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Abstract: Pulmonary ailments are conventionally diagnosed by spirometry. The complex forceful
breathing maneuver as well as the extreme cost of spirometry renders it unsuitable in many
situations. This work is aimed to facilitate an emerging direction of tidal breathing-based pulmonary
evaluation by designing a novel, equitable, precise and portable device for acquisition and analysis
of directional tidal breathing patterns, in real time. The proposed system primarily uses an in-house
designed blow pipe, 40-kHz air-coupled ultrasound transreceivers, and a radio frequency (RF)
phase-gain integrated circuit (IC). Moreover, in order to achieve high sensitivity in a cost-effective
design philosophy, we have exploited the phase measurement technique, instead of selecting
the contemporary time-of-flight (TOF) measurement; since application of the TOF principle in
tidal breathing assessments requires sub-micro to nanosecond time resolution. This approach,
which depends on accurate phase measurement, contributed to enhanced sensitivity using a simple
electronics design. The developed system has been calibrated using a standard 3-L calibration syringe.
The parameters of this system are validated against a standard spirometer, with maximum percentage
error below 16%. Further, the extracted respiratory parameters related to tidal breathing have been
found to be comparable with relevant prior works. The error in detecting respiration rate only is 3.9%
compared to manual evaluation. These encouraging insights reveal the definite potential of our tidal
breathing pattern (TBP) prototype for measuring tidal breathing parameters in order to extend the
reach of affordable healthcare in rural regions and developing areas.

Keywords: ultrasonic phase detection; tidal breathing; 3D printed blow pipe; AD8302;
pulmonary assessment

1. Introduction

Pulmonary diseases affect not only urban but also rural demographics worldwide [1–4].
Obstructive airway diseases (OAD), viz., chronic obstructive pulmonary disease (COPD) is the second
largest cause of death worldwide [1,2]. Abrupt changes in weather, lifestyle, pollution, smoking habits
and a dearth of awareness are the main causes of adverse effects in the pulmonary system, triggering
respiratory ailments at an epidemic scale [5–7]. COPD, pneumothorax, and obstructive sleep apnea
(OSA), to name a few, are barely detected at their initial stages [1,2,5]. Since most OADs are not
reversible and are thereby never completely curable, it is crucial to detect these ailments at the earliest
stage possible. Additionally, it is very difficult to differentiate between the types of OADs, for example
COPD is mostly misdiagnosed as asthma [6].
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The gold standard for assessment of pulmonary conditions is spirometry [7–10]. Spirometry measures
pulmonary function parameters such as forced vital capacity (FVC ≈ 5.4 L), inspiratory and expiratory
reserve volume, forced expiratory volume in 1 s (FEV1 ≈ 4.6 L), peak expiratory flow rate (PEF≈ 10 L/s),
maximal voluntary ventilation (2.5–3.3 L) and many others [11–13]. In order to compute these lung
function parameters, the procedure of spirometry has a stringent requirement for the participant to
forcefully breathe in (and out) following a very complex process, which is hard to follow and implement
by most participants. Spirometry is not at all recommended for patients who are suffering from severe
lung conditions, elderly people and children less than 6 years of age. Opportunely, a new direction in
the diagnosis of respiratory diseases is emerging that relies on the analysis of tidal breathing patterns,
i.e., natural and undisturbed breathing at a resting state without any intentional forceful effort [13–25].
Expediently, researchers [13–25] have disclosed a variety of respiratory parameters that can be derived
solely from tidal breathing patterns which are sufficient to distinctly diagnose various lung conditions [18].
It is found that some crucial physiological indications relating to pulmonary mechanics and the respiration
control mechanism are deducible from tidal breathing patterns for both normal adults and infants.
Moreover, the kind and extent of airway obstruction disease perturbs the tidal breathing pattern signals
for both children and adults [13]. The pre-requisite of this line of diagnosis/pulmonary assessment is
an affordable, efficient and user friendly device to acquire and analyze the tidal breathing pattern.

