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Abstract: In this paper, we address the generation of semantic labels describing the headgear
accessories carried out by people in a scene under surveillance, only using depth information
obtained from a Time-of-Flight (ToF) camera placed in an overhead position. We propose a new
method for headgear accessories classification based on the design of a robust processing strategy that
includes the estimation of a meaningful feature vector that provides the relevant information about
the people’s head and shoulder areas. This paper includes a detailed description of the proposed
algorithmic approach, and the results obtained in tests with persons with and without headgear
accessories, and with different types of hats and caps. In order to evaluate the proposal, a wide
experimental validation has been carried out on a fully labeled database (that has been made available
to the scientific community), including a broad variety of people and headgear accessories. For the
validation, three different levels of detail have been defined, considering a different number of classes:
the first level only includes two classes (hat/cap, and no hat/cap), the second one considers three
classes (hat, cap and no hat/cap), and the last one includes the full class set with the five classes
(no hat/cap, cap, small size hat, medium size hat, and large size hat). The achieved performance is
satisfactory in every case: the average classification rates for the first level reaches 95.25%, for the
second one is 92.34%, and for the full class set equals 84.60%. In addition, the online stage processing
time is 5.75 ms per frame in a standard PC, thus allowing for real-time operation.

Keywords: headgear accessories classification; time-of-flight sensor; feature extraction; semantic
features; depth maps; overhead camera

1. Introduction

People detection and human behavior analysis in video-surveillance applications are already
classic research topics in computer vision, artificial intelligence, and machine learning areas but are still
an open issue, with some commercial solutions performing some basic tasks with reasonable accuracy
but still not available for other higher-level understanding tasks. One of the main reasons for this is
the context diversity of the in-the-wild real video-surveillance images. Nevertheless, technological
evolution as well as machine learning algorithmic contributions facilitate and speed up more and more
reliable and robust context aware solutions, making them in order to contribute to solving this part of
the problem.

In addition, identity preservation is the other open issue that should be considered in order
to obtain the commercial solutions demanded by the everyday most connected and technologically
informed world. Time-of-Flight (ToF) cameras, that obtain depth images from the surveilled scenarios,
give high-resolution images suitable for the image analysis tasks needed by the surveillance application
pursuit, while at the same time preserving the privacy of surveilled people.
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Within this context, this work presents a proposal for only using depth information that is acquired
using an overhead ToF camera [1,2], to be applied to the classification of different headgear accessories
(Throughout the paper, we will use “headgear accessories”, “head accessories” or simply “accessories”
to refer to different types of hats or caps). The camera placement was selected in zenithal position,
as it greatly avoids occlusions (thus facilitating the task of people detection and segmentation), the
camera installation is easy, and the image acquisition position contributes to preserving the privacy of
the persons in the scene.

The selected accessories are limited by the camera position, which only provides a top-view.
Because of this, the proposal allows for detecting and classifying different headgear accessories such as
hats, caps, etc. when worn by people in the overhead scene under surveillance. It is worth highlighting
the fact that this information is enough for obtaining semantic features of the upper-body of people
in the scene, which is useful in the surveillance applications focused on by the scene understanding
commercial solution pursuits.

In fact, the interest in classifying people under surveillance by their headgear accessories (caps,
hats, etc.), and preserving their identity, is justified as it provides additional semantic information that
can be used by higher level processing systems (such as tracking, re-identification, scene understanding,
etc.), where a combination of different semantic features is normally used.

Due to this, the classification of human accessories in semantic video analysis tasks has attracted
a great interest in recent years within the research community [3], since it allows for semantically
describing people for different applications, such as security and biometrics [4,5], surveillance [6],
human computer interaction [7], or oriented marketing [8]. Recently, there has been an increasing
number of approaches proposed in the scientific literature, which are able to extract human attributes
such as gender, ethnicity, age, hairstyle or clothing, focused on in such applications.

The early approaches [8–10] in these areas used RGB (Red, Green, Blue) data for extracting such
semantic features. For example, the authors of [9] proposed a method for recognizing attributes, such
as gender, hair style and different types of clothes (hats, t-shirts, shorts, jeans, long hair, glasses, long
sleeves, long pants), in people under variations in viewpoint and pose, based on attribute classifiers
and a discriminative model. In [10], the authors proposed a novel hair style retrieval algorithm from
face images. The proposal in [8] generates a list of semantic accessories for clothes worn by people
in RGB images, using attribute classifiers and Conditional Random Fields. In that proposal, some
variations in the viewpoint are allowed, but in most of the images, people are facing the camera. In
our work, we contribute to this area by addressing the problem of attribute classification (headgear
accessories) using depth data from an overhead ToF camera.

In recent years, most of the approaches have started using RGB-D data, which are less sensitive
to indoor ambient conditions, providing depth information in addition to RGB. The proposal in [6]
detects fine-grained human attributes (gender, wearing a backpack, talking on a cell phone, wearing
glasses, short sleeves, long pants) in surveillance environments. The proposal in [11] allows detecting
gender, as well as other attributes such as hair style or clothing [7] in RGB-D images, not only from
frontal body views, but also from side and back views. However, none of the previous works use
depth information only or top-view images, and thus do not take into account the privacy issues so
sensible in surveillance applications. On the other hand, the work in [12] proposes an approach for
human attribute analysis, such as gender and whether they have bags with them, based on multi-layer
classification, and using top-view RGB camera images. In our case, we still want to avoid the use of
RGB data for privacy consideration issues.

There are other works in the literature that use overhead depth cameras [13–20] in surveillance
applications. The use of depth cameras allows for working in changing light conditions [13], as well
as preserving the users’ privacy [15]. At the same time, the use of an overhead camera reduces the
occlusions [14,17–20] and the variation of target features [16].

All of the cited works are focused on detecting and tracking or counting people, not allowing the
obtaining of any semantic attribute from them. Specifically, the authors of [13] propose the use of a ToF
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depth sensor to allow people tracking, but it only works if people enter the scene well separated, in
order to avoid occlusions. The work presented in [14] obtains better results for multiple people, using
an approach based on a normalized Mexican Hat Wavelet, but it also fails if people are close to each
other (as we showed in [21]). In the proposal in [15], after removing the noise and background, any
group of connected depth measurements (blobs) whose height is over 90 cm is detected as a person,
thus allowing the easy generation of false positives as the detector criteria is only based on height.
Other works, such as Refs. [16,19], use RGB images for people counting. These works only include
a detector, but not a classification stage, so that they cannot discriminate between people and other
objects in the scene. On the other hand, the proposals described in [17,18,20] include a classification
stage that allows for reducing the number of false positives. More specifically, the works described
in [17,20] are based on the human head and shoulders’ physical structure for obtaining a person
overhead descriptor. These approaches are able to discriminate between people and other elements in
the scene, but their detection rates decrease if people are close to each other. Moreover, they suffer
from a lack of robustness if people wear complements such as hats, caps, backpacks, etc.

The proposal we describe in this paper not only allows for detecting people from an overhead
ToF camera, but is also able to handle scenes with people that are close to each other (being based on
our previous proposal [21]), and to discriminate between people wearing different accessories that can
have a variety of appearances, such as hats and caps.

The structure of the paper is as follows: Section 2 describes the accessories classification
algorithmic proposal; Section 3 covers the experimental work, including the description of the
experimental setup, the performance metrics used and the obtained results, both in terms of
classification rates and computational cost; and Section 4 draws the main conclusions of the paper.

2. Accessories Classification Algorithm

As described in the introduction, in this work, we propose an approach for the classification of
headgear accessories only using depth information provided by a ToF sensor located in an overhead
position. The camera position, which only provides a top-view, allows for preserving the privacy of
the users and restricts the type of accessories that can be detected and classified. Our proposal focuses
on the design of a robust processing strategy, including the estimation of a meaningful feature vector
containing the relevant information that could be extracted from an overhead ToF camera, and its
application on the headgear accessories classification. Within this context, the proposed method is
based on Principal Components Analysis (PCA), although any classification method could be applied.
The classification procedure uses an eight-component feature vector that is related to the geometry of
the surface information of the people head and shoulders, designed ad hoc for this application.

A general block diagram of the proposed method is shown in Figure 1. There are three main
processes, two offline processes and an online one. In the offline Process 1, some coefficients that are
used to normalize the feature vector are estimated. In the offline Process 2, the model estimation is
carried out. In our case, five different models are generated: one for people without any accessories,
another one for people wearing caps, as well as three more models for people wearing different types
(sizes) of hats. In the online process, the recovery error of the feature vector for each model is calculated,
and the model with the smallest error is assumed to correspond to the accessory class that the users
actually wear.

