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Abstract: Most of the commercial nighttime pedestrian detection (PD) methods reported previously
utilized the histogram of oriented gradient (HOG) or the local binary pattern (LBP) as the feature and
the support vector machine (SVM) as the classifier using thermal camera images. In this paper, we
propose a new feature called the thermal-position-intensity-histogram of oriented gradient (TPIHOG
or TπHOG) and developed a new combination of the TπHOG and the additive kernel SVM (AKSVM)
for efficient nighttime pedestrian detection. The proposed TπHOG includes detailed information
on gradient location; therefore, it has more distinctive power than the HOG. The AKSVM performs
better than the linear SVM in terms of detection performance, while it is much faster than other
kernel SVMs. The combined TπHOG-AKSVM showed effective nighttime PD performance with fast
computational time. The proposed method was experimentally tested with the KAIST pedestrian
dataset and showed better performance compared with other conventional methods.

Keywords: pedestrian detection; far-infrared sensor; thermal-position-intensity-histogram of
oriented gradient

1. Introduction

For the commercialization of the advanced driver assistance system (ADAS), the most important
factors are reliability and robustness, and pedestrian detection (PD) is certainly one of the ADAS
functions that require high reliability and robustness. For a robust and reliable PD, reasonable
performance even in the nighttime is important because more than half of pedestrian-related accidents
occur in the nighttime, even though the volume of traffic is much less than in the daytime [1,2].

For effective nighttime PD, most studies used a thermal camera sensor because it visualizes objects
using the infrared (IR) heat signature and it does not depend on lighting conditions. Among several
types of thermal cameras, the far infrared (FIR) sensor is commonly used for PD in the nighttime
because thermal radiation from pedestrian peaks in the FIR spectrum [3]. Compared with visible
images, FIR images are robust against illumination variation but are significantly affected by
weather because FIR sensors capture temperature changes in the output images. For example,
pedestrians appear brighter than the background in cold days while they appear darker in hot days [1].
Furthermore, FIR images only contain a single channel of intensity information; thus, information on
these images is not as detailed as that of visible images.

Similar to PD using visible images, PD using FIR images also consists of two steps: feature
extraction and classification. In the feature extraction step, the features developed for daytime PD
can also be used for nighttime PD. For example, local binary patter (LBP) [4] and its variations,
such as the HOG-LBP [1,5], center-symmetric LBP (CSLBP) [6], and oriented CSLBP (OCSLBP) [7]
were also proposed as daytime PD features. However, the LBP-based features have only orientation
information of pixel intensity; therefore, they are sensitive to lighting conditions. On the other hand,
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there are some methods that use the shape of pedestrians as features. Dai et al. [8] utilized the joint
shape and appearance cue to find the exact locations of pedestrians. Wang et al. [9] extracted the
features using a shape describer and Zhao et al. [3] proposed the shape distribution histogram (SDH).
These shape-based features simply used only pixel intensity information and employed background
subtraction methods for fixed camera images. Therefore, shape-based features are not suitable for
vehicle environment where complex background is not fixed.

As a robust feature for pedestrian detection, the histograms of oriented gradient (HOG) [10]
is one of the most popular PD features and its variations have been proposed [11]. Co-occurrence
HOG (CoHOG) is one of the extensions of the HOG and it utilizes pair of orientations for computing
histogram feature [12]. N. Andavarapu et al. [13] proposed weighted CoHOG (W-CoHOG) that
considers gradient magnitude factor to extracting CoHOG. Spatio-temporal HOG (SPHOG), which
contains motion information, is proposed for image sequences with fixed camera [14]. Scattered
difference of directional gradient (SDDG) that extracts local gradient information along the certain
direction is also proposed for IR images [15]. Kim et al. proposed position-intensity HOG (PIHOG or
πHOG) that includes not only HOG but also the detail position and intensity information for vehicle
detection [16]. Theses HOG based features utilize only the gradient information based on color images
or do not consider the thermal intensity information which is important cue for pedestrian detection
in nighttime.

To address these problems of conventional features, we propose a thermal position intensity HOG
(TPIHOG or TπHOG). The TπHOG is the extended version of πHOG and it is applied for pedestrian
detection in nighttime. Unlike the πHOG, the proposed TπHOG has thermal intensity information
and can be computed more simply than πHOG.

With respect to the classification, the linear support vector machine (linear SVM) is widely used
as classifier in many studies, such as in [17–19] because it is fast and has reasonably good performance.
The kernel SVM has better classification performance than the linear SVM but requires a longer
computation time owing to kernel expansion [20–22]. However, the additive kernel SVM (AKSVM)
has better performance than the linear SVM and also has a classification speed comparable with the
linear SVM [20,23,24]. Recently, deep learning has also been applied to object detection system.