A few direct and indirect methods exist to measure tidal breathing parameters [26–28]. Flow meters
use a direct method to measure the respiratory flow characteristics, including thermal and ultrasonic
flow meters [10,29–31]. Respiration rates are also measured indirectly using the electrocardiogram
(ECG) [32], photoplethysmography (PPG), pulse oximetry [33], tracheal breath sounds [34], impedance
pneumography [35] and other methods [36,37]. Tracheal breath sounds measurements are highly
susceptible to environmental noises. Piezoelectric respiration transducers [38], pressure mattresses [39],
abdominal strain gage sensors [40], microphone [41], camera-based vision analysis techniques [28],
and accelerometers [42] have been utilized for measure respiratory rates, volume and flow parameters.
Peak flow meters [43] are portable and cheap devices which measure expiratory flow rates, but are not
meant for tidal breathing pattern evaluation. Nevertheless, most of these techniques mainly measure
the respiratory rate and/or tidal volume, rather than the complete breathing pattern acquisition and
evaluation. Additionally, the user interface, the ease of operation, and provision for handling in absence
of medical staff are not considered for most of the techniques. Calibration time and effort is another
major challenge of most of these emerging techniques as well as the existing pulmonary function testing
(PFT) techniques. While there are various ways to measure air-flow, viz., mechanical, pressure, optical,
thermal, vortex, electromagnetic, Doppler and ultrasound-based flow meters [29,30], one of the most
accurate ones is based on ultrasound-based measurement [29–31]. However, most of the ultrasound
flow measurement devices utilize a time-of-flight (TOF) principle that makes the instrumentation
requirement quite stringent [29,44]. This is because under the TOF measurement principle a sharp pulse
is required to be generated, coupled with the requirement of superior time resolution in the detector
circuit, particularly when the flow velocity becomes significantly small compared to the sound speed.
For example, it only takes 294.12 µs for sound to travel through a 10-cm blow pipe (assuming sound
speed = 340 m/s). Tidal breathing velocity, which can be as small as 0.1 m/s [13,25,45], when added to
sound speed yields 294.03 µs for the sound pulse traveling the same distance (assuming tidal blow air
flows along the sound path). This points towards a 0.09-µs time resolution in the receiver circuit that in
turn requires sub-micron pulse generation in the transmitter and a suitable noise reduction scheme on
the receiver side as the receiver needs to be wide band for accepting the sharp pulse. In contrast, a phase
detection technique based on continuous wave generation is simpler to implement and offers enhanced
resolution as it is possible to measure a very small phase difference based on today’s integrated circuits
(ICs), leading to measurement of very small flow velocities. Thus the phase detection (PD) technique
can simplify the circuit configuration greatly [44,46]. In fact, the contribution in this work lies in
instrumenting a very sensitive yet affordable tidal breathing sensor/recorder based on an ultrasound
phase detection technique that is later validated through state-of-the art studies.
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In an attempt to surmount the demerits of the existing techniques, mentioned above, the current
work presents an ultrasound-based, novel, equitable, efficient, user-friendly and portable device to
acquire and analyze tidal breathing pattern (TBP) in real time, aimed towards pulmonary condition
assessment. This work is aimed at developing a sensor that can acquire and analyze a tidal breathing
pattern without the need for conscious and/or forced breathing maneuvers. The complete system
is developed using 40-kHz air-coupled piezoelectric ultrasound transreceivers, one radio-frequency
(RF) phase-gain IC [47,48], a few opamps and an Atmega micro-controller. In order to achieve
high sensitivity, changes in phase measurement techniques of ultrasonic waves have been exploited
(in contrast to usual TOF measurements), thus making the sensor highly sensitive so that it can record
the directional tidal air flow, even through the nostrils. The measurement of phase difference-based
respiration flow and/or velocity measurement accomplished by utilizing phase-gain IC8302 is another
novelty achieved here. This sensor is developed in an effort to be employed as a screening device for
pulmonary assessment, not as a replacement of spirometry. We have, in recent past, demonstrated
the feasibility of designing a tidal breathing apparatus using the phase detection method [49]. In this
work, we present a detailed study on the sensor design where we optimized and calibrated for angled
ultrasound towards accurate detection of tidal breathing. Moreover, we also conducted a detailed
analysis of breath cycles to extract tidal breathing parameters. The developed system is calibrated using
a standard 3-L calibration syringe (Medikro syringe 3000 [50]) and is also parametrically compared
with a standard spirometer [51]. It is to be noted that we collected data from healthy subjects only and
have carried out first-level validation for healthy subjects compared with reported state-of-art studies
containing clinical assessment.

The measurement principle is outlined in Section 2, followed by a description of the system
architecture in Section 3. Tidal flow estimation employing the present developed sensor is outlined
in Section 4. Preprocessing of the acquired tidal breathing pattern (TBP) signal and computation of
respiratory parameters are depicted in Section 5. Section 6 presents details of the experiments and
discusses the computed results. The final section outlines the concluding remarks.

2. Measurement Principle

We employed an ultrasound-based phase detection principle for accurately detecting tidal
breathing patterns. For a given distance between the ultrasound transmitter (Tx) and receiver (Rx),
the change in sound speed due to inspiration or expiration results in a proportionate phase change
between the transmitted and received signal.

Mathematically, if t is the time taken by the ultrasound signal to travel a distance D between the
transducers, then phase-difference, φ, is given by,

φ =
2πt
T

=
2π

T

(
D

vsound + vP

)
(1)

where T is the periodicity of ultrasound excitation, vsound is the velocity of sound and vP is the velocity
component of the medium (say, due to respiration) parallel to sound travel path. Hence, the change in
the phase difference ∂φ can be related to change in the respiration velocity ∂v as,

∂φ = −2π D
T

∂vp(
vsound + vp

)2 = K ∂vp (2)

Since speed of sound is much greater than tidal breathing component (≈ 0.1 to 10 m/s for tidal
breathing), we can write (without any loss of generality) (vsound + vP)

2 ≈ v2
sound, thus resulting in

K = − 2πD
Tv2

sound
.

Equation (2) clearly shows that the component of inspiration/expiration velocity along the sound
travel path, ∂vP, is directly proportional to phase shift (∂φ) of the ultrasound wave. This also reveals
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that the sensitivity is directly proportional to ultrasound frequency since for a given flow velocity,
a larger phase shift is obtained for increasing frequency (f = 1/T). However, we opted to operate at
40 kHz as air-coupled transducers for this frequency are widely available and are cost effective.

3. System Architecture

This section presents the complete sensor architecture comprising a ‘3D printed’ blow pipe (fitted
with ultrasound Tx and Rx), phase detection electronics, and a PC/laptop running data acquisition
and visualization graphical user interface (GUI). This is illustrated in Figure 1. Each component is
described in the following sub-sections.
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Figure 1. The entire system architecture comprising the flow pipe, the electronic circuitry and acquisition
in laptop through Python-based bespoke software GUI. TBP: tidal breathing pattern.