In the next sections, we describe in detail each stage of the online and offline processes shown
in Figure 1. It is worth mentioning that some of the stages, such as the preprocessing of the depth
maps or the detection of the person ROIs (Regions of Interest), are common to both (online and
offline) processes.
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Figure 1. General block diagram of the proposed method.

2.1. Preprocessing of Depth Maps

The depth maps are captured using a ToF camera fixed to the ceiling at height hc from the floor,
the camera optical axis being perpendicular to the floor plane. Some of the problems exhibited in depth
maps captured by ToF cameras are the great number of invalid pixels that appear in the object borders,
the motion artifacts, and the high noise level [22–24]. In this work, the invalid pixels are corrected
by means of the interpolation of the nearest valid neighboring pixels, using the algorithm proposed
in [21]. Moreover, in order to reduce the noise in the depth information, a nine-element mean filter is
applied. Next, the depth information is translated to the floor origin, obtaining information about the
actual height of each pixel in the scene. The height matrix obtained after the preprocessing is denoted
by H.

2.2. Detection of a Person ROI

In this work, the body elements of interest are the head and shoulders areas, so that it is necessary
to determine which pixels belong to these body parts. To achieve this objective, a region of interest
(ROI) is defined as the set of pixels that belong to a person while also having height values within
a height range that corresponds to the areas of interest. To determine a person’s ROI, the contour
detection algorithm to be used has to take into account the sparsity of the depth data, and the conditions
imposed by the overhead camera position [21,25]. After that, it is necessary to find the maximum
height value (hmax) within that contour and, finally, select the pixels whose heights are between hmax

and the minimum height of interest hmin. Based on anthropometricconsiderations [26,27], we assume
that: hmin = hmax − 40 cm. In what follows, the set of selected pixels will be represented by θ(h).

2.3. Feature Extration and Normalization

In [21], we used a feature vector that described the pixel density associated to the head and
shoulders surface within the corresponding ROI. In that work, we used a feature vector composed of
six components: five of them related to the visible people surfaces at different heights, and the sixth
component corresponding to the eccentricity of the person head. These six components are valid to
describe the upper part of a person and to detect if a particular object in the scene corresponds to a
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person or not, but it is not precise enough to be used in the classification of headgear accessories (as
they focus on only modeling the upper part of the head and the shoulders, so not being aimed at the
intermediate region in which the headgear accessories key elements will be located).

To increase the system robustness in the accessories classification task, we propose a new feature
vector that is composed of eight components, which describe the geometrical structure of the head and
shoulders areas, and in a more detailed way as compared with [23]: five of them describe the head area
geometry, and the other three describe the shoulders geometry. To show an example of the geometrical
regions for which the feature vector is providing information, and to allow a proper understanding of
how it works, we have generated Figure 2. In this Figure, a side-on portrait view of a person is shown,
indicating the division in horizontal slides from which the calculations are being carried out, applying
the following procedure:

1. Calculate the histogram of pixels (depth measurements) along the heights of interest θ(h)
(between hmax and hmin), with a high enough number of intervals. In this work, 20 intervals
were used, as proposed in [21], taking into account geometrical considerations (Figure 2 shows
this division in 20 slices). That is, we count the number of pixels in 20 slices of 2 cm of height,
obtaining a vector ϑ = [ϑ1 . . . ϑs . . . ϑ20], where ϑs is the number of pixels in section s (being s = 1,
2, . . . , 20). The highest section of a given person corresponds to s = 1, as shown in Figure 2.
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Figure 2. Example of slice segmentation for a person. The number of pixels (depth measurements) in
each slice is shown on the left (ϑ). The values of the feature vector components (ϕ = [ϕ1, ϕ2, . . . , ϕ8])
are shown on the right.

2. Estimate the first top section of the head, sh_ f irst. To do this, we first find the section of the head
with the maximum number of pixels in the first three elements of ϑ: sh_max = argmax(ϑ1 , ϑ2 , ϑ3).
Then, we assume that:

I f sh_max = 1 : sh_ f irst
= sh_max

I f sh_max > 1 and NT·ϑsh_max−1 ≥ ϑsh_max : sh_ f irst
= sh_max − 1

I f sh_max > 1 and NT·ϑsh_max−1 < ϑsh_max : sh_ f irst
= sh_max

, (1)
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where NT is the number of times that the numbers of pixel in section ϑsh_max−1 must be higher
than the number of pixels in section ϑsh_max to assume that the top section is ϑsh_max−1. This step
is necessary to reduce the error in the person height estimation, due to the noise in the depth
maps, and for the use of small accessories or specific hair configurations (such as tied in a tail).
The value of NT has been obtained empirically, and it was determined that, with values of NT
between 10 and 20, similar results were obtained. The estimated value of the person height
without noise, hp, will be obtained as:

hp = hmax − 2 cm·
(

sh_ f irst
− 1
)

. (2)

3. Find the five components of the feature vector (ϕ) that describe the head structure. Each
component is composed of two consecutive elements of ϑ organized as follows:

ϕi = ϑ2i−2+sh_ f irst
+ ϑ2i−1+sh_ f irst

, for i = 1, 2, . . . , 5. (3)

4. Estimate the maximum section of the shoulders, ss_max. Taking into account the human
morphology, we assume that ss_max can be found starting at 22 cm from the top of the head, i.e.:

ss_max = argmax
(

ϑ11+sh_ f irst
, . . . , ϑ16

)
. (4)

5. Find the three components of the feature vector (ϕ) that describe the shoulders’ structure. Each
component is composed of two consecutive elements of ϑ organized as follows:

ϕi+5 = ϑ2(i−1)−1+ss_max
+ ϑ2(i−1)+ss_max

, for i = 1, 2, 3. (5)

Each component ϕi corresponds to the number of pixels of a section of 4 cm, so that it depends
on the person’s height, thus it is necessary to normalize them.

6. Determine the normalized feature vector (Ψ) that will be obtained dividing the components of
the feature vector (ϕ), by the estimated value of its first component (ϕ̂1):

Ψ =
ϕ

ϕ̂1
. (6)

The next section describes how to estimate the value of the normalization parameter ϕ̂1.

2.4. Calculation of Normalization Coefficients

To make ϕ independent of a person’s height (hp), the relationship between hp and ϕ1 must be
determined. For a training sample composed of a set of people with heights between 140 cm and
213 cm, the values of hp and ϕ1 were calculated (using the steps 1, 2 and 3 described in Section 2.3).
From the analysis of the results, we observed a quadratic relationship between them, so that we
assumed that:

ϕ̂1 = a0 + a1·hp + a2·h2
p, (7)

where a0, a1 and a2 are the coefficients that must be estimated.
Using a nonlinear least squares approximation method, the obtained values were: a0 = 1998.0,

a1 = −24.62 and a2 = 0.092, which empirically showed to be adequate for the normalization task.

2.5. Attribute Model Estimation

In this work, we define five classes (C1, C2, . . . , C5) in the classification of headgear accessories
(see Figure 3). With the objective of simplifying the notation and following the same order in which
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they appeared previously, these classes will be referred to as α = 1, . . . , 5 (being α = 1 for C1 . . . α = 5
for C5).

We initially selected a PCA classification strategy for its simplicity and low computational
requirements. PCA is a well-known method that has been widely used for representing
high-dimensional data in a low-dimensional space [28,29], and also for classification [21,30,31].
However, any other classification method, such as a Multi-Layer Perceptrons (MLPs), Support Vector
Machines (SVMs), etc., could have been used, provided that the feature vector contains meaningful
information for the target task.

The PCA classifier requires an offline training process to estimate a model for each class α.
Therefore, each of the models is composed of an average vector Ψα, a scatter matrix Sα, and a
transformation matrix Uα:

Ψα =
1

Nα

Nα

∑
i=1

Ψαi, (8)

Sα =
Nα

∑
i=1

(Ψαi − Ψα)(Ψαi − Ψα)
T , (9)

where Nα is the number of training vectors that represents the class α.
The matrices Uα are formed by the eigenvectors associated with the largest (principal) eigenvalues

of the scatter matrices Sα. Following the criterion that the average normalized residual quadratic error
(RMSE) is higher than 90%, three eigenvectors were finally considered in this work.

Sensors 2017, 17, 1845 7 of 15 

 

We initially selected a PCA classification strategy for its simplicity and low computational 

requirements. PCA is a well-known method that has been widely used for representing high-

dimensional data in a low-dimensional space [28,29], and also for classification [21,30,31]. However, 

any other classification method, such as a Multi-Layer Perceptrons (MLPs), Support Vector Machines 

(SVMs), etc., could have been used, provided that the feature vector contains meaningful information 

for the target task. 

