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Abstract: Rail surface defects such as the abrasion, scratch and peeling often cause damages to the
train wheels and rail bearings. An efficient and accurate detection of rail defects is of vital importance
for the safety of railway transportation. In the past few decades, automatic rail defect detection
has been studied; however, most developed methods use optic-imaging techniques to collect the
rail surface data and are still suffering from a high false recognition rate. In this paper, a novel 3D
laser profiling system (3D-LPS) is proposed, which integrates a laser scanner, odometer, inertial
measurement unit (IMU) and global position system (GPS) to capture the rail surface profile data.
For automatic defect detection, first, the deviation between the measured profile and a standard rail
model profile is computed for each laser-imaging profile, and the points with large deviations are
marked as candidate defect points. Specifically, an adaptive iterative closest point (AICP) algorithm
is proposed to register the point sets of the measured profile with the standard rail model profile,
and the registration precision is improved to the sub-millimeter level. Second, all of the measured
profiles are combined together to form the rail surface through a high-precision positioning process
with the IMU, odometer and GPS data. Third, the candidate defect points are merged into candidate
defect regions using the K-means clustering. At last, the candidate defect regions are classified
by a decision tree classifier. Experimental results demonstrate the effectiveness of the proposed
laser-profiling system in rail surface defect detection and classification.
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1. Introduction

The rail surface defect is an important factor that affects the operation safety of rails. Common
rail surface defects such as abrasion, corrugation, scratch, corrosion and peeling would cause damage
to the train wheels and the rail bearings, which will not only shorten the service life of train parts,
but also bring a potential critical safety crisis to the trains. Therefore, the research and development
of automatic methods for rail surface defect detection is very important, which on the one hand
achieves an effective maintenance of the train-operation safety by timely and accurate defect location
and recognition and, on the other hand, improves the passenger comfort and environmental protection,
reduces noise and the energy loss caused by rail defects.

Automatic detection of defects from rail surface images is a very challenging problem. In the past
two decades, many research works and achievements have been made by using two-dimensional (2D)
imaging for rail surface defect detection. However, there are still some problems left unsolved. From the
perspective of texture analysis, filtering and wavelet transform-based approaches are widely used
for defects detection by analyzing the local spatial patterns, e.g., the Gabor filter, curvelet transform
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and Gabor wavelet transform [1–4]. However, due to the heavy computation cost, these methods
are incapable of real-time handling of a large number of per-pixel convolution operations on a high
resolution rail image. Meanwhile, heavy random noise sometimes may be brought by complicated
rail track conditions and camera thermal effects, which make it difficult to discriminate defective
regions from the background noise. Another group of research works focuses on intensity histogram
analysis for rail surface defect detection, for instance the geometrical analysis method that directly
performs a gray-level histogram [5] and the threshold method calculating a threshold at the valley
of two peaks or at the left bottom rim of a single peak histogram [6]. Generally, the intensity-based
methods heavily depend on the image quality, which would be affected by the defect shape, orientation,
surface material, texture, etc. In addition, there may exist many oxide scales on the rail surface, and the
color of the oxide scale may be very similar to some surface texture caused by defects such as scarring,
indentation, and so on, which makes it difficult to distinguish the defects by intensity analysis. It is
worth noticing that real-time automatic detection methods have also been studied. In [7], a real-time
visual inspection system was put forward to detect discrete rail surface defects, which was reported
to run on a 216-km/h testing speed. In [8], an automatic visual inspection system was developed for
detecting partial abrasion by using a probabilistic topic model. However, these systems were tailored
to detect some particular rail defects and are limited in the general rail surface detect detection, which
requires locating defects of a wide variety and correctly identifying their types.