3.1. The 3D printed Flow Pipe

Figure 2 displays the flow-pipe which is designed in-house and is 3D printed. It consists of
a main cylindrical hollow pipe fitted with a disposable mouth-piece for inhaling and exhaling.
Ultrasound air-coupled transducers (one receiver and one transmitter) are kept at an angle (θ = 40◦)
with respect to the main blow pipe 68 mm apart, and hosted inside another hollow cylinder (sensor
pipe), as depicted in Figure 2. The angle is kept at 40◦ to ensure maximum dynamic range coverage.
The justification is given in Section 4.3.
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Figure 2. The 3D printed flow pipe.

3.2. The Electronic Circuitry

The entire device is USB-powered and uses a DC–DC converter to power the electronic boards.
The 40-kHz air-coupled ultrasonic Tx is driven by a 40-kHz sine wave (generated using ICL8038)
followed by a variable gain buffer amplifier. The ultrasonic Rx is similarly connected to a buffer and
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a variable gain amplifier followed by an active phase shifter module. This phase shifter module is
used to adjust the idle (or no flow condition) operating point so that the default phase shift (due the Tx
to Rx path lengths) is compensated for. The phase shifter output is fed to AD8302 (Analog Devices,
Norwood, MA, USA)—the phase detector module which compares the received signal with the
reference excitation signal. AD8302 (Analog Devices) is a phase-gain measurement IC targeted for
operation in high-frequency regions (typically from the MHz to GHz range). It takes two inputs in
pin INA and pin INB and provides gain (INA/INB) and phase (phase difference between INA and
INB) information in terms of proportionate DC voltage (scaled between 0 to 1.8 V). The output from
AD8302 is finally amplified (scaled between 0 to 5 V) and fed to the analog to digital converter (ADC)
of an Atmega32 microcontroller (µC) which digitizes the data at 100 Hz sampling rate and sends it to
a laptop/computer through USB communication.

3.3. GUI

A user-friendly software interface is developed in Python. This has the provision to visualize and
save the recorded data in systematic manner along with recording patient metadata (age, height and
weight, trial number, trial duration) while keeping the anonymity intact. Figure 3a shows the opening
page of the GUI to collect user information (meta-data) while Figure 3b shows the visualization
screen. An experimenter operates the GUI to acquire the TBP signal; at the end of the data acquisition,
the interface displays the computed tidal breathing parameters (extracted TBP parameters are explained
in Section 5.2). The GUI is easy to operate without any medical supervision. The experimenter is
needed to control the phase shifter to set the baseline at the start of the data acquisition. We now
focus on actual tidal flow calculations based on our system design and the measurement principle as
described above.
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and trial information; (b) the data visualization window depicting the acquired TBP waveform.

4. Tidal Flow Estimation Based on Actual Configuration

This section describes the derivation of tidal velocity, flow and volume computations and parametric
evaluations when configured with angled beam ultrasound and measured with the AD8302 phase/gain
IC. The concluding part of this section explains the selection of θ for the angled beam ultrasound.
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4.1. Tidal Velocity, Flow and Volume Computations

The schematic view and the dimensions of the flow pipe is depicted in Figure 4 and it is assumed
that the air flow inside the pipe is laminar.
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We have the main blowpipe with a constant radius of r1 = 11.88 mm, throughout the length.
The component of respiration velocity that lies in the ultrasound path (C–D) is given by,

vP = v cos θ (3)

where, v is the respiration velocity applied by the subject at point A (Figure 4) and θ is the angle
between the two cylindrical pipes. Hence, the change in the phase difference ∂φ is related to the
change in the respiration velocity, vP, as in Equation (2) and can be rewritten according to the blowpipe
specifics as,

∂φ = − 2πl2
Tv2

sound
∂vP (4)

where, l2 is the distance between the ultrasonic Tx and Rx in the sensor pipe. The Tx and Rx signals
are then fed to first input (INA) and second input (INB) pins of the AD8032 module, and the output
voltage VPhase from AD8302 is given as (from datasheet) [48],

VPhase = Kφ[φINA − φINB] (5)

where, Kφ is the phase gradient given as mV/rad and φINA/φINB are the phase values associated with
the Tx and Rx signals, respectively. Next, VPhase is amplified with a variable amplification factor G.
Hence the output at the final stage, VOUT can be written as,

∂VOUT = GKφ[φINA − φINB] = GKφ∂φ = −
GKφ2πl2
Tv2

sound
∂vP

⇒ ∂VOUT = −
GKφ2πl2 cos θ

Tv2
sound

∂v
(6)

where, the negative sign indicates that the direction of air flow and the output voltage have opposite
polarity. Thus the respiration velocity, ∂v, can be represented as,

∂v = −
Tv2

sound
GKφ2πl2 cos θ

∂VOUT = F
(
G, Kφ

)
∂VOUT (7)
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Here, the term F(G, Kφ) indicates the dependence of the output voltage change (for a given air
flow) on the overall gain of the system as well as the phase gradient Kφ, other parameters being constant.
We can compute the theoretical value for F(G, Kφ). However, this needs to be estimated (through the
calibration process) in the present setup in order to obtain respiration velocity in terms of m/s.

Now, the instantaneous flow rate, Q (m3/s) for laminar flow is given as,

Q =
∮
A

v·dA = vπ r2
1 (8)

where v is the respiration velocity obtained from Equation (7), and A is the cross-section area. From the
two equations, namely Equations (7) and (8), we obtain,

Q = F
(
G, Kφ

)
VOUTπr2

1·103 (in L/s) (9)

4.2. Parametric Evaluation

The value of G and Kφ needs to be computed in order to derive Q. In order to get Kφ, the module
AD8302 needs to be tested at our operating frequency of 40 kHz. The AD8302 datasheet [37–48]
presents a linear phase response in the range 0◦ to 180◦. The datasheet indicates that the IC can
uniquely measure a phase shift only from 0◦ to 180◦, after which it wraps the phase.