The PCA classifier requires an offline training process to estimate a model for each class 𝛼. 

Therefore, each of the models is composed of an average vector 𝚿̅𝛼 , a scatter matrix 𝑺𝛼 , and a 

transformation matrix 𝑼𝛼: 

𝚿̅𝛼 =
1

𝑁𝛼
∑ 𝚿𝑖

𝑁𝛼
𝑖=1 , (8) 

𝑺 = ∑ (𝚿𝑖 − 𝚿̅𝛼)(𝚿𝑖 − 𝚿̅𝛼)𝑇𝑁𝛼
𝑖=1 , (9) 

where 𝑁𝛼 is the number of training vectors that represents the class 𝛼.  

The matrices 𝑼𝛼  are formed by the eigenvectors associated with the largest (principal) 

eigenvalues of the scatter matrices 𝑺𝛼. Following the criterion that the average normalized residual 

quadratic error (RMSE) is higher than 90%, three eigenvectors were finally considered in this work. 

 

Figure 3. Diagram of the class organization in three different levels of detail. 

2.6. Classification  

The classification of each vector 𝚿  corresponding to a person in the scene is described in 

Algorithm 1, where the feature vector 𝚿 of a person is projected on the transformed space and 

recovered to the original space for each class. A person is classified as corresponding to the class 𝛼 

when the Mahalanobis distance between 𝚽𝜶 and 𝚽̂𝛼 is the smallest one among all of the considered 

classes. 

  

Figure 3. Diagram of the class organization in three different levels of detail.

2.6. Classification

The classification of each vector Ψ corresponding to a person in the scene is described in
Algorithm 1, where the feature vector Ψ of a person is projected on the transformed space and recovered
to the original space for each class. A person is classified as corresponding to the class α when the
Mahalanobis distance between Φα and Φ̂α is the smallest one among all of the considered classes.
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Algorithm 1 Classification

1:
Input: feature vector Ψ, average vector Ψα, scatter matrix Sα, transformation matrix Uα, number of
classes = 5.

2: For α = 1 to 5 do
3: Φα = Ψ − Ψα // Difference between the feature vector and the average vector //
4: Ω = UT

αΦα // Projection of Φα in the transformed space//
5: Φ̂α = UαΩ // Recovery of Φα in the original space //
6: ∆Φα = Φα − Φ̂α // Difference between the vector Φα and its recovery Φ̂α //
7: εα = ∆ΦT

α ·S−1
α ·∆Φα // Recovery error εα = Mahalanobis distance between Φα and Φ̂α//

8: If εα < εmin then
9: εmin = εα and Class = α // Class α has now the smallest recovery error //
10: End If
11: End For
12: Output: Class //Class with the smallest recovery error//

3. Experimental Work

3.1. Experimental Setup

In order to provide data for training and evaluating the proposal, we have used part of the
GOTPD2 database (available at [32]). GOTPD2 was recorded in an indoor environment using two
Kinect v2 devices (Microsoft, Redmon, WA, USA) located at a height of 3.4 m, perpendicularly
pointing towards the room floor. The recordings tried to cover a broad variety of conditions, with
scenarios comprising:

• Single people scenarios, as the target is the classification of head style/accessories configuration,
with a total of 25 different persons involved.

• People without accessories (no hat nor cap) and different hairstyle configurations (short, long and
with/without ponytail).

• People with 21 different headgear accessories, 17 hats (of different sizes) and four caps. Table 1
shows the details of the different accessories used, including information on their size (with the
naming conventions indicated in Figure 4).
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per class was used for training, and a variety of them was used for testing. Preliminary experiments 

were carried out to decide on the amount of training material required, and using a single hat/cap 

per class for training proved to be good enough, allowing us to use a bigger testing database to 

increase the statistical significance of the results.  

The database contains sequences in which the users were instructed on how to move under the 

camera in linear directions (parallel or diagonal to the captured area, to allow for proper coverage of 

the recording area). A top-view of the room, in which the recording took place, and some example 

images belonging to different classes are shown in Figure 5. In Figure 5a, T0 and T1 are the two 

overhead ToF cameras used to record the sequences, the color-filled rectangles show the camera field 
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authors report a maximum error of 4 cm at the maximum range of the sensor, but our measured 
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Tables 2 and 3 show the details of the training and testing subsets, respectively. #Sequences 

refers to the number of recorded sequences, #Frames refers to the number of all of the (useful) frames 
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1 The ruler shown is 30 cm long; 2 Sizes are given in cm as D1_in × D2_in, D1_out × D2_out and h, 

according to Figure 4. 

The dataset was divided into two subsets, one for training and the other one for testing. The 

subsets are fully independent, so that no person nor accessory present in the training subset was 

present in the testing subset. The columns Training Accessories and Testing Accessories in Table 1 

show the accessories used for training and testing, respectively. It can be seen that just one hat/cap 

per class was used for training, and a variety of them was used for testing. Preliminary experiments 

were carried out to decide on the amount of training material required, and using a single hat/cap 

per class for training proved to be good enough, allowing us to use a bigger testing database to 

increase the statistical significance of the results.  

The database contains sequences in which the users were instructed on how to move under the 

camera in linear directions (parallel or diagonal to the captured area, to allow for proper coverage of 

the recording area). A top-view of the room, in which the recording took place, and some example 

images belonging to different classes are shown in Figure 5. In Figure 5a, T0 and T1 are the two 

overhead ToF cameras used to record the sequences, the color-filled rectangles show the camera field 

of view at the floor level, and the thick line shows the trajectory followed by the users in the 

recordings. In Figure 5b, the height values are shown using a color scale representation. 

We run preliminary experiments to assess the actual precision of the Kinect devices when 

estimating the depth values. We found that errors in height estimation were below 1 cm for users in 

static position, which is consistent with previous reports in the literature (such as [33], where the 

authors report a maximum error of 4 cm at the maximum range of the sensor, but our measured 

elements are much nearer the sensor, as we evaluate people standing). 

Tables 2 and 3 show the details of the training and testing subsets, respectively. #Sequences 

refers to the number of recorded sequences, #Frames refers to the number of all of the (useful) frames 

18 × 13, 35 × 32, 13

Medium size
hats
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Table 1. Information on the head accessories (hats/caps) used. 

Class 
Training 

Accessories 
Testing Accessories 

Caps 

 

19 × 18, 27 × 18 2 

 

18 × 15, 25 × 15 

 

18 × 18, 27 × 18 

 

20 × 17, 27 × 17 

 

Large size 

hats 1 
 

16 × 16, 38 × 38, 11 

 

18 × 13, 38 × 35, 12 

 

14 × 14, 34 × 34, 13 

 

18 × 13, 36 × 31,14 

 

18 × 13, 35 × 32, 13 

Medium 

size hats 
 

18 × 13, 29 × 26, 12 

 

18 × 12, 32 × 26, 12 

 

13 × 13, 24 × 31, 9 

 

17 × 13, 32 × 27, 8 

 

18 × 13, 32 × 30, 11 

Small size 

hats 
 

17 × 12, 27 × 23, 11 

 

17 × 13, 26 × 24, 13 

 

16 × 11, 15 × 20, 10 

 

16 × 14, 26 × 23, 9 

 

17 × 14, 28 × 24, 13 

 

18 × 15, 28 × 25, 10 

 

18 × 13, 27 × 25, 14 

  

1 The ruler shown is 30 cm long; 2 Sizes are given in cm as D1_in × D2_in, D1_out × D2_out and h, 

according to Figure 4. 

The dataset was divided into two subsets, one for training and the other one for testing. The 

subsets are fully independent, so that no person nor accessory present in the training subset was 

present in the testing subset. The columns Training Accessories and Testing Accessories in Table 1 

show the accessories used for training and testing, respectively. It can be seen that just one hat/cap 

per class was used for training, and a variety of them was used for testing. Preliminary experiments 

were carried out to decide on the amount of training material required, and using a single hat/cap 

per class for training proved to be good enough, allowing us to use a bigger testing database to 

increase the statistical significance of the results.  

The database contains sequences in which the users were instructed on how to move under the 

camera in linear directions (parallel or diagonal to the captured area, to allow for proper coverage of 

the recording area). A top-view of the room, in which the recording took place, and some example 

images belonging to different classes are shown in Figure 5. In Figure 5a, T0 and T1 are the two 

overhead ToF cameras used to record the sequences, the color-filled rectangles show the camera field 

of view at the floor level, and the thick line shows the trajectory followed by the users in the 

recordings. In Figure 5b, the height values are shown using a color scale representation. 