In this paper, we design and manufacture a three-dimensional laser profiling system (3D-LPS)
to achieve high-speed information acquisition on the rail surface under a complex environment.
The 3D-LPS integrates the laser scanner, odometer, IMU, GPS, etc. Two laser scanners are used to
capture the depth information of the rail surface. Combined with the position of GPS, the attitude of
IMU and the mileage of the odometer, the depth data can be used to generate the 3D point cloud of the
rail surface. Then, a 3D rail defect detection method is proposed, which first extracts the point cloud of
the rail surface and then calculates the deviation between the defective point cloud and the discrete
standard rail model. Specifically, an adaptive iterative closet point algorithm is presented to achieve
accurate registration of the defective point cloud and the standard model, with a registration accuracy
of sub-millimeters. After this, the k-means algorithm is used to cluster the defects and extract the
characteristics of each defect area. At last, a decision tree classifier is employed to identify the type of
rail surface defect. In practice, five types of common rail surface defects are studied, which are abrasion,
corrugation, scratch, corrosion and peeling, and experiments show that the proposed rail surface defect
detection method can locate the defects with millimeter precision and classify the defects with a high
accuracy rate.

The remainder of this paper is organized as follows. Section 2 overviews the related work on rail
surface defect detection. Section 3 introduces the design of the proposed 3D-LPS. Section 4 introduces
our rail surface defect detection method. Section 5 reports the experimental results from about a 400-m
railway for about 400,000 profiles, and Section 6 concludes the paper.

2. Related Work

2.1. Rail Surface Defect Detection

Rail detection technology mainly uses magnetic induction, ultrasonic technology,
laser measurement technology and image processing technology. Many research works have
been done and many achievements made on this aspect. Toliyat Hamid A. The work in [2] adopts
the magnetic coil and Hall sensors to acquire signals and decomposes the signals by applying
wavelet coefficients, and the,n a method of detecting rail defects based on the wavelet transform is
proposed, which is combined with the autoregressive spectrum, energy monitoring and differentiation
dimension. Papaelias M. [9] proposes the alternating current field measurement (ACFM) method
by introducing a remote uniform current into an area under test and monitoring the magnetic field
variations associated with the current flowing. Clark [10] concludes about the early technologies
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based on ultrasonic testing. Bartoli I. [11] and Coccia S. [12] of the University of California-San Diego
(UCSD) studied the use of ultrasonic waves for long-range rail defect detection and established a
guided wave propagation model. The Federal Railway Authority (FRA) and Lanza di Scalea F. [13] of
UCSD combine ultrasonic detectors and laser sensors to detect transverse defects under horizontal
shelling. Alippi C. [14] and Babenko P. [15] use the laser ranging scanner to obtain the depth of the
rail, combined with the matching camera to obtain the optical image, so as to detect rail defects.
Deutsch E. [16] takes line-scan cameras and a special image acquisition method of the spectral image
differencing procedure to obtain defects on the rail surface and then detects the defects by means of
image processing.

In the past few decades, the most common non-destructive testing technique used to detect
defects in rails is ultrasonic testing. Rose, Zumpano et al. [17,18] study the guided wave propagation
technologies and adopt algorithms like continuous wavelet transform, the ray-tracing algorithm, etc.,
to extract defects. These technologies perform relatively well in detecting deep surface-breaking
and internal defects, but the rail surface defects are usually not detected by this high-speed
ultrasonic technique.