Figure 5 shows the phase response curve when 40-kHz sine wave (1 V peak-to-peak) is fed at INA
and is set as the reference signal. The same signal with a variable phase shift (0◦ to 180◦) is fed to INB.
It is observed that the response is fairly linear in 0◦ to 180◦ range. However, it is also identified that
from 160◦ onwards, the response starts to saturate. Therefore, we limited our measurements range
between 0◦ and 160◦ only. The slope of the curve, i.e., Kφ, is found to be −609.55 mV/rad. In our
design we kept the operating point for idle condition (i.e. no flow condition) at 90 degrees (i.e., middle
of the curve) so as to capture excursions (i.e., inhale and exhale) on both sides without any phase
wrapping or saturation. Effectively, we reserved a 60◦ downside swing for exhale and 60◦ degree
upward swing for inhale (this reduction of 20 degree works out fine as even with forced breathing
the phase-shift remained well under 60 degree). This working scheme based on the measured phase
response curve further influenced our decisions to select the ultrasound beam near the 40◦ angle (i.e., θ)
to the main blow pipe as described in the next subsection.
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The term F
(
G, Kφ

)
relies on the system gain G and the slope Kφ. Now, Kφ is computed to be

−609.55 mV/rad and is treated as fixed. The gain (G) of the variable gain amplifier is nominally set to
3, in an effort to achieve maximum compliance during data acquisition. Since F

(
G, Kφ

)
now depends

only on the variable gain G; we write F
(
G, Kφ

)
= F(G), here onwards.
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In Equation (7), by substituting the values of T (= 25 µs), vsound (= 347 m/s), when the temperature
is 27 ◦C, r1 (= 0.01188 m), Kφ (= −609.55 mV/rad), l2 (= 0.068 m), θ (= 40◦) and G (= 3), we obtain the
theoretical value of F(G) = 5.11. However, the exact value of F(G) may differ from its theoretical i.e.,
the ideal value. In order to estimate the exact value of F(G), the TBP system needs to be calibrated.
The system calibration is outlined in Section 6.1.

4.3. Selecting the Optimal Angle (θ)

The maximum velocity of human tidal breathing rarely exceeds 3 m/s [13,45]. In order to attain
maximum compliance of the tidal breathing pattern recorder (TBPR) device i.e., to accommodate
voluntary forceful breathing also, the maximum flow velocity is considered to be 10 m/s which is
then used for computation of optimal angle θ. In the previous section, we have mentioned that the
working region of TBPR is taken from 0◦ to 160◦. We have also set the idle operating point at 90◦.
Putting v = vmax in Equations (3) and (4), we find the magnitude of maximum change in phase as,

|∂φ|max =
2πl2vmax

T v2
sound

cos θ (10)

Figure 6 shows the variation of |∂φ|max over varying values of θ considering vmax = 10 m/s.
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From Figure 6 it is seen that with flow velocity set at 10 m/s the device loses sensitivity when θ is
nearing 90◦, thereby requiring much higher effort by the subjects (beyond the realm of tidal breathing)
to attain substantial change in phase. At θ = 90◦ the phase does not change at all with injected blow.
In contrast, for low values of θ, the phase change approaches 90◦ which is more than maximum
allowable phase swing that was set to 60◦ previously. In addition, setting θ = 0◦ is impossible from
a design perspective as it would make the blow and sensor pipe lie on the same line. Also, low values
of θ increase the length of the sensor pipe unnecessarily. We found θ value of 40◦ to be quite workable
as it offers a very compact design for the sensor pipe, and the corresponding phase change falls around
60◦ both ways. Hence, the phase swing with this particular choice of θ stays within 30◦ to 150◦ around
the no-blow condition (90◦) for expiration and inhalation, respectively.

5. Tidal Breathing Analysis

This section describes the basic preprocessing steps for extracting tidal breathing parameters.
The acquired tidal breathing (TBP) signal is analyzed in a MATLAB 2016 environment in order to
extract significant respiratory traits, essential for assessing the tidal breathing parameters.
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5.1. Preprocessing

The acquired signal is in voltage VOUT from which the respiration flow rate (in L/s) is obtained
according to Equation (9). The preprocessing steps are illustrated in Figure 7. The mean value of the
signal is then subtracted from VOUT itself to obtain the DC-corrected signal representing the change
in the blow injected by the subject. The TBP signal is contaminated with powerline interferences,
body movement and other high frequency noises. To eliminate these types of contamination, a second
order infinite impulse response (IIR) low pass filter with a cut-off frequency 15 Hz is applied on the
DC-removed signal.

Peaks and troughs of the TBP signal, which are crucial elements of inspiration-expiration cycles,
are detected on the low pass filtered signal. The peak–trough detection algorithm identifies the local
maxima and minima in the low pass filtered signal.

Using the locations of the troughs in the signal, the signal is then trough-to-trough-adjusted
(i.e., the signal starts and ends with a trough) for better subsequent window detection. This is achieved
at the cost of a losing a few data points, which will affect the already tracked peak and trough locations.

Using cubic interpolation, the non-linear drifts in the signal are removed, without compromising
the peak-trough correspondence, considering the breath-by-breath TBP flow signal of a 5-s window.
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Subsequently, the respiratory parameters are computed from the pre-processed signal.