We run preliminary experiments to assess the actual precision of the Kinect devices when 

estimating the depth values. We found that errors in height estimation were below 1 cm for users in 

static position, which is consistent with previous reports in the literature (such as [33], where the 

authors report a maximum error of 4 cm at the maximum range of the sensor, but our measured 

elements are much nearer the sensor, as we evaluate people standing). 

Tables 2 and 3 show the details of the training and testing subsets, respectively. #Sequences 

refers to the number of recorded sequences, #Frames refers to the number of all of the (useful) frames 

18 × 13, 29 × 26, 12
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Table 1. Information on the head accessories (hats/caps) used. 

Class 
Training 

Accessories 
Testing Accessories 

Caps 

 

19 × 18, 27 × 18 2 

 

18 × 15, 25 × 15 

 

18 × 18, 27 × 18 

 

20 × 17, 27 × 17 

 

Large size 

hats 1 
 

16 × 16, 38 × 38, 11 

 

18 × 13, 38 × 35, 12 

 

14 × 14, 34 × 34, 13 

 

18 × 13, 36 × 31,14 

 

18 × 13, 35 × 32, 13 

Medium 

size hats 
 

18 × 13, 29 × 26, 12 

 

18 × 12, 32 × 26, 12 

 

13 × 13, 24 × 31, 9 

 

17 × 13, 32 × 27, 8 

 

18 × 13, 32 × 30, 11 

Small size 

hats 
 

17 × 12, 27 × 23, 11 

 

17 × 13, 26 × 24, 13 

 

16 × 11, 15 × 20, 10 

 

16 × 14, 26 × 23, 9 

 

17 × 14, 28 × 24, 13 

 

18 × 15, 28 × 25, 10 

 

18 × 13, 27 × 25, 14 

  

1 The ruler shown is 30 cm long; 2 Sizes are given in cm as D1_in × D2_in, D1_out × D2_out and h, 

according to Figure 4. 

The dataset was divided into two subsets, one for training and the other one for testing. The 

subsets are fully independent, so that no person nor accessory present in the training subset was 

present in the testing subset. The columns Training Accessories and Testing Accessories in Table 1 

show the accessories used for training and testing, respectively. It can be seen that just one hat/cap 

per class was used for training, and a variety of them was used for testing. Preliminary experiments 

were carried out to decide on the amount of training material required, and using a single hat/cap 

per class for training proved to be good enough, allowing us to use a bigger testing database to 

increase the statistical significance of the results.  

The database contains sequences in which the users were instructed on how to move under the 

camera in linear directions (parallel or diagonal to the captured area, to allow for proper coverage of 

the recording area). A top-view of the room, in which the recording took place, and some example 

images belonging to different classes are shown in Figure 5. In Figure 5a, T0 and T1 are the two 

overhead ToF cameras used to record the sequences, the color-filled rectangles show the camera field 

of view at the floor level, and the thick line shows the trajectory followed by the users in the 

recordings. In Figure 5b, the height values are shown using a color scale representation. 

We run preliminary experiments to assess the actual precision of the Kinect devices when 

estimating the depth values. We found that errors in height estimation were below 1 cm for users in 

static position, which is consistent with previous reports in the literature (such as [33], where the 

authors report a maximum error of 4 cm at the maximum range of the sensor, but our measured 

elements are much nearer the sensor, as we evaluate people standing). 

Tables 2 and 3 show the details of the training and testing subsets, respectively. #Sequences 

refers to the number of recorded sequences, #Frames refers to the number of all of the (useful) frames 

18 × 12, 32 × 26, 12
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Table 1. Information on the head accessories (hats/caps) used. 

Class 
Training 

Accessories 
Testing Accessories 

Caps 

 

19 × 18, 27 × 18 2 

 

18 × 15, 25 × 15 

 

18 × 18, 27 × 18 

 

20 × 17, 27 × 17 

 

Large size 

hats 1 
 

16 × 16, 38 × 38, 11 

 

18 × 13, 38 × 35, 12 

 

14 × 14, 34 × 34, 13 

 

18 × 13, 36 × 31,14 

 

18 × 13, 35 × 32, 13 

Medium 

size hats 
 

18 × 13, 29 × 26, 12 

 

18 × 12, 32 × 26, 12 

 

13 × 13, 24 × 31, 9 

 

17 × 13, 32 × 27, 8 

 

18 × 13, 32 × 30, 11 

Small size 

hats 
 

17 × 12, 27 × 23, 11 

 

17 × 13, 26 × 24, 13 

 

16 × 11, 15 × 20, 10 

 

16 × 14, 26 × 23, 9 

 

17 × 14, 28 × 24, 13 

 

18 × 15, 28 × 25, 10 

 

18 × 13, 27 × 25, 14 

  

1 The ruler shown is 30 cm long; 2 Sizes are given in cm as D1_in × D2_in, D1_out × D2_out and h, 

according to Figure 4. 

The dataset was divided into two subsets, one for training and the other one for testing. The 

subsets are fully independent, so that no person nor accessory present in the training subset was 

present in the testing subset. The columns Training Accessories and Testing Accessories in Table 1 

show the accessories used for training and testing, respectively. It can be seen that just one hat/cap 

per class was used for training, and a variety of them was used for testing. Preliminary experiments 

were carried out to decide on the amount of training material required, and using a single hat/cap 

per class for training proved to be good enough, allowing us to use a bigger testing database to 

increase the statistical significance of the results.  

The database contains sequences in which the users were instructed on how to move under the 

camera in linear directions (parallel or diagonal to the captured area, to allow for proper coverage of 

the recording area). A top-view of the room, in which the recording took place, and some example 

images belonging to different classes are shown in Figure 5. In Figure 5a, T0 and T1 are the two 

overhead ToF cameras used to record the sequences, the color-filled rectangles show the camera field 

of view at the floor level, and the thick line shows the trajectory followed by the users in the 

recordings. In Figure 5b, the height values are shown using a color scale representation. 

We run preliminary experiments to assess the actual precision of the Kinect devices when 

estimating the depth values. We found that errors in height estimation were below 1 cm for users in 

static position, which is consistent with previous reports in the literature (such as [33], where the 

authors report a maximum error of 4 cm at the maximum range of the sensor, but our measured 

elements are much nearer the sensor, as we evaluate people standing). 

Tables 2 and 3 show the details of the training and testing subsets, respectively. #Sequences 

refers to the number of recorded sequences, #Frames refers to the number of all of the (useful) frames 

13 × 13, 24 × 31, 9
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Table 1. Information on the head accessories (hats/caps) used. 

Class 
Training 

Accessories 
Testing Accessories 

Caps 

 

19 × 18, 27 × 18 2 

 

18 × 15, 25 × 15 

 

18 × 18, 27 × 18 

 

20 × 17, 27 × 17 

 

Large size 

hats 1 
 

16 × 16, 38 × 38, 11 

 

18 × 13, 38 × 35, 12 

 

14 × 14, 34 × 34, 13 

 

18 × 13, 36 × 31,14 

 

18 × 13, 35 × 32, 13 

Medium 

size hats 
 

18 × 13, 29 × 26, 12 

 

18 × 12, 32 × 26, 12 

 

13 × 13, 24 × 31, 9 

 

17 × 13, 32 × 27, 8 

 

18 × 13, 32 × 30, 11 

Small size 

hats 
 

17 × 12, 27 × 23, 11 

 

17 × 13, 26 × 24, 13 

 

16 × 11, 15 × 20, 10 

 

16 × 14, 26 × 23, 9 

 

17 × 14, 28 × 24, 13 

 

18 × 15, 28 × 25, 10 

 

18 × 13, 27 × 25, 14 

  

1 The ruler shown is 30 cm long; 2 Sizes are given in cm as D1_in × D2_in, D1_out × D2_out and h, 

according to Figure 4. 

The dataset was divided into two subsets, one for training and the other one for testing. The 

subsets are fully independent, so that no person nor accessory present in the training subset was 

present in the testing subset. The columns Training Accessories and Testing Accessories in Table 1 

show the accessories used for training and testing, respectively. It can be seen that just one hat/cap 

per class was used for training, and a variety of them was used for testing. Preliminary experiments 

were carried out to decide on the amount of training material required, and using a single hat/cap 

per class for training proved to be good enough, allowing us to use a bigger testing database to 

increase the statistical significance of the results.  

The database contains sequences in which the users were instructed on how to move under the 

camera in linear directions (parallel or diagonal to the captured area, to allow for proper coverage of 

the recording area). A top-view of the room, in which the recording took place, and some example 

images belonging to different classes are shown in Figure 5. In Figure 5a, T0 and T1 are the two 

overhead ToF cameras used to record the sequences, the color-filled rectangles show the camera field 

of view at the floor level, and the thick line shows the trajectory followed by the users in the 

recordings. In Figure 5b, the height values are shown using a color scale representation. 

