead to low efficiency, which means wider predicted regions and more multiple
predictions, and that is not what we expected. How the multiple predictions by online conformal
predictors with CP-1NN vary with different confidence levels is showed in Figure 6. With lower
confidence levels, conformal predictors can become stable with a smaller size of training set and
gradually decreasing cases of multiple predictions. With higher confidence levels, the conformal
predictor has to output more labels to avoid overrate errors occurring and more multiple prediction
being output.
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Figure 6. Cumulative multiple predictions of online conformal prediction with CP-1NN at different
confidence levels of 80%, 85% and 90%.

Thus, when the nonconformity measure method is fixed, we have to balance between confidence
level and efficiency. However, we can still improve the efficiency of conformal predictors under the
same confidence levels by improving the nonconformity measure methods. There are two major
criteria depending on confidence level for conformal predictor [23]. One is the ratio of multiple
predictions in the test sequence, which is known as M (which stands for ‘multiple’) criterion. The
other is the average number of labels in the predict region of multiple prediction, which is known
as the E (stand for ‘excess’) criterion. The lower these two criteria are, the better the efficiency of the
predictor. These two criteria of efficiency for CP-1NN and CP-3NN with confidence levels of 80%, 85%,
and 90% were compared in Table 5. The CP-1NN has the lowest ratio of multiple prediction for all
confidence levels, and the average number of labels in multiple predictions is just a little higher than
that of CP-3NN for confidence of 80% and 85%. Therefore, we can conclude that CP-1NN achieved
better efficiency than that of CP-3NN.



Sensors 2017, 17, 1869 11 of 12

Table 5. Criterion of efficiency for online conformal predictors.

Confidence Level CP-1NN CP-3NN
M Criterion E Criterion M Criterion E Criterion

80% 15.29% 1.23 23.92% 1.32
85% 22.35% 1.40 32.94% 1.47
90% 36.08% 1.62 45.88% 1.75

5. Conclusions

In this work, conformal prediction is introduced for discriminating nine different ginsengs with
a home-made electronic nose. Nonconformity measure methods with 1NN and 3NN are completed
as underlying algorithms of conformal prediction. In offline mode, conformal predictors provides
singleton predictions as well as additional information on reliability on the prediction. In addition,
conformal prediction achieves a classification rate 84.44% with CP-1NN and 80.63% with CP-3NN,
which are better than that of simple 1NN and 3NN with a modest increase, respectively. In online mode,
the validity of conformal prediction is discussed and testified. The efficiency of conformal prediction
are compared for CP-1NN and CP-3NN. Both the “M criterion” and “E criterion” of CP-1NN are lower
than those of CP-3NN under every confidence level in the work, such as (15.29%, 1.23) of CP-1NN being
lower than (23.92%, 1.32) at the confidence level of 80%, which indicates that the efficiency of CP-1NN
is better than that of CP-3NN. The potential of conformal prediction for detecting borderline examples
and outliers in the application of E-nose is also discussed. In conclusion, conformal prediction can give
every prediction the estimation of reliability without sacrificing classification rates, which can make
the prediction more comprehensive in both offline and online modes. Future work will be focused on
designing new methods of computing nonconformity measures to improve the validity and efficiency
of conformal prediction for E-nose data.

Acknowledgments: The work is supported by the Natural Science Foundation of China (NSFC) (Grant No.
61403339) and the Science Fund for Creative Research Groups of the NSFC (Grant No. 61621002).

Author Contributions: Zhan Wang, You Wang and Guang Li conceived and designed the experiments; Zhan Wang
and Jiacheng Miao performed the experiments; Zhan Wang, Xiyang Sun and Zhiyuan Luo analyzed the data;
and Zhan Wang, Xiyang Sun and You Wang wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kaur, R.; Kumar, R.; Gulati, A.; Ghanshyam, C.; Kapur, P.; Bhondekar, A.P. Enhancing electronic nose
performance: A novel feature selection approach using dynamic social impact theory and moving window
time slicing for classification of Kangra orthodox black tea (Camellia sinensis (L.) O. Kuntze). Sens. Actuators
B Chem. 2012, 166, 309–319.

2. Miao, J.; Zhang, T.; Wang, Y.; Li, G. Optimal sensor selection for classifying a set of ginsengs using
metal-oxide sensors. Sensors 2015, 15, 16027–16039.

3. Gebicki, J.; Szulczynski, B.; Kaminski, M. Determination of authenticity of brand perfume using electronic
nose prototypes. Meas. Sci. Technol. 2015, 26, 125103.

4. Gebicki, J.; Dymerski, T.; Namiesnik, J. Investigation of air quality beside a municipal landfill: The fate of
malodour compounds as a model VOC. Environments 2017, 4, 7.

5. Singh, H.; Raj, V.B.; Kumar, J.; Mittal, U.; Mishra, M.; Nimal, A.T.; Sharma, M.U.; Gupta, V. Metal oxide
SAW E-nose employing PCA and ANN for the identification of binary mixture of DMMP and methanol.
Sens. Actuators B Chem. 2014, 200, 147–156.