5.2. Tidal Breathing Signal Parameters

Tidal breathing contains principal comprehension associated with pulmonary system, its condition,
its working and control mechanisms [13,17–19,21,23,25]. This information is attained not only from the
flow pattern but also using volumetric means. The TBP signal, acquired using our device, directly conveys
the flow (TBPflow) signal. Thus the first step, prior to extracting the essential parameters, is to obtain the
volumetric signal (TBPvolume). The TBPflow signal is integrated with respect to time (using trapezoidal
rule of numerical integration) to obtain TBPvolume. Figure 8 shows the preprocessed TBPflow as well
as the derived TBPvolume (blue dotted line) signals. It is to be noted that by convention [13,17,19,21],
the inspiratory cycle is shown as positive and vice versa for the expiratory cycle. However, in our system,
the VPhase has a negative slope, which when substituted in Equation (6) turns F

(
G, Kφ

)
positive. Thus in

our system, exhalation leads to a positive voltage swing. However, for representation, we have reversed
the cycle as per standard literature [7,8,13,17,19,21].
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To derive the respiratory parameters, it is essential to detect the onset and end of inspirations and
expirations [15]. The inspiration cycle is from the minima to the maxima while the expiration cycle
is from the maxima to the next minima of the same TBPvolume. Corresponding to Figure 8, A–C is
a breathing cycle, where A–B is the inspiratory cycle and B–C is the expiratory cycle. A number of
independent and dependent attributes of respiratory signals are computed from the TBPvolume and
TBPflow signals. These parameters [13,17–19,21,23,25] are described below with reference to Figure 8:

• Inspiratory time (TI) is the time elapsed from onset (A) to the end (B) of inspiration. It is given
in seconds.

• Expiratory time (TE) is the time taken to expire, i.e., the time elapsed between the onset (B) to the
end (C) of expiration.

• Breathing rate (BR) is the number of breaths cycles per minute (BPM) is computed by the
following equation,

BPM =
60

TI + TE
(11)

• Duty cycle (DCy) is given by the equation,

Duty Cycle = TI/(TI + TE) (12)

• Peak inspiratory flow (PIF) is the maximal flow rate attained during every inspiratory cycle. It is
obtained from the TBPflow signal. In Figure 8 the point D corresponds to PIF.

• Peak expiratory flow (PEF) is the minima in the TBPflow signal during every expiratory cycle,
i.e., the maximal flow attained during expiration. It refers to point F in the Figure 8.

• Time to peak inspiratory flow (tPIF) is the time taken to reach the maximum flow rate during
inspiration from its onset, i.e., the time taken to reach D from A.

• Time to peak expiratory flow (tPEF) is the time elapsed from to onset of expiration (E) till PEF
is attained.

• Tidal volume (T.V) is represented in terms of inspiratory and expiratory tidal volume. Inspiratory
(TVins) and expiratory tidal volume (TVexp) are the total volume of air inspired and exhaled
respectively. TVins refers to the area under the curve between point A and B and TVexp is that
between the point B and C in the TBPflow signal. TVins is the same as the tidal volume (T.V).
During restful tidal breathing is the TVins (i.e., T.V) is around 500 mL, however, it can vary largely
during stimulated tidal breathing [52], as in this current study.



Sensors 2017, 17, 1853 11 of 21

• Inspiratory (vins) and expiratory (vexp) velocity are the velocities during inhalation and
exhalation, respectively.

6. Experiments and Results

This section presents the system calibration, the experimental setup for tidal breathing data
logging and the computed results. Finally the present work is compared with relevant prior works.

6.1. System Calibration

Our system is calibrated using standard 3-L syringe (Medikro 3000 [50]), used for calibrating
spirometers, for various ranges of flow rates. The TBP sensor developed by us relies only on tidal
breathing acquisition and analysis. It is known that during tidal breathing, the tidal volume varies
around 300 mL–2 L [52]. The calibration setup is depicted in Figure 9a. The TBPR blow pipe is
attached to the calibration syringe and the complete setup is kept at rest on a steady horizontal platform.
The piston of the syringe is pulled out (≈inspiration) and pushed in (≈expiration) manually at three
different speeds (slow, medium and fast) i.e., varying the average flow rate. We have carried out
three trials of syringe expirations and inspirations for each of the three flow rates. Figure 9b visually
illustrates the variation in the output voltage (VOUT) of our TBP device for the three different flow rates.
Table 1 presents the area under the curve (AUC) (averaged over three trials), in volt-seconds, obtained
by integrating the VOUT signal during expiration (EXP) and inspiration (INSP) for all the slow, medium
and fast flow rates. It can be observed from Table 1 that there exists minimal difference between the
AUC during inspiration and that of expiration, the maximum of which is found out to be 160 mL.

Table 1. Area under the curve (AUC) (in volt-seconds) calculated from variation in the output voltage
(VOUT) signal for slow, medium and fast inspirations and expirations using the 3-L calibration-syringe.
EXP: expiration; INSP: inspiration.

Flow Rates Slow Medium Fast

INSP EXP INSP EXP INSP EXP

AUC 1.48 1.32 1.23 1.11 1.17 1.09
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The acquired TBP signal, VOUT, is first filtered to eliminate high frequency noises and then utilized
to compute the calibrated F(G) by integrating Equation (9), which can be written as,

t2∫
t1

Q(t) dt =
t2∫

t1

Fmeas(G) π r2
1 103VOUT(t) dt

⇒ vol = Fmeas(G) π r2
1 103

t2∫
t1

VOUT(t) dt

⇒ Fmeas(G) =
vol

π r2
1 103 AUC

(13)

where, vol = 3 L (as a standard 3 L syringe is used for calibration), r1 = 0.01188 m, AUC =
t2∫

t1

VOUT(t) dt

in volt-seconds, t1 is the start time of inspiration (expiration) and t2 is the end time of inspiration
(expiration) in seconds, and Fmeas(G) is the measured value of F(G). With the total volume of the
calibration syringe being constant at 3 L, we have computed the average flow rates during slow,
medium and fast syringe piston push/pull to be 0.19 L/s, 0.72 L/s and 2.1 L/s respectively, which are
within the tidal breathing range. Table 2 presents Fmeas(G) during inspiration and expiration for these
three different flow rates. The results are averaged over three trials for each of the flow-rates. The mean
of the Fmeas(G) during inspiration and expiration is found out to be F̂meas(G) = 5.54. Thus, Equation (9)
can be rewritten as,

Q = F̂meas(G) VOUT π r2
1 103 (L/s) (14)
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Table 2. F̂meas(G) computation by analyzing VOUT.