We run preliminary experiments to assess the actual precision of the Kinect devices when 

estimating the depth values. We found that errors in height estimation were below 1 cm for users in 

static position, which is consistent with previous reports in the literature (such as [33], where the 

authors report a maximum error of 4 cm at the maximum range of the sensor, but our measured 

elements are much nearer the sensor, as we evaluate people standing). 

Tables 2 and 3 show the details of the training and testing subsets, respectively. #Sequences 

refers to the number of recorded sequences, #Frames refers to the number of all of the (useful) frames 

17 × 13, 32 × 27, 8
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Table 1. Information on the head accessories (hats/caps) used. 

Class 
Training 

Accessories 
Testing Accessories 

Caps 

 

19 × 18, 27 × 18 2 

 

18 × 15, 25 × 15 

 

18 × 18, 27 × 18 

 

20 × 17, 27 × 17 

 

Large size 

hats 1 
 

16 × 16, 38 × 38, 11 

 

18 × 13, 38 × 35, 12 

 

14 × 14, 34 × 34, 13 

 

18 × 13, 36 × 31,14 

 

18 × 13, 35 × 32, 13 

Medium 

size hats 
 

18 × 13, 29 × 26, 12 

 

18 × 12, 32 × 26, 12 

 

13 × 13, 24 × 31, 9 

 

17 × 13, 32 × 27, 8 

 

18 × 13, 32 × 30, 11 

Small size 

hats 
 

17 × 12, 27 × 23, 11 

 

17 × 13, 26 × 24, 13 

 

16 × 11, 15 × 20, 10 

 

16 × 14, 26 × 23, 9 

 

17 × 14, 28 × 24, 13 

 

18 × 15, 28 × 25, 10 

 

18 × 13, 27 × 25, 14 

  

1 The ruler shown is 30 cm long; 2 Sizes are given in cm as D1_in × D2_in, D1_out × D2_out and h, 

according to Figure 4. 

The dataset was divided into two subsets, one for training and the other one for testing. The 

subsets are fully independent, so that no person nor accessory present in the training subset was 

present in the testing subset. The columns Training Accessories and Testing Accessories in Table 1 

show the accessories used for training and testing, respectively. It can be seen that just one hat/cap 

per class was used for training, and a variety of them was used for testing. Preliminary experiments 

were carried out to decide on the amount of training material required, and using a single hat/cap 

per class for training proved to be good enough, allowing us to use a bigger testing database to 

increase the statistical significance of the results.  

The database contains sequences in which the users were instructed on how to move under the 

camera in linear directions (parallel or diagonal to the captured area, to allow for proper coverage of 

the recording area). A top-view of the room, in which the recording took place, and some example 

images belonging to different classes are shown in Figure 5. In Figure 5a, T0 and T1 are the two 

overhead ToF cameras used to record the sequences, the color-filled rectangles show the camera field 

of view at the floor level, and the thick line shows the trajectory followed by the users in the 

recordings. In Figure 5b, the height values are shown using a color scale representation. 

We run preliminary experiments to assess the actual precision of the Kinect devices when 

estimating the depth values. We found that errors in height estimation were below 1 cm for users in 

static position, which is consistent with previous reports in the literature (such as [33], where the 

authors report a maximum error of 4 cm at the maximum range of the sensor, but our measured 

elements are much nearer the sensor, as we evaluate people standing). 

Tables 2 and 3 show the details of the training and testing subsets, respectively. #Sequences 

refers to the number of recorded sequences, #Frames refers to the number of all of the (useful) frames 

18 × 13, 32 × 30, 11

Small size hats
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Table 1. Information on the head accessories (hats/caps) used. 

Class 
Training 

Accessories 
Testing Accessories 

Caps 

 

19 × 18, 27 × 18 2 

 

18 × 15, 25 × 15 

 

18 × 18, 27 × 18 

 

20 × 17, 27 × 17 

 

Large size 

hats 1 
 

16 × 16, 38 × 38, 11 

 

18 × 13, 38 × 35, 12 

 

14 × 14, 34 × 34, 13 

 

18 × 13, 36 × 31,14 

 

18 × 13, 35 × 32, 13 

Medium 

size hats 
 

18 × 13, 29 × 26, 12 

 

18 × 12, 32 × 26, 12 

 

13 × 13, 24 × 31, 9 

 

17 × 13, 32 × 27, 8 

 

18 × 13, 32 × 30, 11 

Small size 

hats 
 

17 × 12, 27 × 23, 11 

 

17 × 13, 26 × 24, 13 

 

16 × 11, 15 × 20, 10 

 

16 × 14, 26 × 23, 9 

 

17 × 14, 28 × 24, 13 

 

18 × 15, 28 × 25, 10 

 

18 × 13, 27 × 25, 14 

  

1 The ruler shown is 30 cm long; 2 Sizes are given in cm as D1_in × D2_in, D1_out × D2_out and h, 

according to Figure 4. 

The dataset was divided into two subsets, one for training and the other one for testing. The 

subsets are fully independent, so that no person nor accessory present in the training subset was 

present in the testing subset. The columns Training Accessories and Testing Accessories in Table 1 

show the accessories used for training and testing, respectively. It can be seen that just one hat/cap 

per class was used for training, and a variety of them was used for testing. Preliminary experiments 

were carried out to decide on the amount of training material required, and using a single hat/cap 

per class for training proved to be good enough, allowing us to use a bigger testing database to 

increase the statistical significance of the results.  

The database contains sequences in which the users were instructed on how to move under the 

camera in linear directions (parallel or diagonal to the captured area, to allow for proper coverage of 

the recording area). A top-view of the room, in which the recording took place, and some example 

images belonging to different classes are shown in Figure 5. In Figure 5a, T0 and T1 are the two 

overhead ToF cameras used to record the sequences, the color-filled rectangles show the camera field 

of view at the floor level, and the thick line shows the trajectory followed by the users in the 

recordings. In Figure 5b, the height values are shown using a color scale representation. 

We run preliminary experiments to assess the actual precision of the Kinect devices when 

estimating the depth values. We found that errors in height estimation were below 1 cm for users in 

static position, which is consistent with previous reports in the literature (such as [33], where the 

authors report a maximum error of 4 cm at the maximum range of the sensor, but our measured 

elements are much nearer the sensor, as we evaluate people standing). 

Tables 2 and 3 show the details of the training and testing subsets, respectively. #Sequences 

refers to the number of recorded sequences, #Frames refers to the number of all of the (useful) frames 

17 × 12, 27 × 23, 11
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Table 1. Information on the head accessories (hats/caps) used. 

Class 
Training 

Accessories 
Testing Accessories 

Caps 

 

19 × 18, 27 × 18 2 

 

18 × 15, 25 × 15 

 

18 × 18, 27 × 18 

 

20 × 17, 27 × 17 

 

Large size 

hats 1 
 

16 × 16, 38 × 38, 11 

 

18 × 13, 38 × 35, 12 

 

14 × 14, 34 × 34, 13 

 

18 × 13, 36 × 31,14 

 

18 × 13, 35 × 32, 13 

Medium 

size hats 
 

18 × 13, 29 × 26, 12 

 

18 × 12, 32 × 26, 12 

 

13 × 13, 24 × 31, 9 

 

17 × 13, 32 × 27, 8 

 

18 × 13, 32 × 30, 11 

Small size 

hats 
 

17 × 12, 27 × 23, 11 

 

17 × 13, 26 × 24, 13 

 

16 × 11, 15 × 20, 10 

 

16 × 14, 26 × 23, 9 

 

17 × 14, 28 × 24, 13 

 

18 × 15, 28 × 25, 10 

 

18 × 13, 27 × 25, 14 

  

1 The ruler shown is 30 cm long; 2 Sizes are given in cm as D1_in × D2_in, D1_out × D2_out and h, 

according to Figure 4. 

The dataset was divided into two subsets, one for training and the other one for testing. The 

subsets are fully independent, so that no person nor accessory present in the training subset was 

present in the testing subset. The columns Training Accessories and Testing Accessories in Table 1 

show the accessories used for training and testing, respectively. It can be seen that just one hat/cap 

per class was used for training, and a variety of them was used for testing. Preliminary experiments 

were carried out to decide on the amount of training material required, and using a single hat/cap 

per class for training proved to be good enough, allowing us to use a bigger testing database to 

increase the statistical significance of the results.  

The database contains sequences in which the users were instructed on how to move under the 

camera in linear directions (parallel or diagonal to the captured area, to allow for proper coverage of 

the recording area). A top-view of the room, in which the recording took place, and some example 

images belonging to different classes are shown in Figure 5. In Figure 5a, T0 and T1 are the two 

overhead ToF cameras used to record the sequences, the color-filled rectangles show the camera field 

of view at the floor level, and the thick line shows the trajectory followed by the users in the 

recordings. In Figure 5b, the height values are shown using a color scale representation. 