Kim et al. utilize convolutional neural network (CNN) for nighttime PD using visible images [25].
Liu et al. and Wagner et al applied fusion architectures to CNN which fuse the visible channel feature
and thermal channel features for multispectral PD [26,27]. Cai et al. generates the candidates using
saliency map and used deep belief network (DBN) as a classifier for vehicle detection in nighttime [28].
John et al. used Fuzzy C-means clustering for generating candidates and CNN for verification for PD
in thermal images [29]. However, the deep learning based method requires dataset with large clean
annotations and training procedure, which takes too much time to converge [30]. In addition, GPU is
necessary for the training of deep learning, but it is not suitable for implement autonomous system
because the system needs to be embedded system [31].

In this study, we propose a combination of the TπHOG and the AKSVM (TπHOG-AKSVM)
to achieve improved performance for nighttime PD in terms of PD performance compared with
conventional methods.

The remainder of this paper is organized as follows. In Section 2, some background about the
πHOG is presented. Details of the proposed TπHOG-AKSVM are presented in Section 3. Section 4
presents experimental results and discussions, and conclusions are drawn in Section 5.

2. Preliminary Fundamentals

Position Intensity Histogram of Oriented Gradient (πHOG)

The HOG is defined as the histogram of the magnitude sum for gradient orientations in a cell and
it is widely used as an effective feature for PD or vehicle detection (VD). The HOG feature, however,
has the limitation that information on gradient position in the cell is lost and the pixel intensity
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information is not used. Recently, the πHOG has been proposed to address this problem and shows
better detection performance than HOG for vehicle detection [16]. The πHOG contains not only the
HOG but also additional information about gradient Position and pixel Intensity. The πHOG consists
of three parts: the Position (P) part, the Intensity (I) part, and the conventional HOG. The P part of
the πHOG is extracted by computing the average position of each orientation bin. That is, if θ(x, y, c)
denotes the orientation of the gradient at position (x, y) of the c-th cell and the orientation bin of the
gradient B(x, y, c) is defined by

B(x, y, c) =
⌈

Tθ(x, y, c)
2π

⌉
, (0 ≤ θ(x, y, c) < 2π) (1)

where T is the number of bins and B(x, y, c) ∈ {1, · · · , T}, then the averages of x and y positions of
the d-th bin (d ∈ {1, · · · , T}) in the c-th cell are defined by

Mc
x,d =

cs
∑

x=1

cs
∑

y=1
xI[B(x,y,c)=d]

cs
∑

x=1

cs
∑

y=1
I[B(x,y,c)=d]

Mc
y,d =

cs
∑

x=1

cs
∑

y=1
yI[B(x,y,c)=d]

cs
∑

x=1

cs
∑

y=1
I[B(x,y,c)=d]

(2)

where cs denotes the cell size and I(·) is the binary function which returns 1 if the input argument is
true and 0 if the argument is false. Then the P part of the c-th cell in πHOG is Pc = [Mc

x, Mc
y], where

Mc
x =

[
Mc

x,1, · · · , Mc
x,T

]
and Mc

y =
[

Mc
y,1, · · · , Mc

y,T

]
.

The I part of the πHOG can be defined in terms of the pixel intensity of vehicle images. There are
a variety of shapes and sizes of vehicles, but all types of vehicles have low intensity values in some
common areas, such as tires and bottom of the vehicles. Using this knowledge, the intensity invariant
region (IIR) was proposed in [16]. The IIR is defined as the region of pixels in which the corresponding
standard deviation is relatively low. Then, the I part is defined as the summation of standard normal
deviation values in the IIR. A detailed procedure for extracting the I part of the πHOG is explained
as follows. When a set of positive vehicle images V+ = {s1, s2, · · · , sNv} is given, where Nv is the
number of the training images in V+; s = [s1, s2, · · · , sN ]

T ∈ <N is the vehicle image and all the
images in V+ are resized to images of same size and aligned; sj is the intensity value of jth pixel value
of s and N is the image size, the mean and standard deviation of the vehicle images are defined as

M =
1

Nv

Nv

∑
i=1

si = [m1, m2, · · · , mN ]
T (3)

σ =

√√√√ 1
Nv

Nv

∑
i=1

(si −M) ◦ (si −M) = [σ1, σ2, · · · , σN ]
T (4)

where ◦ denotes component-wise multiplication. In Equation (4), low σ means that the corresponding
region has similar intensity values over all types of vehicles including sedans, trucks or sport utility
vehicles (SUVs). Therefore, the region with low standard deviation σ can be used as a distinctive
cue for classifying vehicles. This region was defined as IIR and a new feature was extracted from the
IIR [19]. To determine the IIR, the values of σ are divided into M intervals and the binary mask Uk
(k = 1, 2, ..., M) is constructed as