Flow Rate Fmeas(G)|Insp during Inspiration Fmeas(G)|Exp during Expiration

Slow 4.57 5.12
Medium 5.51 6.09

High 5.78 6.20
Mean 5.29 5.80

The rest of the signal analysis is based on this calibrated system output according to the Equation (14).

6.2. System Validation using Standard Spirometer

Our TBP system prototype is validated with respect to a standard spirometer, the Medikro Nano
Spirometer [51]. Five participants (2 female, 3 male, age 30 ± 5 years, with no history of pulmonary
disease) were asked to sit in a chair with an arm rest and back rest during the experimental session
of system validation. Our TBP blowpipe and the Medikro Nano-Spirometer blowpipe were attached
in a series, as shown in Figure 10, in a manner such that there was no leakage of air at the device
junction. The subjects held the blow pipe in one hand, while their nostrils were closed using a nose-clip,
and breathed for 10 s through the blowpipes (connected in series) such that the TBP device and the
spirometer acquires the same breath-signals almost synchronously. The subjects are instructed to
breathe normally without any forceful effort. Since most of the parameters obtained by a standard
spirometer are related to forceful breathing, we have considered two parameters, namely, PEF and PIF,
for the comparison with our device. Table 3, shows PIF and PEF as computed by our TBPR prototype
and the standard spirometer. It can be observed that the obtained values from TBP device is in tandem
with the standard spirometer while the percentage error is less than 16%. These encouraging insights
reveal the definite potential of our TBP prototype for measuring tidal breathing parameters.
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the system validation phase.
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Table 3. Comparison of PIF and PEF computation with a spirometer and our TBP system.

PEF (L/s) PIF (L/s)

Subjects Spirometer TBPR % Error Spirometer TBPR % Error

1 0.97 1.1 13.40 1.13 1.3 15.04
2 0.8 0.67 16.25 0.71 0.6 15.49
3 2.21 2.2 0.45 1.7 1.5 11.76
4 1.85 2.13 15.13 1.57 1.7 8.28
5 1.78 2.01 12.92 1.7 1.5 11.76

6.3. TBP Data Acquisition

The complete tidal breathing analysis is done on data from healthy subjects from our laboratory.
Twenty participants in the age range of 23–51 years, consisting of 6 females and 14 males participated
in this experiment. All the experimental procedure are Helsinki declaration [53]-compliant and ethical
clearance was sought from the Tata Consultancy Services (TCS) institutional review board (Ref. No.
TCS_IRB/ESD_TBPR, dated 27 April 2017).

The subjects were made to sit on a comfortable chair with back and arm rests. The objective and
procedures of the experiment were explained to them. Subjects were instructed to tidally breathe in and
blow out without any voluntary effort for 60 s. Three such trials, one trial each day for three consecutive
days, were taken for each subject. During this procedure, the nose was closed using a nose clip, so that
entire inhalation and exhalation occurred through the mouth. The closing of nose with a nose clip
is a common practice followed during lung function tests through spirometry. However, it has been
noted that whenever a subject is asked to consciously respire through the pipe, the respiration gets
stimulated causing increase in respiratory rate than the natural restful tidal breathing. This has been
reported to be a normal psychological response in prior works [52]. However, the advantage of the
present technique is that it does not require the participants to respire forcefully and to hold breaths.

6.4. Experimental Results and Discussion

Tidal breathing pattern is acquired by employing the developed system and analyzed to extract
vital respiratory attributes. The computed respiratory attributes are evaluated with respect to already
reported values in state-of the-art works.

6.4.1. Computing Tidal Breathing Parameters

Instead of calculating only the breathing rate and/or tidal volume, evaluating a set of
respiratory parameters can provide more insight towards pulmonary condition monitoring [13,17–19,21].
Although we were not performing any screenings of pulmonary artifacts in this present work, we extracted
some vital respiratory parameters from the TBPflow and TBPvolume as shown in Table 4. For the listed
parameters, we indicated the average value of the three trials conducted for each of the subjects, along with
the standard deviation given in parenthesis. The standard deviation for all parameters are minimal,
indicating that the intra-subject variance over the number of trials is very small. This also confirms the
repeatability of the TBP device. Ideally, the inspiratory (VTins) and expiratory (VTexp) tidal volume should
be very close, if not equal, which is readily verified from the results in Table 1.

As per the physiology of restful tidal breathing, expiration time (TE) is slightly more than that of
inspiratory time (TI) [52]. In the present experimental setup where the subjects are actively conscious
about the ongoing data recording and where the blow pipe is used for breathing, the act of tidal
breathing is not restful. That is why TE is less than TI for all the subjects. Moreover, as the total lung
capacity for each of the subjects is fixed, even with an honest attempt to perform tidal breathing, vexp

is greater than vins. This is in conjunction with the observed fact that TE < TI keeps the fixed lungs
capacity theory intact. As vexp > vins, PEF is also higher than PIF, this validates the entire hypothesis of
subjects’ conscious and stimulated breathing.
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Table 4. Attributes computed from TBPflow and TBPvolume for all twenty subjects. BR: breathing rate;
TI: inspiration time; TE: expiration time; DCy: duty cycle; BPM: breaths cycles per minute; VTins:
inspiratory tidal volume; VTexp: expiratory tidal volume.