We run preliminary experiments to assess the actual precision of the Kinect devices when 

estimating the depth values. We found that errors in height estimation were below 1 cm for users in 

static position, which is consistent with previous reports in the literature (such as [33], where the 

authors report a maximum error of 4 cm at the maximum range of the sensor, but our measured 

elements are much nearer the sensor, as we evaluate people standing). 

Tables 2 and 3 show the details of the training and testing subsets, respectively. #Sequences 

refers to the number of recorded sequences, #Frames refers to the number of all of the (useful) frames 

17 × 13, 26 × 24, 13
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Table 1. Information on the head accessories (hats/caps) used. 

Class 
Training 

Accessories 
Testing Accessories 

Caps 

 

19 × 18, 27 × 18 2 

 

18 × 15, 25 × 15 

 

18 × 18, 27 × 18 

 

20 × 17, 27 × 17 

 

Large size 

hats 1 
 

16 × 16, 38 × 38, 11 

 

18 × 13, 38 × 35, 12 

 

14 × 14, 34 × 34, 13 

 

18 × 13, 36 × 31,14 

 

18 × 13, 35 × 32, 13 

Medium 

size hats 
 

18 × 13, 29 × 26, 12 

 

18 × 12, 32 × 26, 12 

 

13 × 13, 24 × 31, 9 

 

17 × 13, 32 × 27, 8 

 

18 × 13, 32 × 30, 11 

Small size 

hats 
 

17 × 12, 27 × 23, 11 

 

17 × 13, 26 × 24, 13 

 

16 × 11, 15 × 20, 10 

 

16 × 14, 26 × 23, 9 

 

17 × 14, 28 × 24, 13 

 

18 × 15, 28 × 25, 10 

 

18 × 13, 27 × 25, 14 

  

1 The ruler shown is 30 cm long; 2 Sizes are given in cm as D1_in × D2_in, D1_out × D2_out and h, 

according to Figure 4. 

The dataset was divided into two subsets, one for training and the other one for testing. The 

subsets are fully independent, so that no person nor accessory present in the training subset was 

present in the testing subset. The columns Training Accessories and Testing Accessories in Table 1 

show the accessories used for training and testing, respectively. It can be seen that just one hat/cap 

per class was used for training, and a variety of them was used for testing. Preliminary experiments 

were carried out to decide on the amount of training material required, and using a single hat/cap 

per class for training proved to be good enough, allowing us to use a bigger testing database to 

increase the statistical significance of the results.  

The database contains sequences in which the users were instructed on how to move under the 

camera in linear directions (parallel or diagonal to the captured area, to allow for proper coverage of 

the recording area). A top-view of the room, in which the recording took place, and some example 

images belonging to different classes are shown in Figure 5. In Figure 5a, T0 and T1 are the two 

overhead ToF cameras used to record the sequences, the color-filled rectangles show the camera field 

of view at the floor level, and the thick line shows the trajectory followed by the users in the 

recordings. In Figure 5b, the height values are shown using a color scale representation. 

We run preliminary experiments to assess the actual precision of the Kinect devices when 

estimating the depth values. We found that errors in height estimation were below 1 cm for users in 

static position, which is consistent with previous reports in the literature (such as [33], where the 

authors report a maximum error of 4 cm at the maximum range of the sensor, but our measured 

elements are much nearer the sensor, as we evaluate people standing). 

Tables 2 and 3 show the details of the training and testing subsets, respectively. #Sequences 

refers to the number of recorded sequences, #Frames refers to the number of all of the (useful) frames 

16 × 11, 15 × 20, 10
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Table 1. Information on the head accessories (hats/caps) used. 

Class 
Training 

Accessories 
Testing Accessories 

Caps 

 

19 × 18, 27 × 18 2 

 

18 × 15, 25 × 15 

 

18 × 18, 27 × 18 

 

20 × 17, 27 × 17 

 

Large size 

hats 1 
 

16 × 16, 38 × 38, 11 

 

18 × 13, 38 × 35, 12 

 

14 × 14, 34 × 34, 13 

 

18 × 13, 36 × 31,14 

 

18 × 13, 35 × 32, 13 

Medium 

size hats 
 

18 × 13, 29 × 26, 12 

 

18 × 12, 32 × 26, 12 

 

13 × 13, 24 × 31, 9 

 

17 × 13, 32 × 27, 8 

 

18 × 13, 32 × 30, 11 

Small size 

hats 
 

17 × 12, 27 × 23, 11 

 

17 × 13, 26 × 24, 13 

 

16 × 11, 15 × 20, 10 

 

16 × 14, 26 × 23, 9 

 

17 × 14, 28 × 24, 13 

 

18 × 15, 28 × 25, 10 

 

18 × 13, 27 × 25, 14 

  

1 The ruler shown is 30 cm long; 2 Sizes are given in cm as D1_in × D2_in, D1_out × D2_out and h, 

according to Figure 4. 

The dataset was divided into two subsets, one for training and the other one for testing. The 

subsets are fully independent, so that no person nor accessory present in the training subset was 

present in the testing subset. The columns Training Accessories and Testing Accessories in Table 1 

show the accessories used for training and testing, respectively. It can be seen that just one hat/cap 

per class was used for training, and a variety of them was used for testing. Preliminary experiments 

were carried out to decide on the amount of training material required, and using a single hat/cap 

per class for training proved to be good enough, allowing us to use a bigger testing database to 

increase the statistical significance of the results.  

The database contains sequences in which the users were instructed on how to move under the 

camera in linear directions (parallel or diagonal to the captured area, to allow for proper coverage of 

the recording area). A top-view of the room, in which the recording took place, and some example 

images belonging to different classes are shown in Figure 5. In Figure 5a, T0 and T1 are the two 

overhead ToF cameras used to record the sequences, the color-filled rectangles show the camera field 

of view at the floor level, and the thick line shows the trajectory followed by the users in the 

recordings. In Figure 5b, the height values are shown using a color scale representation. 

We run preliminary experiments to assess the actual precision of the Kinect devices when 

estimating the depth values. We found that errors in height estimation were below 1 cm for users in 

static position, which is consistent with previous reports in the literature (such as [33], where the 

authors report a maximum error of 4 cm at the maximum range of the sensor, but our measured 

elements are much nearer the sensor, as we evaluate people standing). 

Tables 2 and 3 show the details of the training and testing subsets, respectively. #Sequences 

refers to the number of recorded sequences, #Frames refers to the number of all of the (useful) frames 

16 × 14, 26 × 23, 9

Sensors 2017, 17, 1845 9 of 15 

 

Table 1. Information on the head accessories (hats/caps) used. 

Class 
Training 

Accessories 
Testing Accessories 

Caps 

 

19 × 18, 27 × 18 2 

 

18 × 15, 25 × 15 

 

18 × 18, 27 × 18 

 

20 × 17, 27 × 17 

 

Large size 

hats 1 
 

16 × 16, 38 × 38, 11 

 

18 × 13, 38 × 35, 12 

 

14 × 14, 34 × 34, 13 

 

18 × 13, 36 × 31,14 

 

18 × 13, 35 × 32, 13 

Medium 

size hats 
 

18 × 13, 29 × 26, 12 

 

18 × 12, 32 × 26, 12 

 

13 × 13, 24 × 31, 9 

 

17 × 13, 32 × 27, 8 

 

18 × 13, 32 × 30, 11 

Small size 

hats 
 

17 × 12, 27 × 23, 11 

 

17 × 13, 26 × 24, 13 

 

16 × 11, 15 × 20, 10 

 

16 × 14, 26 × 23, 9 

 

17 × 14, 28 × 24, 13 

 

18 × 15, 28 × 25, 10 

 

18 × 13, 27 × 25, 14 

  

1 The ruler shown is 30 cm long; 2 Sizes are given in cm as D1_in × D2_in, D1_out × D2_out and h, 

according to Figure 4. 

The dataset was divided into two subsets, one for training and the other one for testing. The 

subsets are fully independent, so that no person nor accessory present in the training subset was 

present in the testing subset. The columns Training Accessories and Testing Accessories in Table 1 

show the accessories used for training and testing, respectively. It can be seen that just one hat/cap 

per class was used for training, and a variety of them was used for testing. Preliminary experiments 

were carried out to decide on the amount of training material required, and using a single hat/cap 

per class for training proved to be good enough, allowing us to use a bigger testing database to 

increase the statistical significance of the results.  