In recent years, image recognition technology has been widely used to detect defects based
on local spatial patterns of intensity; for instance, the Gabor filter [1] and wavelet transform [2].
Mandriota [3] and Marino [4] compare three filtering approaches (Gabor filter, wavelet transform
and Gabor wavelet transform) based on texture analysis of the rail surface to extract texture features
for rail corrugation detection. However, these spectral methods are not fit for real-time processing
because they involve a large amount of convolution operations per pixel of high resolution rail images.
Furthermore, there exists heavy random noise mainly caused by complicated rail track conditions and
camera thermal effects, which make it difficult to distinguish noise from the defective region. Xie [19]
reviews recent advances in surface inspection using computer vision and image processing techniques,
particularly those based on texture analysis methods, and divides the techniques into four categories:
statistical approaches, structural approaches, filter-based methods and model-based approaches.
Lin [5] adopts geometrical analysis directly on a gray-level histogram curve of the smoothed rail head
surface image to locate defects. Li [7] puts forward a real-time visual inspection system (VIS) to detect
discrete rail surface defects. VIS acquires rail image and cuts the rail track subimage by the track
extraction algorithm, subsequently enhancing the contrast using the local normalization method and,
at last, detecting defects using the defect localization based on the projection profile. VIS is very fast and
can run on a 216-km/h test train in real time. Feng [8] proposes an automatic visual inspection system
for detecting partial abrasion using the probabilistic topic model. Yuan [6] proposes an improved Otsu
method named the weight object variance (WOV); the weight ensures that the threshold always is a
value that is located at the valley of two peaks or at the left bottom rim of a single peak histogram.
However, these image-based technologies heavily depend on image quality, which is directly affected
by defect shape, orientation, surface material, texture, etc., and also has some needs for a special
light source, which is difficult to integrate and is expensive. Furthermore, there are many oxide
scales on the rail surface, and the color of the oxide scale is very similar to some surface defects,
such as scarring, indentation, and so on; therefore, it is difficult to distinguish by the use of a
two-dimensional image. More importantly, these technologies can only recognize particular rail
defects and cannot classify several defects correctly. With the rapid development of laser sensors,
the acquisition of fast and high-precision point cloud data becomes possible and applicable on
surface information, which solves the difficulty of information acquisition on the rail surface under
a complex environment. In the past few years, the 3D vision system, especially the line-structured
optical scanning system, has been applied to many aspects of surface defect detection [20–24], but there
have been few mature automatic defect extraction algorithms proposed.
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2.2. Defect Point Registration

3D point cloud data registration is the most critical part of surface defect detection. In order to
compare with the standard data, it is necessary to register the collected point cloud data with the
discrete standard CAD model to facilitate the corresponding coordinate difference. The registration
algorithm is widely used in machine vision and image processing. The main processes include:
feature extraction, feature representation, matching calculation and evaluation. According to
the different features, the 3D point cloud registration algorithm can be divided into internal
features matching and external features matching. The internal features are independent of the
coordinate system, such as the curvature and the distance between two points, and the external
features are related to the coordinate system, for instance the tangent plane of the surface [25].
The internal features matching is a reduced dimension and indirect matching method; it includes the
surface signature method [26,27], the spin-image method [28], the geometric histogram method [29],
the harmonic shape image method [30], the splashes method [31], etc. Because of the reduced
dimension processing, the calculation speed is faster, but the precision is not high. The most
commonly-used algorithm in external features matching is the label method [32,33] and the optimal
matching algorithm. The label method requires pasting at least three markers or positioning balls on the
measured object as a physical feature point. Through the coordinates of the three points, the position
between the coordinate system can be calculated. In order to improve the accuracy of the calculation,
more labels or positioning balls need to be placed on the measured object, which is obviously not
applicable for full inspection or on-line measurement. The most commonly-used optimal algorithm is
the ICP algorithm, and many scholars have studied it. The ICP method was presented by Besl and
McKay [34]. The goal of this method is to obtain an accurate solution by minimizing the distance
between point-correspondences, known as the closest point. According to the strategy of determining
the corresponding point pair, a variety of optimization algorithms has evolved [35–38], and the main
bottlenecks of these algorithms are the search and optimization calculation of the corresponding
point pair and being more sensitive to the initialization location of the point cloud and CAD model;
especially for objects that do not have obvious geometric features, the convergence effect is not ideal.
In order to achieve higher registration accuracy, the iteration times are more, which is more time
consuming.

In this paper, the line structure optical scanning method is adopted to obtain the rail surface
point cloud, which is of high precision, fast and convenient. On the basis of the conventional
ICP algorithm, the Kalman filter model [39–41] is used to predict the transformation of the
current profile through the recursion of the adjacent continuous profiles, which greatly reduces
the iteration times. At last, the optimal registration parameters are selected by synthetically evaluating
segmented ICP and overall ICP.

