
sensors

Article

A Semi-Analytical Solution for the
Thickness-Vibration of Centrally Partially-Electroded
Circular AT-Cut Quartz Resonators

Bin Wang, Xiaoyun Dai, Xintao Zhao and Zhenghua Qian *

State Key Laboratory of Mechanics and Control of Mechanical Structures/College of Aerospace Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; wangbin1982@nuaa.edu.cn (B.W.);
dxymnz_wy@163.com (X.D.); zhaoxt9704@163.com (X.Z.)
* Correspondence: qianzh@nuaa.edu.cn

Received: 28 June 2017; Accepted: 2 August 2017; Published: 7 August 2017

Abstract: Vibration frequencies and modes for the thickness-shear vibrations of infinite
partially-electroded circular AT-cut quartz plates are obtained by solving the two-dimensional (2D)
scalar differential equation derived by Tiersten and Smythe. The Mathieu and modified Mathieu
equations are derived from the governing equation using the coordinate transform and the collocation
method is used to deal with the boundary conditions. Solutions of the resonant frequencies and
trapped modes are validated by those results obtained from COMSOL software. The current study
provides a theoretical way for figuring out the vibration analysis of circular quartz resonators.
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1. Introduction

Nowadays, acoustic wave resonators are widely used for frequency generation and control
in telecommunications, as well as mass and acceleration sensors. Quartz is the most widely used
crystal for resonators, due to its piezoelectric effects. The desire for better resonators has increased
with the rapid development of electric devices, which calls for thorough studies on the vibration
of the quartz plate. In most applications, quartz crystal plate works with thickness-shear (TS)
vibrations [1]. However, because of the complicated properties of quartz crystal, such as anisotropy
and electro-mechanical coupling, it is difficult to obtain an exact three-dimensional analytical solution.
In order to solve the problem, Mindlin and his co-authors firstly developed a two-dimensional
plate theory for solving the vibrations of elastic and piezoelectric plates [2–5], which is especially
suitable for analyzing low-order modes of thickness-shear vibrations. Many researchers have adopted
Mindlin’s theory to solve vibration of quartz plates in various situations [6–11]. Lee [12] established
another effective two-dimensional plate theory using trigonometric expansion to express the electric
potential and displacement, by which he tried to analyze the stretch and forced vibrations of crystal
plates [13,14]. Furthermore, Tiersten and Smythe suggested a two-dimensional scalar differential
equation for high-order modes in AT-cut [15] and Stress Compensated-cut (SC-cut) [16] quartz plates,
which proved to be quite accurate yet simple. In many of the two-dimensional studies, the plates were
assumed to be infinitely large in the x1 and x3 directions, and the effects induced by boundaries were
considered by in-plane wavenumbers in the x1 and x3 directions, which are small compared with the
wavenumber in the x2 direction. This simplification has been shown to be effective in analyzing actual
plate vibrations [17–19]. In this paper, we will adopt this two-dimensional scalar differential equation
for the analysis of various TS modes.

For most quartz resonators, the shape of the crystal plates or the electrodes on the top and bottom
of the plates is either rectangular or circular. It is true that rectangular geometry is widely used for
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general miniaturized quartz resonators. For some specific applications, such as base stations, which do
not have strong limitation on space, a circular design of the quartz plate and/or the electrodes on it
can show better performance for energy trapping resonance characteristics than a rectangular plate.
It is well known that electrode corners in rectangular design can cause electric field concentration,
which is associated with degrading effects or even failure of the materials involved. That problem
disappears or is very much reduced when a circular design is used, since in this way the electric field
concentration can be avoided with a minimal difference in manufacturing. In the case of rectangular
plates, the two-dimensional scalar differential equations can be easily decoupled and solved in the
Cartesian coordinates, and most of theoretical and numerical studies on TS vibrations mentioned
above focused on rectangular plates. In the case of circular resonators, however, the variables in the
two-dimensional scalar differential equations cannot be separated easily due to material anisotropy.
Therefore, it is necessary to develop a semi-analytical method for circular quartz resonators.