The database contains sequences in which the users were instructed on how to move under the 

camera in linear directions (parallel or diagonal to the captured area, to allow for proper coverage of 

the recording area). A top-view of the room, in which the recording took place, and some example 

images belonging to different classes are shown in Figure 5. In Figure 5a, T0 and T1 are the two 

overhead ToF cameras used to record the sequences, the color-filled rectangles show the camera field 

of view at the floor level, and the thick line shows the trajectory followed by the users in the 

recordings. In Figure 5b, the height values are shown using a color scale representation. 

We run preliminary experiments to assess the actual precision of the Kinect devices when 

estimating the depth values. We found that errors in height estimation were below 1 cm for users in 

static position, which is consistent with previous reports in the literature (such as [33], where the 

authors report a maximum error of 4 cm at the maximum range of the sensor, but our measured 

elements are much nearer the sensor, as we evaluate people standing). 

Tables 2 and 3 show the details of the training and testing subsets, respectively. #Sequences 

refers to the number of recorded sequences, #Frames refers to the number of all of the (useful) frames 

17 × 14, 28 × 24, 13

Sensors 2017, 17, 1845 9 of 15 

 

Table 1. Information on the head accessories (hats/caps) used. 

Class 
Training 

Accessories 
Testing Accessories 

Caps 

 

19 × 18, 27 × 18 2 

 

18 × 15, 25 × 15 

 

18 × 18, 27 × 18 

 

20 × 17, 27 × 17 

 

Large size 

hats 1 
 

16 × 16, 38 × 38, 11 

 

18 × 13, 38 × 35, 12 

 

14 × 14, 34 × 34, 13 

 

18 × 13, 36 × 31,14 

 

18 × 13, 35 × 32, 13 

Medium 

size hats 
 

18 × 13, 29 × 26, 12 

 

18 × 12, 32 × 26, 12 

 

13 × 13, 24 × 31, 9 

 

17 × 13, 32 × 27, 8 

 

18 × 13, 32 × 30, 11 

Small size 

hats 
 

17 × 12, 27 × 23, 11 

 

17 × 13, 26 × 24, 13 

 

16 × 11, 15 × 20, 10 

 

16 × 14, 26 × 23, 9 

 

17 × 14, 28 × 24, 13 

 

18 × 15, 28 × 25, 10 

 

18 × 13, 27 × 25, 14 

  

1 The ruler shown is 30 cm long; 2 Sizes are given in cm as D1_in × D2_in, D1_out × D2_out and h, 

according to Figure 4. 

The dataset was divided into two subsets, one for training and the other one for testing. The 

subsets are fully independent, so that no person nor accessory present in the training subset was 

present in the testing subset. The columns Training Accessories and Testing Accessories in Table 1 

show the accessories used for training and testing, respectively. It can be seen that just one hat/cap 

per class was used for training, and a variety of them was used for testing. Preliminary experiments 

were carried out to decide on the amount of training material required, and using a single hat/cap 

per class for training proved to be good enough, allowing us to use a bigger testing database to 

increase the statistical significance of the results.  

The database contains sequences in which the users were instructed on how to move under the 

camera in linear directions (parallel or diagonal to the captured area, to allow for proper coverage of 

the recording area). A top-view of the room, in which the recording took place, and some example 

images belonging to different classes are shown in Figure 5. In Figure 5a, T0 and T1 are the two 

overhead ToF cameras used to record the sequences, the color-filled rectangles show the camera field 

of view at the floor level, and the thick line shows the trajectory followed by the users in the 

recordings. In Figure 5b, the height values are shown using a color scale representation. 

We run preliminary experiments to assess the actual precision of the Kinect devices when 

estimating the depth values. We found that errors in height estimation were below 1 cm for users in 

static position, which is consistent with previous reports in the literature (such as [33], where the 

authors report a maximum error of 4 cm at the maximum range of the sensor, but our measured 

elements are much nearer the sensor, as we evaluate people standing). 

Tables 2 and 3 show the details of the training and testing subsets, respectively. #Sequences 

refers to the number of recorded sequences, #Frames refers to the number of all of the (useful) frames 

18 × 15, 28 × 25, 10

Sensors 2017, 17, 1845 9 of 15 

 

Table 1. Information on the head accessories (hats/caps) used. 

Class 
Training 

Accessories 
Testing Accessories 

Caps 

 

19 × 18, 27 × 18 2 

 

18 × 15, 25 × 15 

 

18 × 18, 27 × 18 

 

20 × 17, 27 × 17 

 

Large size 

hats 1 
 

16 × 16, 38 × 38, 11 

 

18 × 13, 38 × 35, 12 

 

14 × 14, 34 × 34, 13 

 

18 × 13, 36 × 31,14 

 

18 × 13, 35 × 32, 13 

Medium 

size hats 
 

18 × 13, 29 × 26, 12 

 

18 × 12, 32 × 26, 12 

 

13 × 13, 24 × 31, 9 

 

17 × 13, 32 × 27, 8 

 

18 × 13, 32 × 30, 11 

Small size 

hats 
 

17 × 12, 27 × 23, 11 

 

17 × 13, 26 × 24, 13 

 

16 × 11, 15 × 20, 10 

 

16 × 14, 26 × 23, 9 

 

17 × 14, 28 × 24, 13 

 

18 × 15, 28 × 25, 10 

 

18 × 13, 27 × 25, 14 

  

1 The ruler shown is 30 cm long; 2 Sizes are given in cm as D1_in × D2_in, D1_out × D2_out and h, 

according to Figure 4. 

The dataset was divided into two subsets, one for training and the other one for testing. The 

subsets are fully independent, so that no person nor accessory present in the training subset was 

present in the testing subset. The columns Training Accessories and Testing Accessories in Table 1 

show the accessories used for training and testing, respectively. It can be seen that just one hat/cap 

per class was used for training, and a variety of them was used for testing. Preliminary experiments 

were carried out to decide on the amount of training material required, and using a single hat/cap 

per class for training proved to be good enough, allowing us to use a bigger testing database to 

increase the statistical significance of the results.  

The database contains sequences in which the users were instructed on how to move under the 

camera in linear directions (parallel or diagonal to the captured area, to allow for proper coverage of 

the recording area). A top-view of the room, in which the recording took place, and some example 

images belonging to different classes are shown in Figure 5. In Figure 5a, T0 and T1 are the two 

overhead ToF cameras used to record the sequences, the color-filled rectangles show the camera field 

of view at the floor level, and the thick line shows the trajectory followed by the users in the 

recordings. In Figure 5b, the height values are shown using a color scale representation. 

We run preliminary experiments to assess the actual precision of the Kinect devices when 

estimating the depth values. We found that errors in height estimation were below 1 cm for users in 

static position, which is consistent with previous reports in the literature (such as [33], where the 

authors report a maximum error of 4 cm at the maximum range of the sensor, but our measured 

elements are much nearer the sensor, as we evaluate people standing). 

Tables 2 and 3 show the details of the training and testing subsets, respectively. #Sequences 

refers to the number of recorded sequences, #Frames refers to the number of all of the (useful) frames 

18 × 13, 27 × 25, 14
1 The ruler shown is 30 cm long; 2 Sizes are given in cm as D1_in × D2_in, D1_out × D2_out and h, according to
Figure 4.

The dataset was divided into two subsets, one for training and the other one for testing. The
subsets are fully independent, so that no person nor accessory present in the training subset was
present in the testing subset. The columns Training Accessories and Testing Accessories in Table 1
show the accessories used for training and testing, respectively. It can be seen that just one hat/cap per
class was used for training, and a variety of them was used for testing. Preliminary experiments were
carried out to decide on the amount of training material required, and using a single hat/cap per class
for training proved to be good enough, allowing us to use a bigger testing database to increase the
statistical significance of the results.

The database contains sequences in which the users were instructed on how to move under the
camera in linear directions (parallel or diagonal to the captured area, to allow for proper coverage of
the recording area). A top-view of the room, in which the recording took place, and some example
images belonging to different classes are shown in Figure 5. In Figure 5a, T0 and T1 are the two
overhead ToF cameras used to record the sequences, the color-filled rectangles show the camera field
of view at the floor level, and the thick line shows the trajectory followed by the users in the recordings.
In Figure 5b, the height values are shown using a color scale representation.

We run preliminary experiments to assess the actual precision of the Kinect devices when
estimating the depth values. We found that errors in height estimation were below 1 cm for users
in static position, which is consistent with previous reports in the literature (such as [33], where the
authors report a maximum error of 4 cm at the maximum range of the sensor, but our measured
elements are much nearer the sensor, as we evaluate people standing).