Uk =
{

j
∣∣ξk ≤ σj ≤ ξk+1, j = 1, 2, · · · , N

}
(5)

where ξk is
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ξk = (k− 1)×
⌈

N
M

⌉
th smallest value of. (6)

Finally, the I part of the πHOG is the feature for the IIR region masked by Uk of standard normal
deviate image z. That is, if the test image s ∈ <N is given, then z is computed by

z =

(
1
σ

)
◦ (s−M) ∈ <N (7)

and the I part is defined by
I = [h1, ..., hk] (8)

where
hk =

1
|Uk| ∑

j∈Uk

zj (9)

Figure 1 is an example of computing I part using 4 IIR masks from testing images.
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Figure 1. Examples of computing I part using 4 IIR masks [16].

Finally, the πHOG is defined as a concatenation of the three parts, the HOG, the P part and the
I part.

3. Proposed Method

Figure 2 shows some examples of pedestrians in thermal images. As shown in the figure,
pedestrian detection using a thermal sensor is quite different from PD using a visible sensor owing to
the characteristics of the thermal images.

In thermal images, pedestrians appear brighter than the background and they do not include
any color information, only silhouettes. In addition, their intensities vary according to changes in the
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weather because the thermal sensors visualize temperature radiation from the objects in the images.
Therefore, it is important to extract features that can reliably capture pedestrian silhouette under
various weather conditions in thermal images.

Sensors 2017, 17, 1850 5 of 20 

 

3. Proposed Method 

Figure 2 shows some examples of pedestrians in thermal images. As shown in the figure, 
pedestrian detection using a thermal sensor is quite different from PD using a visible sensor owing 
to the characteristics of the thermal images. 

 
Figure 2. Examples of thermal images in KAIST dataset. 

In thermal images, pedestrians appear brighter than the background and they do not include 
any color information, only silhouettes. In addition, their intensities vary according to changes in the 
weather because the thermal sensors visualize temperature radiation from the objects in the images. 
Therefore, it is important to extract features that can reliably capture pedestrian silhouette under 
various weather conditions in thermal images. 

In previous works [1,5], the HOG was popularly used for nighttime pedestrian detection 
because it captures the appearance of pedestrians by stacking gradient information. However, in this 
paper, a new feature called the TπHOG is proposed to improve nighttime PD performance of the 
HOG. The proposed TπHOG is based on the πHOG [16] and it is developed so that the TπHOG has 
more distinctiveness than the HOG when thermal sensors are used. The TπHOG includes not only 
thermal gradient information but also its locations and thermal intensities. The TπHOG is not a 
simple application of the πHOG to thermal images, but it is redesigned to handle PD problems in 
thermal images. 

In addition, instead of the linear SVM, the additive kernel support vector machine (AKSVM) is 
used as a classifier to enhance the detection performance, as well as the detection time. 

3.1. Thermal Position Intensity Histogram of Oriented Gradient (TߨHOG) 

The πHOG takes longer time and thus, computationally more expensive than the HOG since 
the πHOG requires additional pixel-wise computation to compute the mean of pixel locations. 
However, the pixel-wise computation in the πHOG is not suitable for commercial PD because it 
requires real time operation. Thus, in the proposed TπHOG, the cell-wise approach, and not the 
pixel-wise approach, was adopted to reduce the computational time. Since the cell values have 
already been computed in extracting the HOG, less computation is required to compute the TπHOG 
compared with the conventional HOG. 

Furthermore, unlike the I part based on the IIR in [16], the I part in this paper was increased 
such that it has the same size as the orientation channel of the HOG. This is because the I part in the 
original work [16] used only 4 values from the 4 IIR masks as features and it had relatively small 
effects on the PD performance compared with the P or the HOG parts. 

The TπHOG consists of four parts: the T part, the Position (P) part, the Intensity (I) part, and the 
conventional HOG. In the conventional HOG, we used the HOG of [32] which has 27 gradient 
channels (18 signed orientations, 9 unsigned orientations) and 4 gradient energy channels using 
different normalization methods. A detailed description of these four parts is presented in following 
subsections. 
  

Figure 2. Examples of thermal images in KAIST dataset.

In previous works [1,5], the HOG was popularly used for nighttime pedestrian detection because it
captures the appearance of pedestrians by stacking gradient information. However, in this paper, a new
feature called the TπHOG is proposed to improve nighttime PD performance of the HOG. The proposed
TπHOG is based on the πHOG [16] and it is developed so that the TπHOG has more distinctiveness
than the HOG when thermal sensors are used. The TπHOG includes not only thermal gradient
information but also its locations and thermal intensities. The TπHOG is not a simple application of
the πHOG to thermal images, but it is redesigned to handle PD problems in thermal images.