6. Longobardi, F.; Casiello, G.; Ventrella, A.; Mazzilli, V.; Nardelli, A.; Sacco, D.; Catucci, L.; Agostiano, A.
Electronic nose and isotope ratio mass spectrometry in combination with chemometrics for the
characterization of the geographical origin of Italian sweet cherries. Food Chem. 2015, 170, 90–96.



Sensors 2017, 17, 1869 12 of 12

7. Green, G.C.; Chan, A.D.C.; Dan, H.H.; Lin, M. Using a metal oxide sensor (MOS)-based electronic nose
for discrimination of bacteria based on individual colonies in suspension. Sens. Actuators B Chem. 2011,
152, 21–28.

8. Dymerski, T.; Gebicki, J.; Wardencki, W.; Namiesnik, J. Application of an electronic nose instrument to fast
classification of polish honey types. Sensors 2014, 14, 10709–10724.

9. Giungato, P.; Laiola, E.; Nicolardi, V. Evaluation of industrial roasting degree of coffee beans by
using an electronic nose and a stepwise backward selection of predictors. Food Anal. Methods 2017,
doi:10.1007/s12161-017-0909-z.

10. Gammerman, A.; Vovk, V. Hedging predictions in machine learning-The second Computer Journal Lecture.
Comp. J. 2007, 50, 151–163.

11. Nouretdinov, I.; Devetyarov, D.; Vovk, V.; Burford, B.; Camuzeaux, S.; Gentry-Maharaj, A.; Tiss, A.; Smith, C.;
Luo, Z.Y.; Chervonenkis, A.; et al. Multiprobabilistic prediction in early medical diagnoses. Ann. Math.
Artif. Intell. 2015, 74, 203–222.

12. Zhou, C.Z.; Nouretdinov, I.; Luo, Z.Y.; Adamskiy, D.; Randell, L.; Coldham, N.; Gammerman, A.
A Comparison of venn machine with platt’s method in probabilistic outputs. Artif. Intell. Appl. Innov. Pt Ii
2011, 364, 483–490.

13. De Vito, S.; Piga, M.; Martinotto, L.; Di Francia, G. CO, NO(2) and NO(x) urban pollution monitoring with
on-field calibrated electronic nose by automatic bayesian regularization. Sens. Actuators B Chem. 2009,
143, 182–191.

14. Romain, A.C.; Nicolas, J. Long term stability of metal oxide-based gas sensors for e-nose environmental
applications: An overview. Sens. Actuators B Chem. 2010, 146, 502–506.

15. Nimsuk, N.; Nakamoto, T. Study on the odor classification in dynamical concentration robust against
humidity and temperature changes. Sens. Actuators B Chem. 2008, 134, 252–257.

16. Padilla, M.; Perera, A.; Montoliu, I.; Chaudry, A.; Persaud, K.; Marco, S. Drift compensation of gas sensor
array data by Orthogonal Signal Correction. Chemom. Intell. Lab. Syst. 2010, 100, 28–35.

17. Ziyatdinov, A.; Marco, S.; Chaudry, A.; Persaud, K.; Caminal, P.; Perera, A. Drift compensation of gas sensor
array data by common principal component analysis. Sens. Actuators B Chem. 2010, 146, 460–465.

18. Marco, S. The need for external validation in machine olfaction: Emphasis on health-related applications.
Anal. Bioanal. Chem. 2014, 406, 3941–3956.

19. Vovk, V. Conditional validity of inductive conformal predictors. Mach. Learn. 2013, 92, 349–376.
20. Vovk, V.; Gammerman, A.; Shafer, G. Algorithm Learning in a Random World; Springer:

New York, NY, USA, 2005.
21. Haddi, Z.; Boughrini, M.; Ihlou, S.; Amari, A.; Mabrouk, S.; Barhoumi, H.; Maaref, A.; Bari, N.E.; Llobet, E.;

Jaffrezic-Renault, N.; et al. Geographical classification of Virgin Olive Oils by combining the electronic nose
and tongue. Sensors 2012, doi:10.1109/icsens.2012.6411502.

22. Timsorn, K.; Wongchoosuk, C.; Wattuya, P.; Promdaen, S.; Sittichat, S. Discrimination of chicken freshness
using electronic nose combined with PCA and ANN. In Proceedings of the International Conference
on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology,
Nakhon Ratchasima, Thailand, 14–17 May 2014; pp. 1–4.

23. Vovk, V.; Fedorova, V.; Nouretdinov, I.; Gammerman, A. Criteria of efficiency for conformal prediction.
In Lecture Notes in Computer Science; Including Subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics; Spring: Berlin, Germany, 2016; pp. 23–39.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Conformal Prediction
	Definition
	Nonconformity Measure
	Prediction in Online Mode
	Prediction in Offline Mode

	Experiment and Methods
	Sample Preparation
	E-Nose Equipment and Measurement
	Data Preprocessing

	Results and Discussion
	Comparison of Forced Conformal Prediction with Simple Prediction
	Validity of Online Conformal Prediction
	Efficiency of Online Conformal Prediction

	Conclusions