Due to the difficulty of theoretical study on circular resonators, some researchers have turned
to numerical solutions. Yong et al. [20] firstly applied Finite Element Method (FEM) to solve
the thickness-shear motions of circular crystal plates, followed by Wang et al. [21]. Furthermore,
Liu et al. [22,23] developed a new differential quadrature hierarchical FEM method, which can improve
accuracy and calculation efficiency. Generally speaking, the FEM approach requires a large amount
of time for computation, especially the post process of extracting resonance frequencies and modes
is extremely complicated. For theoretical deduction of TS vibration modes, Tiersten proposed a
perturbation method, where an incremental item due to anisotropy is added to a nearby isotropic
solution [15]. Wang et al. [24] applied the method to solve TS vibration problems of circular plates
in order to obtain a truncated 2D equation, while Yang et al. [25] discussed the vibration modes
of a circular crystal plate with transversely varying thickness. More recently, He et al. solved the
two-dimensional scalar differential equation for a fully-unelectroded finite circular AT-cut quartz
plate by coordinate transform and variable separation in elliptical coordinates, by which the original
equations were rewritten into the Mathieu and modified Mathieu equations [26]; their article showed
better results than the previous perturbation method.

For the actual application of resonators, the electrode usually covers part of the surface on
either the top or the bottom, so a partially-electroded model is more accurate in describing an actual
resonator than the fully-electroded model. In this paper, the TS vibrations of infinite circular AT-cut
quartz plates partially covered with circular electrodes are examined in detail. In Section 2, Tiersten’s
two-dimensional scalar differential equations are introduced and transformed into elliptical coordinates
for decoupling. By introducing boundary and constitutive conditions, the infinite plate’s TS vibration
frequencies and mode shapes are calculated theoretically, with the numerical models illustrated and
discussed in Section 3. In Section 4, FEM simulation by the commercial software COMSOL is described.
The FEM solutions are compared with the theoretical results and show good agreement. A thorough
understanding of TS vibrations for partially-electroded circular quartz plates can be a theoretical guide
for the design, calibration and manufacturing optimization of circular quartz resonators.

2. Theoretical Deduction

2.1. Governing Equations

An infinite AT-cut circular quartz plate with two circular identical electrodes placed concentrically
on both the top and bottom was studied, as shown in Figure 1. The plate has a diameter of 2R1 and
thickness of 2h; each electrode has a diameter of 2R0 and thickness of he. We set the plate radius
R1 = +∞ for simplicity. The vibrations of the electroded region and the unelectroded region are
governed by different equations.
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Figure 1. A centrally partially-electroded circular AT-cut quartz plate.

The thickness-shear vibration consists of different modes. The displacement un
1 (x1, x3, t) for the

nth-order thickness-shear vibration of AT-cut quartz plate is defined by [5]:

u1(x1, x2, x3, t) =
∞

∑
n=1,3,5...

un
1 (x1, x3, t) sin

(nπx2

2h

)
, (1)

where n = 1 represents the fundamental thickness-shear mode, and larger values of n represent
higher-order overtone modes. According to [15], the items un

1 representing vibrations of electroded
and unelectroded regions are governed by different two-dimensional scalar differential equations.

The scalar equation for the electroded region is shown as:

Mn
∂2un

1
∂x2

1
+ c55

∂2un
1
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3
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(

ω2 −ω2
∞

)
un

1 = 0, (2)

While the scalar equation for the unelectroded region has the similar form as:
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where

Mn = c11 + (c12 + c66)r +
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c22nπκ
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κnπ

2
, (4)
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c66 − c22
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e2
26

c66ε22
, R =

2ρ′h′
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, (6)

ω∞ =
n2π2

4
ĉ66

ρh2 , ω∞ =
n2π2

4
c66

ρh2 , (7)

in which ρ is the mass density of quartz; 2h
′
and ρ

′
are the thickness and the density of the electrodes,

respectively; cpq, eip and εij are the compact forms of elastic, piezoelectric and dielectric constants;
and ω∞ and ω∞ are the fundamental TS frequencies for infinite unelectroded and electroded plates
respectively, as seen in [18].