In addition, instead of the linear SVM, the additive kernel support vector machine (AKSVM) is
used as a classifier to enhance the detection performance, as well as the detection time.

3.1. Thermal Position Intensity Histogram of Oriented Gradient (TπHOG)

The πHOG takes longer time and thus, computationally more expensive than the HOG since the
πHOG requires additional pixel-wise computation to compute the mean of pixel locations. However,
the pixel-wise computation in the πHOG is not suitable for commercial PD because it requires real time
operation. Thus, in the proposed TπHOG, the cell-wise approach, and not the pixel-wise approach,
was adopted to reduce the computational time. Since the cell values have already been computed
in extracting the HOG, less computation is required to compute the TπHOG compared with the
conventional HOG.

Furthermore, unlike the I part based on the IIR in [16], the I part in this paper was increased such
that it has the same size as the orientation channel of the HOG. This is because the I part in the original
work [16] used only 4 values from the 4 IIR masks as features and it had relatively small effects on the
PD performance compared with the P or the HOG parts.

The TπHOG consists of four parts: the T part, the Position (P) part, the Intensity (I) part, and the
conventional HOG. In the conventional HOG, we used the HOG of [32] which has 27 gradient channels
(18 signed orientations, 9 unsigned orientations) and 4 gradient energy channels using different
normalization methods. A detailed description of these four parts is presented in following subsections.

3.1.1. T Channel Part

For the first part of the TπHOG, we used the T channel proposed in [33]. The T channel is defined
as an aggregated version of a thermal image. For example, given 64 × 32 IR images and 4 × 4 cell
size, the T channel has 16 × 8 cells and the value in each cell is the sum of pixel intensities within the
cell. Figure 3 shows an example of an IR image and its T channel.

Unlike the visible image, the pedestrians have higher pixel intensity values than backgrounds in
IR images. Thus, T channel that consists of aggregations of IR intensities can play an important role in
classifying pedestrians from other objects.
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3.1.2. Position Part

In the P part of the TπHOG, cell locations of the gradients and not pixel locations, are used unlike
in the πHOG. In the feature implementation, the HOG consists of multiple orientation channels and
each channel contains the bin value for the corresponding orientation of a cell histogram. In Figure 4,
shown are the examples of HOG that has 16 × 8 cells with 9 gradient orientations.
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In Figure 4, the values in each channel denote the bin values of cell histogram for the corresponding
orientation. For example, the first channel of the HOG contains the first bin value of the cell histogram.
In computing the P part of the TπHOG, we divide the HOG cells into several blocks as shown in
Figure 5.Sensors 2017, 17, 1850 7 of 20 
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The P part is defined as the (x, y) location in which each orientation component exists in a
block. Assuming that HOG(B, x, y, d) is the value of a cell located at (x, y) of the Bth block in the dth
orientation channel, then the P part is defined by

PB
d =

[
MB

x,d, MB
y,d

]
(10)

where

MB
x,d =

Bs
∑

x=1

Bs
∑

y=1
xI[HOG(B,x,y,d)>τd ]

Bs
∑

x=1

Bs
∑

y=1
I[HOG(B,x,y,d)>τd ]

MB
y,d =

Bs
∑

x=1

Bs
∑

y=1
yI[HOG(B,x,y,d)>τd ]

Bs
∑

x=1

Bs
∑

y=1
I[HOG(B,x,y,d)>τd ]

(11)

where τd is the threshold for each orientation. Figure 6 shows an example of the computation of the
two values for P3

2 , the 3rd block in the second orientation channel, when the block size is 4× 4 cells
with 9 orientations.

In Figure 6, only the cells with values of that exceed the threshold τ2 are used to compute the P
part P3

2 of the TπHOG. Similarly, the P part contains location information of each orientation channel
and is computed by

P = [P1, · · · , P9] (12)

where Pd =
[
P1

d , · · · , P8
d
]
.

For the sake of better understanding of P part, the HOG and P part are visualized in Figures 7–9.
Shown in Figure 7 are the examples of pedestrians IR images and they are adopted from KAIST
pedestrian dataset [33].Sensors 2017, 17, 1850 8 of 20 
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The average HOG channels for training pedestrian data are visualized in Figure 8. The average
channels are computing using 64 × 32 cropped IR images of 2244 pedestrians. In the figure, the first
two rows indicate the HOGs for signed 18 orientations while the third row indicates the HOGs for
unsigned 9 orientations.

In Figure 8, the closer the cell is to the red color, the higher the corresponding HOG. As shown
in the figure, pedestrians have specific cell parts that have relatively high values for each orientation
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channel. The conventional HOG uses only these values as the feature but the TπHOG also uses the cell
locations of the orientations as well for nighttime PD.