Tables 2 and 3 show the details of the training and testing subsets, respectively. #Sequences refers
to the number of recorded sequences, #Frames refers to the number of all of the (useful) frames with
people present. In Table 3, the number of sequences and frames is shown as T0 + T1, as they refer to
the recordings done with each of the two overhead cameras: T0 and T1.

The Level 1 grouping just identifies the three main broad classes, namely Caps, Hats, and none of
them (referred to as No hat/cap). In the Level 2 grouping, the classification was further refined for the
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Hats class, considering their size: large, medium and small. This refinement is somehow fuzzy, as the
frontiers between each of these classes is somehow arbitrary, but we want to stress the fact that we
are interested in providing additional semantic labels, with reasonable performance, to characterize
people in the scene. In our case, we did this grouping mainly considering the external diameters of
each hat (see size information in Table 1, considering the size definitions of Figure 4).
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Figure 5. (a) top view of the room in which the recordings took place; (b) example images acquired by
T0 and T1 depth sensors, belonging to different classes.

Table 2. Training subset details.

#Sequences #Frames Level 2 Grouping Level 1 Grouping #Grouping1 Frames

14 492 Short hair no hat/cap 6846 192 Long hair

6 399 caps cap 399

3 384 Large size hat
hat 10646 289 Medium size hat

3 391 Small size hat

38 2147 2147

Table 3. Testing subset details 1.

#Sequences
(T0 + T1) #Frames (T0 + T1) Level 2 Grouping Level 1 Grouping #Group1 Frames

(T0 + T1)

17 + 16 = 33 678 + 460 = 1138 no hat/cap no hat/cap 678 + 460 = 1138

34 + 37 = 71 1369 + 752 = 2121 cap cap 1369 + 752 = 2121

31 + 37 = 68 1205 + 1320 = 2525 Large size hat
hats 4442 + 4708 = 915048 + 38 = 96 2563 + 1829 = 4392 Medium size hat

34 + 49 = 83 674 + 1559 = 2233 Small size hat

164 + 177 = 351 6489 + 5920 = 12,409 6489 + 5920 = 12,409
1 No cap/hat/user from the training subset were used here.



Sensors 2017, 17, 1845 11 of 15

3.2. Performance Metrics

To evaluate the performance of our proposal, we will provide the full confusion matrices for the
experiments carried out, and the average classification rates. In the case of the confusion matrices, we
will also include the confidence interval values for a confidence level of 95%.

3.3. Results and Discussion

Several experiments were run in order to assess the capabilities of the proposed system in coping
with different requirements, namely as above:

• Level 2 classification grouping: in which five classes were considered, i.e., large size hat, medium
size hat, small size hat, cap and no hat/cap.

• Level 1 classification grouping: in which three classes were considered, i.e., hat, cap and no
hat/cap.

• Accessory–no accessory classification: in which two classes were considered, i.e., hat/cap, and no
hat/cap.

Table 4 shows the results for the level 2 classification task. The average classification rate is 84.60%,
which may seem a bit low to be usable in a real context, but we have to take into account again that the
frontier between hat sizes is somehow arbitrary. This can be clearly seen in the grayed areas that show,
for every class, the somehow high confusion between adjacent hat sizes, and between using a cap and
wearing nothing on the head (actually, a cap adjusts to the general head shape, except for its frontal
shelter/cover).

Table 4. Confusion matrix results for the level 2 classification grouping.

Type Large Hat Medium Hat Small Hat Cap No Hat/Cap
large hat 93.74% ±0.94% 6.14% ±0.94% 0.12% ±0.13% 0.00% ±0.00% 0.00% ±0.00%

medium hat 14.73% ±1.05% 69.49% ±1.36% 12.68% ±0.98% 0.00% ±0.00% 3.10% ±0.51%
small hat 0.00% ±0.00% 0.63% ±0.33% 82.98% ±1.56% 9.85% ±1.24% 6.54% ±1.03%

cap 0.00% ±0.00% 0.00% ±0.00% 6.69% ±1.06% 81.19% ±1.66% 12.12% ±1.39%
no hat/cap 0.00% 0.00% 0.00% ±0.00% 0.09% ±0.17% 4.31% ±1.18% 95.61% ±1.19%

Table 5 shows the results for the level 1 classification task. The average classification rate in this
case is 92.33%. Again, a non-negligible confusion between the cap class and the no hat/cap class can
be noticed, for the same reason stated above.

Table 5. Confusion matrix results for the level 1 classification grouping.

Type #Frames Hat Cap No Hat/Cap

hat 9150 94.51% ±0.47% 2.40% ±0.31% 3.08% ±0.35%
cap 2121 6.69% ±1.06% 81.19% ±1.66% 12.12% ±1.39%

no hat/cap 1138 0.09% ±0.17% 4.31% ±1.18% 95.61% ±1.19%

Frames 12,409

Table 6 shows the results for the hat/cap–no hat/cap classification task. The average classification
rate is 95.25%. From Table 6, it is also easy to find out the sensitivity (true positive rate), which equals
95.22%, the specificity (true negative rate), which equals 95.61%, and the F1 score, which equals 95.41%.
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Table 6. Confusion matrix results for the hat/cap–no hat/cap classification task.

Type #Frames Hat/Cap No Hat/Cap

hat/cap 11,271 95.22% ±0.39% 4.78% ±0.39%
no hat/cap 1138 4.39% ±1.19% 95.61% ±1.19%

#Frames 12,409

As a final comment, even if the classification performance may seem relatively low for the level 2
classification grouping, we want to stress that the proposal objective is providing semantic labels to be
used by higher level processing systems. In this scenario, even if the classification is not perfect, it can
provide additional information that will be useful in the higher levels.

3.4. Computational Cost

All of the experiments reported were run on a PC, with an Intel Quad Q9550 2.83 GHz processor
(Santa Clara, CA, USA), and 4 GB RAM. The algorithmic proposal has been implemented in C under
the LabWindows™/CVI (C for Virtual Instrumentation) Integrated Development Environment, and
runs on a Windows 10 operating system (Microsoft, Redmon, WA, USA). The pre-process of the depth
maps is the stage that presents the higher computational cost, with an average of 3.75 ms per frame.
The rest of processes have a duration of 2 ms per frame, so that the overall processing time per frame
is 5.75 ms, thus allowing for real-time operation of the proposal.

Alternative classification strategies could have been applied, but we focused our efforts on the
design of a meaningful feature vector containing the relevant information that could be extracted
from an overhead ToF camera. The advantage of PCA is its relative simplicity, which would allow its
implementation in low power computing architectures. To provide an example, in [31], we compared
the PCA based proposal with another based in SVM, for a people detection task also using depth
information from an overhead ToF camera. The SVM classifier outperformed the PCA based one, but
the later one was 4.5 times faster. The computational simplicity of our proposal would even allow
its implementation in low cost platforms such as the Raspberry Pi, which has proved to be able to
solve even more complex preprocessing and classification problems (such as the one described in [34],
aimed at face detection, also using a PCA based solution).

4. Conclusions

In this work, we have presented a procedure for real-time classification (processing time is
5.75 ms per frame) of different headgear accessories (hats, caps, no hats/caps), by only using the
depth information provided by a ToF camera placed in an overhead position. The use of only depth
information, compared with the use of RGB, allows for guaranteeing people’s privacy and decreasing
the processing time.

Since a dataset fulfilling the requirements of the target application (depth maps acquired with an
overhead ToF camera) was not available within the scientific community, a specific dataset has been
recorded and made publicly available. This dataset contains depth sequences of 25 different people
with short/long hairstyles without accessories (no hat nor cap), and with 21 different accessories
(17 different hats and four different caps).

A full description of our algorithm for accessories classification has been provided, including
depth data preprocessing, person ROI estimation, feature extraction and normalization, and the final
classification stage. The classification process has been carried out using PCA techniques. Within this
context, the recorded dataset was divided into fully separated training and testing subsets that have
been used to train and evaluate the proposal for different classification tasks (from two to five different
classes). The results obtained are satisfactory, achieving an average classification rate of around 92% for
the three-class problem (hat, cap, no hat/cap). This average improves when the number of classes is
reduced, reaching 95% in the case of classifying people with and without accessories. The performance



Sensors 2017, 17, 1845 13 of 15

for the five classes classification task is around 85%, which is mainly due to the fuzzy frontiers between
the hat classes considering different sizes. Nevertheless, the results are very good considering the
target application of providing additional attributes in the field of semantic surveillance video analysis.

Future work will be focused on further exploiting the information provided by the system,
generating additional quantitative features (for example, related to the actual area of the detected
accessories), evaluating alternative classification strategies, and also integrating this proposal in a more
general semantic video analysis tool, combined with other semantic attribute estimators, specifically
oriented to user reidentification in wider areas.
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