To deal with the governing equations we used a method similar to that adopted by
He et al. [26]. For both the electroded and unelectroded regions, we introduced the following
coordinate transformation: {

x1 = λy1

x3 = µy3
, (8)
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where λ and µ are defined as:

λ =
1

ω∞

√
Mn

ρ
, µ =

1
ω∞

√
c55

ρ
, (9)

and Equations (2) and (3) separately become:

∂2un
1
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∞
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∞
ω2

∞
)un

1 = 0, (11)

The boundary of the electrode can be defined by:

x2
1 + x2

3 = R2
0, (12)

After the coordinate transformation the circular boundary becomes an ellipse shown as:

λ2y2
1 + µ2y2

3 = R2
1, (13)

and we introduce the elliptical coordinate in order to deal with the boundary conditions:{
y1 = csinhξ sin η

y3 = c cosh ξ cos η
, (14)

where c is half the focal distance of the ellipse which represents the electrode boundary in elliptical
coordinates; and ξ is the radial variable; while η is the angular variable. Then Equations (10) and (11)
are transformed into Equations (15) and (16) respectively:

∂2un
1

∂ξ2 +
∂2un

1
∂η2 + 2q1(cosh 2ξ − cos 2η)un

1 = 0, (15)

∂2un
1

∂ξ2 +
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1
∂η2 + 2q2(cosh 2ξ − cos 2η)un

1 = 0, (16)

in which:  q1 = c2

4 (
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ω2

∞
)
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4 (
ω2

ω2
∞
− ω2

∞
ω2

∞
)

, (17)

We now perform a variable separation to un
1 :

un
1 (ξ, η) = u(ξ)v(η), (18)

Equations (15) and (16) can be rewritten as:
d2v
∂η2 + [λ− 2qi cos(2η)]v(η) = 0

d2u
∂ξ2 + [2qi cosh(2ξ)− λ]u(ξ) = 0

, (19)

where i = 1, 2; and λ is the separation constant which is related to q. The first and second equations of
Equation (19) are known as the Mathieu equation and modified Mathieu equation, and the subscript
i = 1, 2 represents the equation used for the electroded and unelectroded parts, respectively.
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2.2. Mathieu and Modified Mathieu Equations

The exact solutions of the Mathieu and modified Mathieu equations can be obtained from [27].
For the Mathieu equation, there are four kinds of periodic solutions with the period 2π, representing
angular distributions, as shown by:

ce2m(η, q) =
∞
∑

k=0
A2m

2k (q) cos 2kη

ce2m+1(η, q) =
∞
∑

k=0
A2m+1

2k+1 (q) cos(2k + 1)η

se2m+1(η, q) =
∞
∑

k=0
B2m+1

2k+1 (q) sin(2k + 1)η

se2m+2(η, q) =
∞
∑

k=0
B2m+2

2k+2 (q) sin(2k + 2)η

, (20)

Here Equation (20) is called the Mathieu function, in which ce2m and ce2m+1 represent symmetric
solutions, while se2m+2 and se2m+1 represent anti-symmetric solutions. The parameters m = 0, 1, 2 · · ·
represent solution orders. Am

k and Bm
k are coefficients determined by q.

For the modified Mathieu equation there are also four kinds of solutions, representing radial
distributions, as shown by:

Ce2m(ξ, q) =
∞
∑

k=0
A2m

2k (q) cosh 2kξ

Ce2m+1(ξ, q) =
∞
∑

k=0
A2m+1

2k+1 (q) cosh(2k + 1)ξ

Se2m+1(ξ, q) =
∞
∑

k=0
B2m+1

2k+1 (q)sinh(2k + 1)ξ

Se2m+2(ξ, q) =
∞
∑

k=0
B2m+2

2k+2 (q)sinh(2k + 2)ξ

, (21)

where m = 0, 1, 2 · · · also represents the order of the solutions. Equation (21) is called the modified
Mathieu function in which Ce2m and Ce2m+1 represent symmetric solutions while Se2m+2 and Se2m+1

represent anti-symmetric solutions. Am
k and Bm

k are coefficients, the same as those in Equation (20). All
the modified Mathieu functions can be expanded with Bessel functions of the first and second kinds
shown as:

Ce2m(ξ, q) = McJ
2m(ξ, q) = 1

A2m
0

∞
∑

k=0
(−1)k+m A2m

2k (q)Jk(v1)Z J
k(v2),

Ce2m+1(ξ, q) = McJ
2m+1(ξ, q) = 1

A2m+1
1

∞
∑

k=0
(−1)k+m A2m+1

2k+1 (q)× [Jk(v1)Z J
k+1(v2) + Z J

k(v2)Jk+1(v1)],

Se2m+1(ξ, q) = MsJ
2m+1(ξ, q) = 1

B2m+1
1

∞
∑

k=0
(−1)k+mB2m+1

2k+1 (q)× [Jk(v1)Z J
k+1(v2)− Z J

k(v2)Jk+1(v1)],

Se2m+2(ξ, q) = MsJ
2m+2(ξ, q) = 1

B2m+2
2

∞
∑

k=0
(−1)k+mB2m+2

2k+2 (q)× [Jk(v1)Z J
k+1(v2)− Z J

k(v2)Jk+2(v1)],

(22)

where v1 =
√

q exp(−ξ); v2 =
√

q exp(ξ); and J = 1, 2. Ak
m and Bk

m are mentioned in Equation (21).
When J = 1, Z J

k(v) = Jk(v), which is a Bessel function of the first kind, and Equation (22) becomes the
first kind of modified Mathieu function. When J = 2, Z J

k(v) = Yk(v), which is a Bessel function of the
second kind, and Equation (22) becomes the second kind of modified Mathieu function. Similar to
the definition of the Hankel function, there are also the third and fourth kinds of modified Mathieu
functions defined as: {

Mc(3),(4)m (ξ, q) = Mc(1)m (ξ, q)± iMc(2)m (ξ, q)
Ms(3),(4)m (ξ, q) = Ms(1)m (ξ, q)± iMs(2)m (ξ, q)

, (23)

Different modified Mathieu functions are used in different kinds of solutions representing different
vibration modes [27], which we will discuss in the following sections.
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2.3. Vibration Modes and Displacement Solutions

Because of the features of the Mathieu and modified Mathieu functions, the vibration modes can
be divided into symmetric and anti-symmetric modes.

For symmetric modes, the displacement un
1 in the electroded region can be written as

un
1 (η, ξ) =

∞

∑
m=0

Amcem(η, q1)Mc(1)m (ξ, q1), (24)

In the unelectroded region, the displacement un
1 can be written as

un
1 (η, ξ) =

∞

∑
m=0

Bmcem(η, q2)Mc(3)m (ξ, q2), (25)

For the anti-symmetric modes, the displacement for the electroded region can be written as:

un
1 (η, ξ) =

∞

∑
m=0

A′msem(η, q1)Ms(1)m (ξ, q1), (26)

In the unelectroded region the displacement is:

un
1 (η, ξ) =

∞

∑
m=0

B′msem(η, q2)Ms(3)m (ξ, q2), (27)

where Am, Bm, A′m and B′m are undetermined constants. In Equations (24) and (26) we chose the first
kind of modified Mathieu function, which represents a standing wave because the electroded region is
bounded and there could be a displacement in the middle of the region. In Equations (25) and (27), the
third kind of modified Mathieu function, which represents a divergent wave, was chosen because the
unelectroded region extends to infinity and the waves can propagate outwards.

2.4. Boundary Conditions

We take the symmetric modes as examples. The far-field radiation condition of the unelectroded
region has been expressed in [4] by:

un
1 = 0, ξ = ξ∞, (28)

On the interface between the electroded and the unelectroded regions in x1-x3 plane, the
displacement and stress continuity conditions can be expressed as:

[
∂un

1
∂ξ

] = 0[un
1 ] = 0, ξ = ξ0, (29)

Equation (28) is taken into account first. The substitution of Equation (25) into Equation (28)
results in the following equation:

∞

∑
m=0

Bmcem(η, q2)Mc(3)m (ξ∞, q2) = 0, (30)

According to the characteristics of the third kind of modified Mathieu function, Mc(3)m approaches
zero when ξ = ξ∞ and Equation (30) is satisfied automatically.