In this paper, the P part of the TπHOG is extracted from non-overlapped blocks that comprising
of 4 × 4 cells. For example, assuming the HOG has 31 channels (18 signed orientations, 9 unsigned
orientations, 4 different normalizations), the size of the HOG is 16 × 8 × 31 cells and it has
4 × 2 × 31 = 248 blocks. The P part PB

o =
[

MB
x,o, MB

y,o

]
of the TπHOG is extracted from each

block and the P part has additional 496 values. Figures 9 and 10, show the visualization of the average
P = [P1, · · · , P9] of the TπHOG for pedestrians and non-pedestrians, respectively. In Figures 9
and 10, the average P parts are computed for 2244 pedestrian images and 5000 non-pedestrian images,
respectively. All the images are 64 × 32 cropped IR images.
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As shown in Figures 9 and 10, the average P parts of the pedestrians are focused on a couple of
cell locations for each block. In particular, the average P parts of the pedestrians are mostly larger
than those of the non-pedestrians except for unsigned orientation of 0◦ and 100◦. Instead, the average
P parts of the non-pedestrians usually have lower values than those of pedestrians. Further, in the
orientations of 20◦ and 160◦, the P parts of non-pedestrians have the values close to 0 and they are not
included in computation of P parts. This difference between the two classes provides the TπHOG with
discriminatory power for robust PD compared with the HOG.

3.1.3. Intensity Part

The conventional I part of the πHOG is defined as a partial pixel-wise sum of the standard deviate
image [16] within the IIR. Thus, the evaluation of the I part requires pixel-wise computation; however,
it is obviously computationally expensive for real-time application. Furthermore, the conventional I
part in [16] is 4 dimensions long and too short compared with 3968 (16 × 8 × 31) dimensions of
the HOG, thereby producing minimal effect on the PD performance. In this paper, a modified version
of the I part is developed for the PD in thermal images. Rather than using IIR masks, the new I part is
directly computed from a normal standard deviate image of the set of T channels which are computed
from training pedestrian data (64 × 32 cropped IR images of pedestrians). Therefore, the feature
length of the I part is the same as that of the T channel. That is, given the T channel set of pedestrian
images T+ =

{
T1, T2, · · · , TNp

}
where the superscript ‘+’ means the positive pedestrian samples,

Np is the number of the T channels in T+ and T ∈ <16×8. MT and σT are the mean and standard
deviation of T+, respectively, and the I part for a testing T channel sT is computed by
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IT =

∣∣∣∣( 1
σT

)
◦ (sT −MT)

∣∣∣∣ (13)

How to compute the I part from both pedestrian and non-pedestrian testing images is summarized
in Figure 11.
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Figure 11. Example of computing I part from testing images.

Shown in Figure 11 is the average of I parts for pedestrians and non-pedestrians. The images are
64 × 32 cropped IR images of testing dataset of KAIST pedestrians Dataset.

As shown in Figure 12, most of the average I parts for pedestrian images are less than 1.
In particular, the parts corresponding to the lower body are less than 0.7. On the other hand, the
average I parts for non-pedestrian generally are larger than 0.7 and the parts corresponding to the upper
body have the values larger than 1. This difference provides the I parts with strong discriminatory
power between pedestrians and non-pedestrians. Further, the extraction of the I part is a cell-wise
computation and does not require the additional computation for developing the histogram; therefore,
the proposed I part is computationally more efficient than that of the conventional πHOG [16].
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3.2. Additive Kernel SVM (AKSVM)

The SVM is one of the popular binary classifiers used in object detection in computer vision.

Given the training set S =
{(

x(i), y(i)
)}L

i=1
with L samples, the SVM is trained to classify input data

x(i) as positive (y(i) = 1) class or negative (y(i) = −1) class where x(i) =
[

x(i)1 , x(i)2 , ..., x(i)N

]T
∈ <N and

y(i) ∈ {−1,+1}. If input data x(i) is mapped to a higher dimensional feature space as φ(·) then the
decision function of the SVM is defined by

f (x) = wTφ(x) + b (14)

where φ(x) ∈ <D, D � N, w ∈ <D is the weight and b ∈ < is the bias. The SVM is trained by finding
optimal solutions of w and b which maximizes the margin between the two classes. It can also be
trained in dual space using the kernel trick with κ

(
x(i), x(j)

)
= φ

(
x(i)
)
·φ
(

x(j)
)
∈ <. After training

the SVM in dual space, the decision function (11) can be evaluated by

f (x) =
L
∑

i=1
α(i)y(i)κ

(
x(i), x

)
+ b

= ∑
i∈SV

α(i)y(i)κ
(

x(i), x
)
+ b

(15)

where SV =
{

i
∣∣∣α(i) > 0

}
denotes a set of support vectors. If the κ(·) of Equation (15) is nonlinear,

the kernel SVM performs better than the linear SVM in classification. However, it requires the high
computation and memory resource owing to the kernel computation with its support vectors for
every testing.