Sub BR
(BPM) TI (s) TE

(s) DCy PIF
(L/s)

tPIF
(s)

PEF
(L/s)

tPEF
(s)

VTins
(L)

VTexp
(L)

vINSP
(m/s)

vEXP
(m/s)

1 7.51
(0.72)

3.93
(0.19)

3.59
(0.20)

0.49
(0.03)

1.03
(0.05)

1.38
(0.15)

1.60
(0.16)

0.85
(0.09)

2.75
(0.27)

2.59
(0.16)

2.33
(0.11)

3.49
(0.12)

2 26.7
(1.11)

1.19
(0.17)

1.07
(0.08)

0.51
(0.04)

0.82
(0.04)

0.53
(0.02)

0.98
(0.16)

0.58
(0.16)

0.61
(0.07)

0.64
(0.10)

1.84
(0.11)

2.21
(0.31)

3 16.84
(1.01)

1.83
(0.03)

1.68
(0.15)

0.50
(0.04)

1.41
(0.01)

0.92
(0.05)

1.73
(0.03)

0.65
(0.02)

1.70
(0.03)

1.82
(0.05)

3.19
(0.01)

4.1
(0.04)

4 29.06
(0.91)

1.04
(0.11)

0.98
(0.06)

0.51
(0.03)

0.92
(0.05)

0.52
(0.03)

1.04
(0.01)

0.47
(0.01)

0.63
(0.01)

0.64
(0.01)

2.08
(0.13)

2.35
(0.01)

5 26.96
(1.5)

1.06
(0.08)

1.01
(0.05)

0.51
(0.01)

1.7
(0.05)

0.53
(0.06)

1.37
(0.01)

0.48
(0.01)

0.88
(0.04)

0.89
(0.04)

3.12
(0.13)

3.86
(0.01)

6 30.24
(0.87)

1.04
(0.06)

0.97
(0.02)

0.51
(0.01)

1.06
(0.01)

0.52
(0.01)

1.21
(0.01)

0.47
(0.01)

0.72
(0.04)

0.74
(0.03)

2.75
(0.01)

3.31
(0.06)

7 28.64
(2.77)

1.18
(0.08)

1.10
(0.08)

0.52
(0.01)

1.38
(0.04)

0.58
(0.02)

1.57
(0.06)

0.53
(0.01)

1.06
(0.04)

1.11
(0.02)

3.11
(0.11)

3.59
(0.13)

8 24.51
(3.9)

1.57
(0.23)

1.37
(0.15)

0.53
(0.01)

1.44
(0.01)

0.71
(0.12)

1.75
(0.06)

0.65
(0.04)

1.49
(0.13)

1.45
(0.10)

3.26
(0.04)

3.98
(0.15)

9 28.90
(1.95)

1.15
(0.13)

1.05
(0.05)

0.52
(0.02)

1.25
(0.03)

0.58
(0.01)

1.47
(0.09)

0.50
(0.01)

0.95
(0.05)

0.99
(0.10)

2.82
(0.07)

3.34
(0.29)

10 16.73
(0.34)

2..02
(0.02)

1.66
(0.08)

0.56
(0.02)

1.63
(0.07)

0.88
(0.06)

2.27
(0.04)

0.69
(0.01)

2.26
(0.04)

2.23
(0.04)

3.82
(0.16)

5.12
(0.09)

11 12.42
(0.61)

2.82
(0.21)

1.92
(0.12)

0.56
(0.04)

1.43
(0.03)

1.03
(0.27)

2.07
(0.13)

0.89
(0.10)

2.10
(0.11)

2.13
(0.02)

3.23
(0.04)

4.68
(0.03)

12 17.76
(1.05)

1.81
(0.10)

1.53
(0.07)

0.52
(0.02)

1.34
(0.17)

0.70
(0.02)

1.56
(0.01)

0.86
(0.16)

1.48
(0.04)

1.32
(0.17)

3.02
(0.38)

3.54
(0.21)

13 17.31
(0.41)

1.89
(0.14)

1.60
(0.07)

0.54
(0.02)

1.46
(0.05)

0.94
(0.11)

1.94
(0.06)

0.66
(0.05)

1.80
(0.09)

1.90
(0.11)

3.29
(0.11)

4.58
(0.11)

14 30.84
(1.58)

0.97
(0.15)

0.93
(0.06)

0.51
(0.01)

0.96
(0.16)

0.49
(0.53)

1.06
(0.27)

0.43
(1.09)

0.60
(0.03)

0.62
(0.02)

2.17
(0.27)

2.34
(0.49)

15 13.76
(0.88)

2.46
(0.17)

1.86
(0.16)

0.54
(0.01)

1.37
(0.05)

1.01
(0.20)

1.99
(0.22)

0.80
(0.01)

2.15
(0.21)

2.22
(0.27)

3.09
(0.12)

4.51
(0.51)

16 7.42
(0.64)

4.15
(0.36)

3.47
(0.21)

0.57
(0.01)

1.29
(0.04)

1.26
(0.21)

2.12
(0.06)

0.83
(0.02)

3.30
(0.05)

3.39
(0.01)

2.92
(0.06)

5.08
(0.04)

17 24.30
(3.12)

1.42
(0.21)

1.40
(0.18)

0.50
(0.03)

1.65
(0.06)

0.75
(0.08)

1.73
(0.07)

0.59
(0.02)