With respect to the continuity conditions, we can substitute Equations (24) and (25) into
Equation (29) to get:
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∞
∑

m=0
Amcem(η, q1)Mc(1)m (ξ0, q1)−

∞
∑

m=0
Bmcem(η, q2)Mc(3)m (ξ0, q2) = 0,

∞
∑

m=0
Amcem(η, q1)Mc′(1)m (ξ0, q1)−

∞
∑

m=0
Bmcem(η, q2)Mc′(3)m (ξ0, q2) = 0,

(31)

2.5. The Collocation Method

In Equations (28) and (29), the displacements are written as a sum of infinite series of terms and
we took several of them as the approximate displacements, and the result converged to the accurate
value as more items are considered.

Here we adopted the collocation method, i.e., the continuous equations were satisfied at a series
of collocation points on the interface contour between the electroded and the unelectroded parts of the
structure in the x1-x3 plane.

We now considered the symmetric modes of the infinite plate. Due to the features of the Mathieu
functions and the symmetry of the model, only half the boundary in the first and fourth quadrants
needed to be examined for the displacement and stress continuation. After choosing collocation
points we found linear homogeneous equations set from Equation (31) for the undetermined constants
Am and Bm. To ensure the existence of the nontrivial solutions Am and Bm, the determinant of the
coefficient matrix should be zero, which can determine the value of ω.

In order to use the collocation method, the convergence of the vibration frequency should be first
examined to ensure validity.

For example, an infinite plate with an electrode attached on each of the two major surfaces (in the
x1-x3 plane) has a thickness of 2h = 0.1 mm, the electrode has a radius of R0 = 0.8 mm, and the mass
ratio between the electrode and the plate is taken to be R = 2ρ′h′/ρh = 0.05. The material constants of
AT-cut quartz can be obtained from [28]. When solving the Mathieu equation we took the first thirty
terms of each series to conduct the calculation. Two to nine points on half the boundary were chosen
to calculate the frequency ω of the fundamental mode when n = 1, and the result is shown in Figure 2:
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Figure 2. The number of the chosen points and the frequencies calculated.

It can be seen from Figure 2 that when the number of the chosen points increased to five, the
frequency calculated became steady and convergence was ensured.

We then checked the displacement and stress continuity of the interface between the electroded
and the unelectroded parts on the elliptical coordinate ξ = ξ0. We arbitrarily chose boundary points
between the collocation points for examination. For Example 1, with eight collocation points chosen
on half of the interface, and the first eight terms of the series for the calculation of the displacement
and stress remaining, we obtained the frequency of the fundamental TS mode and the expression of
the displacement and the stress. The displacement and stress of two arbitrarily-chosen points on the
interface between the collocation points (e.g., (ξ0,π/4) and (ξ0,5π/6)) are shown in Table 1.
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Table 1. The normalized displacement and stress of selected points on the boundary by solutions from
electroded and unelectroded regions, respectively.

Results Points
Displacements Stresses

Electroded Unelectroded Electroded Unelectroded

(ξ0, π/4) 0.1645 0.1645 −0.7959 −0.7958
(ξ0, 5π/6) 0.1521 0.1521 −0.7002 −0.7002

Comparing the data in Table 1, we found that the displacement was continuous at the
arbitrarily-chosen points besides the collocated points on the boundary, and the corresponding stress
difference across the boundary was also acceptable. Thus, we concluded that the collocation method
can be used to deal with the boundary conditions under question.

3. Numerical Results and Discussion

In this section, we will discuss the displacement distribution of the TS vibrations for Example 1.
The displacement field for the fundamental TS mode, u1

1 (n = 1), is shown in Figure 3a, while
the displacement field for the 3rd-order overtone TS mode, u3

1 (n = 3), is shown in Figure 3b.
Comparing Figure 3a,b, we found that the shapes of the distributions were almost the same, but
that the displacement un

1 . was more concentrated in the electroded region when n = 3 than when
n = 1. Due to the material anisotropy of the quartz crystal plate, the concentration area of the vibration
in the middle of the plate was an ellipse instead of a circle, where the long axis lies in the x1 direction
and the short axis in the x3 direction. Meanwhile, the frequency for the third thickness-shear overtone
was about triple that of the fundamental mode.
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Figure 3. (a) Fundamental thickness-shear mode for n = 1, R = 5%, f = 1.586632 × 107 Hz. (b) The third
overtone thickness-shear mode n = 3, R = 5%, f = 4.731520 × 107 Hz.