However, the additive kernels (AK) enable fast computation of the decision function, while
maintaining the robust performance of the kernel SVM [23,24]. The AK is defined as the kernel
that can be decomposed into a summation of dimension-wise components and it is represented by

κ(x, z) =
N
∑

n=1
κn(xn, zn) where x = {x1, x2, ..., xN} ∈ <N and z = {z1, z2, ..., zN} ∈ <N . Various AKs

have been reported and they include the linear kernel κLIN , intersection kernel κIK, the generalized
intersection kernel κGIK and the χ2 kernel κχ2 defined as

κIK(x, z) =
N

∑
n=1

min(xn, zn) (16)

κGIK(x, z) =
N

∑
n=1

min
(
|xn|2, |zn|2

)
(17)

κχ2(x, z) =
N

∑
n=1

2xnzn

xn + zn
(18)

The decision function of the SVM in Equation (15) with the AK can be represented by

fAK(x) =
L
∑

i=1
α(i)y(i)κ

(
x(i), x

)
+ b

=
L
∑

i=1
α(i)y(i)

N
∑

n=1
κn

(
x(i)n , xn

)
+ b

=
N
∑

n=1

{
L
∑

i=1
α(i)y(i)κn

(
x(i)n , xn

)}
+ b

=
N
∑

n=1
hn(xn) + b

(19)
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where

hn(xn) =
L
∑

i=1
α(i)y(i)κn

(
x(i)n , xn

)
= ∑

i∈SV
α(i)y(i)κn

(
x(i)n , xn

) (20)

and hn(xn) is a one-dimensional function of xn ∈ <. In Equation (20), the α(i), y(i) are given; therefore
the output of hn(·) can be pre-computed for all possible input data xn ∈ < and computed output
values are stored in look-up-table (LUT) for each hn(·). Assuming the LUTn ∈ <NL is the LUT that
consists of sampled NL values from hn(·), hn(xn) of Equation (20) can be simply approximated as

hn(xn) ≈ LUTn(dxn/se) (21)

where s = 1/NL is the sampling interval on xn. Figure 13 shows an example of of retrieving value of
hn(xn) from LUTn. In Figure 13, the size of LUTn is NL = 25 and the values of LUTn are sampled from
hn(·) with sample interval s = 0.04.
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and  n nh x  is a one-dimensional function of nx  . In Equation (20), the  i , 
 iy  are given; 
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LN
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Figure 13. Example of retrieving value of  n nh x  from nLUT  for 0.85nx  . Figure 13. Example of retrieving value of hn(xn) from LUTn for xn = 0.85.

Therefore, using the LUTs of hn(·), testing of Equation (20) can be simplify carried out as the
summation of values taken from the LUTns without kernel computation as

fAK(x) ≈
N

∑
n=1

LUTn(dxn/se) + b (22)

3.3. TπHOG-AKSVM for Nighttime PD

In this subsection, how to combine AKSVM with TπHOG for nighttime PD is explained. The test
process of the combination of AKSVM with TπHOG is summarized in Figure 14.
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As shown in the figure, the HOG and T channel are extracted from input IR image first. Then P
and I parts are extracted from HOG and T channel, respectively. All these features are vectorized
and TπHOG is completed by concatenating these vectorized features (T channel, P part, I part, HOG).
Then, the score of each component in TπHOG is read off from the LUT and the total score of TπHOG
is computed by summing the scores of the component features. Finally, if the total score is larger than
0, the input image is classified as pedestrian. Otherwise, it is classified as non-pedestrian.

4. Experimental Results

In this section, the proposed method is applied to the KAIST pedestrian dataset [14] and its
performance is compared with other conventional methods. The KAIST pedestrian dataset consists of
a number of pairs of visible-thermal images that are aligned in the image size of 640 × 512. The dataset
images were taken by both visible and thermal sensors (FIR) in the day and nighttime at three locations
(Campus, Road, Downtown). In this experiment, we use images in the nighttime of the KAIST dataset
for training and testing. In the nighttime dataset, there are 838 training images with 1122 annotations
and 797 test images.

In this experiment, we set the size of the ROI image to 64 × 32 pixels, the cell size of the HOG
to 4 × 4 pixels, and the block size of the TπHOG to 4 × 4 cells. The AKSVM classifiers are trained
with TπHOGs of training set using the LibSVM MATLAB toolbox [24,34]. For LUTs of AKSVM, we
used the LUT of NL = 100 and s = 0.01. Piotr’s Computer Vision Toolbox [35] is also used for feature
extraction and testing.