1.54
(0.05)

1.60
(0.05)

3.73
(0.12)

3.99
(0.16)

18 19.75
(0.42)

1.64
(0.04)

1.36
(0.01)

0.56
(0.01)

1.12
(0.09)

0.76
(0.07)

1.60
(0.34)

0.64
(0.02)

1.21
(0.11)

1.37
(0.16)

2.54
(0.21)

3.67
(0.76)

19 18.53
(0.89)

1.82
(0.03)

1.48
(0.03)

0.55
(0.02)

1.32
(0.07)

0.75
(0.09)

1.79
(0.03)

0.66
(0.01)

1.66
(0.05)

1.65
(0.01)

2.97
(0.15)

4.23
(0.04)

20 25.26
(1.62)

1.29
(0.05)

1.18
(0.06)

0.51
(0.02)

1.22
(0.13)

0.68
(0.04)

1.35
(0.19)

0.53
(0.01)

0.03
(0.11)

1.01
(0.09)

2..74
(0.18)

3.05
(0.38)

Figure 11 depicts the breathing rates (breaths per minute, BPM), of each subject computed from
the TBP signal (BR_calculated) and counted manually by the experimenter (BR_manual). Both these
parameters are represented as averaged over all the trials per subject. It is observed that the percentage
error over all the subjects is 3.39%. This implies the correctness of the TBP device.
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Figure 11. Breathing rates computed by the experimenter (BR_manual) and by calculating the TI and
TE (BR_calculated) from the TBP signal.

In addition to tidal breathing, the developed TBP device is capable of acquiring forceful breathing
without any saturation as well as very low intensity nasal breathing (breathing only through nose).
This is depicted in Figure 12. Thus the developed device can work over a wide operating range.
Although the current work do not provide any analysis of forceful and nasal breathing, the device can
also be employed for acquiring these types of breathing if required.
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Figure 12. Tidal, forced, and nasal breathing acquired by the developed TBP device.

6.4.2. Comparison with Existing Relevant Works

As restful tidal breathing gets stimulated by conscious effort and/or by introduction of any
mask of pipe in mouth/nose, researchers [14,16–22,24] dealing with tidal breathing analysis have
acquired and analyzed data mostly from infants and/or children. The tidal breathing attributes of
infants/children vary largely from those of the adult population. Hence, for comparing the current
work we have chosen only the most relevant literature that are dealing with the adult population
only. Table 5 indicates the parameters evaluated by each method (methods are indicated in column 1).
For a particular method, if a specific attribute has not been computed then that column is left blank (‘-’).
The number of subjects (N) participated in this study is also comparable and is relevant for performing
reasonable analysis. It is observed that all the parameters are reasonably comparable with the prior
arts [13,23,52,54–56]. Moreover, our outcome variance is also very small; therefore, the developed TBP
sensor can be efficiently implemented for evaluating respiratory indicators from tidal breathing.
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Table 5. Comparison with relevant literature.

Approaches BR (BPM) TI (s) TE (s) DCy PIF (L/s) tPIF (s) PEF (L/s) tPEF (s) VTins (L) VTexp (L) vins (m/s) vexp (m/s)

TBPR 7–30 1.81 ± 0.18 1.56 ± 0.17 0.53 ± 0.02 1.27 ± 0.23 0.77 ± 0.41 1.62 ± 0.32 0.69 ± 0.14 1.49 ± 0.74 1.51 ± 0.74 2.86 ± 0.52 3.76 ± 0.68
[13] N = 24 - 1.9 ± 0.5 2.7 ± 0.7 0.41 ± 0.2 0.83 ± 0.4 0.8 ± 0.2 0.64 ± 0.2 1 ± 0.4 0.98 ± 0.18 - -

[52] (review) 6 to 31 - - - - - - - 0.45–1.6 - -
[54] (simulation) - - - - - - - - - 0.79–3.16 -

[23] N = 16 14 ± 0.4 1.82 ± 0.13 2.37 ± 0.12 - - - - - 0.77 ± 0.11 - -
[55] N = 15 11–35 - - - - - - - 0.3–3 - -

[56] N = 20 - - - - - - - - -
4.7
1.4

(nasal)
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7. Conclusions

We have presented the design, parametric evaluation, system calibration and experimental results
of the developed novel ultrasonic directional TBP sensor. We have judiciously utilized the ultrasonic
phase detection technique to build a novel, equitable, efficient, user-friendly, portable yet highly
sensitive solution for pulmonary health monitoring. The developed sensor facilitates acquisition of
continuous directional tidal respiration airflow that can be utilized to extract typical tidal breathing
parameters. In fact, the particular configuration covers a wide dynamic range, in the sense that it can
acquire very feeble air flow from tidal-nasal expiration to voluntary expirations through the mouth.
The TBP device has been systematically calibrated against a standard 3-L calibration-syringe for various
flow ranges and has also been parametrically compared with standard spirometer with a percentage
error of less than 16%. In addition, our tidal breathing analysis showed ample resemblance with the
reported tidal breathing parameters for healthy subjects. This immediately opens up the horizon for
exploiting the recent trend of tidal breathing analysis for assessing one’s pulmonary health conditions
in contrast to painful spirometry tests. However, even at the current stage, our effort shows sufficient
sensitivity and accuracy to pose the devised sensor prototype (based on our design approach) as
an affordable tidal breathing analyzer/recorder for application in pulmonary assessment, at least in
the preliminary screening stages before one is prescribed for more rigorous and specific pulmonary
function tests like spirometry. We also plan to test our system on subjects with unhealthy respiratory
systems and to extend the systematic signal analysis of the acquired TBP signals.
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