Four other thickness-shear modes with n = 1 are shown in Figure 4. Among these, Figure 4a,b
are modes symmetric to axis-x3, while Figure 4c,d are anti-symmetric modes. Figure 4a–d are not
the fundamental modes for n = 1 and they have more nodal lines under the electrodes, which will
cause charge cancellation and are unwanted spurious modes. In fact, the mode in Figure 3a is the most
useful one.

Furthermore, by observing the vibration in the electroded and unelectroded areas, it was obvious
that the vibration amplitude was low in the unelectroded area and most of the vibration energy
was confined to the electroded area. This phenomenon is called energy trapping and it is used for
device packaging.
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4. Verification in the COMSOL Package

4.1. Model, Equation and Boundary Conditions

We then used the COMSOL Multiphysics software to solve the problem in order to verify the
numerical results solved by the Mathieu functions in Section 3.

Since the plate is unbounded, we needed to use the infinite element domain whose geometry is
set cylindrical. We created an infinite two-dimensional model for the crystal plate in COMSOL. The
electroded zone was within the circle at radius R0 = 0.8 mm, and the outer zone was the unelectroded
zone. The outer side of the unelectroded zone tended to infinity.

In addition, the two circles outside the electrode were introduced for mesh, the radius of which
needed to be big enough to make the model accurate, yet small enough to be economic in computation.
After examination, we determined the appropriate size for the outer radiuses of the two rings to be
1.8 mm and 2.5 mm. We used extra fine free triangles in the model to ensure that the results were
accurate enough; the meshed model in the x1-x3 plane is shown in Figure 5.

The problem in this article was mode analysis by two-dimensional equations, which is an
eigenvalue problem that can be solved by a user-defined Partial Differential Equation (PDE) interface.
Coefficient form PDE, which provides a general interface for specifying and solving many well-known
PDEs in the coefficient form, was chosen from the PDE interfaces in module mathematics shown as:

λ2ea
∂2u
∂t2 − λda

∂u
∂t

+∇ · (−c∇u− αu + γ) + β · ∇u + au = f , (32)
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where u is the unknown scalar to be solved; t and f represent the time and source term, respectively; λ

is the eigenvalue; and ea, da, c, α, γ, β and a are coefficients defined by users in which c is a matrix
because of the material anisotropy. This is for a 2D domain, ∇ = [∂/∂x, ∂/∂y].

Sensors 2017, 17, 1820 10 of 13 

 

 
2

2
2 + + ,a a
u ue d c u u u au f

tt
    

 
        


 (32) 

where u is the unknown scalar to be solved; t and f represent the time and source term, respectively; 
  is the eigenvalue; and ,  ,  ,  ,  ,   and a ae d c a    are coefficients defined by users in which c  is a 

matrix because of the material anisotropy. This is for a 2D domain,  ,x y      . 

 

Figure 5. The meshed infinite electrode model. 

To match with the coefficient form PDE, Equations (2) and (3) were rewritten in the following 
form: 

2 2
2 2 21 1

1 55 12 2
1 3

(4 ) + 0,
n n

n n
n
u uf u M c u
x x

  

 
  

 
 (33) 

2 2
2 2 21 1

1 55 12 2
1 3

(4 ) + 0,
n n

n n
n
u uf u M c u
x x

  

 
  

 
 (34) 

where f is the characteristic frequency. Comparing Equations (33) and (34) with Equation (32), we 
found the user-defined parameters listed as Equations (35) and (36), respectively: 

2 2

55

0
4 ,   ,   ,   0,

0
n

a a

M
e c a d

c
    

 
        

 (35) 

2 2

55

0
4 ,   ,   ,   0,

0
n

a a

M
e c a d

c
    

 
        

 (36) 

The continuous conditions between the electroded and unelectroded regions were satisfied 
automatically. At the outermost circle boundaries, the displacements were set as zero to simulate the 
radiation condition of Equation (28) and suppress other vibrating modes. 