For testing, sliding window approach is employed to detect pedestrians with various scales. In the
sliding window approach, the step size is fixed to the cell size and scale ratio is set to 1.09 (1/0.91),
which result in 8 scales per octave. As in [36,37], we narrow down the search area by restricting the
y-coordinate of the center of search window to lie within 210th and 355th pixel in y-axis. Shown
in Figure 15 is an example of our sliding window approach for pedestrian detection. In the figure,
the yellow boxes denote the search window, green boxes are the detection results and the red lines
denote the boundaries of search region within which the y-coordinate of the center of search window
is restricted.
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We compare the detection performance of the proposed method with other conventional
methods [10,19] using ROC curve and the log-average miss rate. The ROC curve shows the detection
performance by plotting miss rate against the false positive per image (FPPI). The lower is the ROC
curve, the better the detection performance. The log-average miss rate (MR) is the average of miss
rate for FPPI of

[
10−2, 100] on the log scale. For comparison, we choose HOG-LinearSVM and

the ACF-T-THOG [33] as a base line and the state-of-the-art, respectively. ACF-T-THOG utilizes
pairs of visible-thermal images of nighttime and extracted ACF from visible images, T-THOG form
thermal images. Except ACF-T-THOG, all SVM based classifier (LinearSVM, AKSVM) are trained with
thermal images.
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Then, the effect of the cell size on detection performance in analyzed. The ROC curves of TπHOG
with AKSVM are plotted while varying the cell size in Figure 16. The intersection kernel κIK in
Equation (16) is used. The subsequent results (Log average MR, time per frame) are summarized in
Table 1. In this experiment, we set the number of blocks for P part as 8 blocks per orientation layer as
Figure 5.
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Table 1. Detailed information of feature-classifier.

Feature Cell Size Log Average MR (%) Time Per Frame (s)

ACF-T-HOG ACF + T Channel + HOG 4 61.15 0.25
HOG-LinearSVM HOG 4 63.76 1.78

TπHOG-IKSVM-cell8 TπHOG 8 82.59 0.29
TπHOG-IKSVM-cell4 TπHOG 4 57.38 2.84
TπHOG-IKSVM-cell2 TπHOG 2 56.85 39.28

As shown in Table 1 and Figure 16, the smaller the cell size of TπHOG is, the better detection
performance is obtained. TπHOG-IKSVM-cell8 spends comparable detection time with ACF-T-THOG
but it demonstrates about 30% higher Log average MR than ACF-T-HOG and HOG-LinearSVM.
On the other hand, TπHOG-IKSVM-cell2 demonstrates the best performance among all the competing
methods but its detection speed is about 20 times slower than TπHOG-IKSVM-cell4. Considering the
trade-off between the detection performance (log average MR) and detection time, the recommended
cell size is 4.

To compare the discriminating power of the feature, we plot the ROC curves for several
feature combinations with IKSVM in Figure 17. Table 2 presents the detailed information of the
feature-classifier combinations used in experiments.
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As shown in Figure 17, the THOG-LinearSVM performs better than the HOG-LinearSVM by
0.08% in terms of the log average MR. and THOG-IKSVM shows better detection performance than
HOG-IKSVM by 1.2%. From this result, it can be observed that adding the T channel to the HOG
improves detection performance from the conventional HOG. To examine the effect of the additive
kernel, we measure the detection performance of the THOG-IKSVM. As shown in Figure 17 and
Table 2, THOG-IKSVM demonstrates improved performance from THOG-LinearSVM indicating that
the additive kernel resulted in significant improved detection performance of the SVM by 4.98% from
the linear kernel.

Sensors 2017, 17, 1850 15 of 20 

 

Table 1. Detailed information of feature-classifier. 

 Feature Cell Size Log Average MR (%) Time Per Frame (s)
ACF-T-HOG ACF + T Channel + HOG 4 61.15 0.25 

HOG-LinearSVM HOG 4 63.76 1.78 
TπHOG-IKSVM-cell8 TπHOG 8 82.59 0.29 
TπHOG-IKSVM-cell4 TπHOG 4 57.38 2.84 
TπHOG-IKSVM-cell2 TπHOG 2 56.85 39.28 

As shown in Table 1 and Figure 16, the smaller the cell size of TπHOG is, the better detection 
performance is obtained. T π HOG-IKSVM-cell8 spends comparable detection time with 
ACF-T-THOG but it demonstrates about 30% higher Log average MR than ACF-T-HOG and 
HOG-LinearSVM. On the other hand, TπHOG-IKSVM-cell2 demonstrates the best performance 
among all the competing methods but its detection speed is about 20 times slower than 
TπHOG-IKSVM-cell4. Considering the trade-off between the detection performance (log average 
MR) and detection time, the recommended cell size is 4. 