We set the number of eigenvalues that we were interested in and the search ranges according to 
the theoretical values obtained above. After that, eigenvalues and mode displacements were able to 
be obtained automatically. 

4.2. Simulation Results 

COMSOL was used to analyze the model to verify the numerical results and we obtained the 
same TS vibration modes as those listed in Figures 2 and 3. Both the vibration modes and 
frequencies will be compared in this part. 

Figure 5. The meshed infinite electrode model.

To match with the coefficient form PDE, Equations (2) and (3) were rewritten in the following form:

f 2 (4π2ρ)un
1 + Mn

∂2un
1

∂x2
1
+ c55

∂2un
1

∂x2
3
−ω2

∞un
1 = 0, (33)

f 2 (4π2ρ)un
1 + Mn

∂2un
1

∂x2
1
+ c55

∂2un
1

∂x2
3
−ω2

∞un
1 = 0, (34)

where f is the characteristic frequency. Comparing Equations (33) and (34) with Equation (32), we
found the user-defined parameters listed as Equations (35) and (36), respectively:

ea = 4π2ρ, c =

[
−Mn 0

0 −c55

]
, a = −ρω2

∞, da = β = γ = 0, (35)

ea = 4π2ρ, c =

[
−Mn 0

0 −c55

]
, a = −ρω2

∞, da = β = γ = 0, (36)

The continuous conditions between the electroded and unelectroded regions were satisfied
automatically. At the outermost circle boundaries, the displacements were set as zero to simulate the
radiation condition of Equation (28) and suppress other vibrating modes.

We set the number of eigenvalues that we were interested in and the search ranges according to
the theoretical values obtained above. After that, eigenvalues and mode displacements were able to be
obtained automatically.

4.2. Simulation Results

COMSOL was used to analyze the model to verify the numerical results and we obtained the
same TS vibration modes as those listed in Figures 2 and 3. Both the vibration modes and frequencies
will be compared in this part.

The results of the fundamental and third overtone TS modes obtained through FEM simulation
are shown in Figure 6. Meanwhile, two spurious modes are shown in Figure 7.
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The mode frequencies obtained from the theoretical analysis and FEM simulation are also listed
in Table 2, where the first and last rows show the fundamental and third order overtone TS modes,
respectively, and the four rows in the middle illustrate four typical spurious modes whose frequencies
are close to that of fundamental mode (n = 1). We can see that for each mode the error of frequency is
less than 100 ppm, which is acceptable in the analysis and design of resonators. That validates the
correctness of our theoretical analysis based on the coordinate transform and the Mathieu function
series expansion.

Table 2. Comparison of TS mode frequencies obtained by theoretical analysis and FEM simulation.

TS Modes Theoretical Results
(MHz)

FEM Results by COMSOL
(MHz)

Error
(ppm)

Fundamental n = 1 15.86632 15.86635 1.84
Spurious mode 1 16.06972 16.06981 5.6
Spurious mode 2 16.14183 16.14231 29
Spurious mode 3 16.34720 16.34755 21
Spurious mode 4 16.39936 16.39987 31
Overtone n = 3 47.31520 47.31538 3.8
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5. Conclusions

The exact frequencies of thickness-shear and thickness-twist modes along with mode shapes for
infinite, centrally partially-electroded circular AT-cut quartz plates were obtained through theoretical
analysis, by the application of coordinate transform and using Mathieu and modified Mathieu
functions. The results were compared with 2D FEM simulations by COMSOL software and good
agreement was achieved, illustrating the correctness of our theoretical method. From the mode shapes
obtained it was easy to find that all the vibrations were concentrated in the electroded region and there
was little vibration in the outer, unelectroded area. This phenomenon is called energy trapping and
is used for resonator packaging, which does not affect TS vibrations. Our results are of theoretical
importance for the design of circular quartz resonators.
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