To compare the discriminating power of the feature, we plot the ROC curves for several 
feature combinations with IKSVM in Figure 17. Table 2 presents the detailed information of the 
feature-classifier combinations used in experiments. 

 
Figure 17. ROC curve: Comparison of feature. 

Table 2. Detailed information of feature-classifier. 

 Feature Classifier Log Average MR (%) Time Per Frame (s)
ACF-T-HOG ACF + T Channel + HOG Decision Tree 61.15 0.25 

HOG-LinearSVM HOG Linear SVM 63.76 1.78 

HOG-IKSVM HOG 
AK SVM 

(Intersection Kernel) 59.90 1.78 

THOG-LinearSVM T Channel + HOG Linear SVM 63.68 1.88 

THOG-IKSVM T Channel + HOG AK SVM 
(Intersection Kernel) 

58.70 1.88 

TPHOG-IKSVM THOG + P part AK SVM 
(Intersection Kernel) 

57.78 2.69 

TπHOG-IKSVM TPHOG + I part AK SVM 
(Intersection Kernel) 

57.38 2.84 

As shown in Figure 17, the THOG-LinearSVM performs better than the HOG-LinearSVM by 
0.08% in terms of the log average MR. and THOG-IKSVM shows better detection performance than 
HOG-IKSVM by 1.2%. From this result, it can be observed that adding the T channel to the HOG 

Figure 17. ROC curve: Comparison of feature.

Table 2. Detailed information of feature-classifier.

Feature Classifier Log Average MR (%) Time Per Frame (s)

ACF-T-HOG ACF + T Channel + HOG Decision Tree 61.15 0.25

HOG-LinearSVM HOG Linear SVM 63.76 1.78

HOG-IKSVM HOG AK SVM
(Intersection Kernel) 59.90 1.78

THOG-LinearSVM T Channel + HOG Linear SVM 63.68 1.88

THOG-IKSVM T Channel + HOG AK SVM
(Intersection Kernel) 58.70 1.88

TPHOG-IKSVM THOG + P part AK SVM
(Intersection Kernel) 57.78 2.69

TπHOG-IKSVM TPHOG + I part AK SVM
(Intersection Kernel) 57.38 2.84

Finally, we measure the detection performance using the TPHOG and the TπHOG in connection
with the AKSVM. The TPHOG which adds the P part to THOG demonstrates 0.92% enhancement
from THOG-IKSVM. The TπHOG which adds I part to TPHOG demonstrates improved performance
from TPHOG by 0.4% and outperforms all other methods. From these experimental results, it can
be seen that the TπHOG-AKSVM enhance the performance of conventional method in terms of both
feature and classifier performance.
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In terms of detection speed, the TπHOG-IKSVM takes more computational time than
HOG-IKSVM by 1.06 s. To be specific, adding P part takes 0.8 s more time than HOG while I
part and T channels requires additional 0.1 s compared with HOG.

Shown in Figure 18, shown are the ROC curves for the TπHOG with four different additive
kernels: linear kernel, intersection kernel κIK, generalized intersection kernel κGIK and χ2 kernel κχ2 .
The computational time of TπHOG-AKSVMs in Figure 16 are the same as one of TπHOG-IKSVM of
Table 2 because they are performed with LookupTable of same size in this experiment.

As shown in Figure 18, all types of TPIHOG-AKSVMs performs bettrer than the HOG-LinearSVM
and TπHOG-LinearSVM. Among the AKSVMs, the TπHOG-IKSVM and TπHOG-GIKSVM
demonstrate the significant improvement from the TπHOG-LinearSVM, and they also perform better
than the ACF-T-HOG. In Figure 19, the examples of the detection results for TπHOG-IKSVM and
ACF-T-THOG are compared

As shown in Figure 19, the ACF-T-THOG generates a lot of false positives to the vertical objects
such as headlight or buildings. On the other hand, the proposed method shows good detection results
with no false positive.
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5. Conclusions

In this paper, a novel night-time pedestrian detection method using a thermal camera has
been proposed. A new feature named TπHOG was developed and it was combined with AKSVM.
The proposed TπHOG has more robust discriminative power than HOG because it uses not only the
gradient information but also cell location of the gradient for each orientation channel. The proposed
method was applied to KAIST pedestrian dataset and results show that its detection performance
improved compared with other conventional methods for pedestrian detection in the nighttime.
A comparison of experimental results with KAIST pedestrian dataset shows that the TπHOG
performs better than the HOG in the distinctiveness of feature and the TπHOG-AKSVM shows
better performance than other conventional methods.
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