3. Design of the 3D-LPS

3.1. System Principle

The key technologies of 3D surface defect detection include the 3D data acquisition and 3D point
cloud processing aspects. Research works in 3D surface defect detection are mainly concentrated on
the 3D visual sensors and data registration between the 3D point cloud and CAD model. In the rail
surface defect detection, the first step is to obtain surface point cloud data. As the line structure optical
scanner has been applied to many aspects of surface defect detection, this system adopts the Keyence
LJ-V7000 type profilometer for rail surface profile acquisition. The measurement principle is shown
in Figure 1.
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Figure 1. System principle.

In Figure 1, the line laser irradiates vertically and forms a light band on the surface of the object
to be measured. The camera is tilted at an angle with respect to the line laser and takes a photo of the
object surface. Then, the light band on the surface will reflect the object surface profile in the laser
projection surface. In the situation that the relative position relationship between the camera and the
line laser is determined and unchanged, for the same object profile, it can be seen that the image’s
position of the light band on the camera (Image A to Image B) will change with the object’s depth
(Profile A to Profile B) outside. Therefore, by detecting the position and shape of the light band’s image
on the camera, the physical coordinates of the light band are calculated, that is to say the physical
coordinates of the surface profile are calculated. With the object not moving, the carrier platform
moves along and divides the measured object surface into many profiles, so as to achieve the goal of
measuring the physical coordinates of all of the surface points.

3.2. System Architecture

According to the discussion above, once the rail surface profile is obtained, the deviation
between the defective surface and the standard model can be calculated. To achieve the goal of
detecting the whole surface defects, continuous measurement should be taken. Thus, several different
kinds of sensors are integrated into one whole system, e.g., laser scanner, odometer, IMU, GPS, etc.
The architecture of 3D-LPS is shown in Figure 2. It can be seen that the system is highlighted at five levels.
The multi-sensors level lists all of the sensors involved in the 3D-LPS. The system-integration level is
responsible for the synchronization of the whole system under a unified spatio-temporal benchmark.
On this level, each sensor is fixed on the carrier platform, and calibration of each sensor should be done.
The data-collection level connects the hardware and the software to capture various data in a computer.
Once the data have been collected, the data processing level fuses the raw data to extract the 3D point
cloud of a rail surface. Through data registration with the standard model, the defect-detection level
analyses the deviation between the defective rail surface and the standard rail model and hence locates
and recognizes the defects.
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Figure 2. System architecture.

In 3D-LPS, the arrangement of each part is shown in Figure 3: the laser scanners (6,7) are
installed on the side of the platform (1) to obtain the rail surface profile; the odometer (2) is equipped
on the wheel and collects the distance and speed data of the platform; the GPS (4) is fixed above
the platform and records the platform’s location data; the IMU (3) is mounted on the middle of
the platform gaining the platform’s attitude data; the synchronization control unit (5) provides
unified spatio-temporal benchmark; all of the sensor data and synchronous data are transferred to the
computer (8) for fusion processing; the power-supply module (9) is placed on the platform to supply
power for all equipment and sensors.

Figure 3. System components’ arrangement.

3.3. Pre-Processing

The rail surface profile data collected by the laser scanners cannot be directly used for the
extraction of rail surface defect and needs to be pre-processed. Firstly, a motion correction model is
designed to correct the error caused by slight rotation of the platform. Then, each sensor’s coordinate
should be unified to the same coordinate system, where the IMU coordinate system is taken as the
reference coordinate system.
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Motion correction model: As shown in Figure 4, the platform body is supported by three wheels
on the rail surface. During the movement of the platform, the three support points would not leave the
rail top; therefore, it is reasonable to assume that only horizontal rotation of the IMU exists between
adjacent profiles. AT this point, if the platform has slight rotation, it may cause the profile captured by
the laser scanner not to be perpendicular to the rail, which cannot match the standard rail model.

Plane A3

Plane A2

θ 

Plane A1
X

Z

Oo

z

Figure 4. Motion correction model.

Suppose the rail surface profile gained at time t1 is A1 as shown in Figure 4; at time t2, the platform
moves forward and obtains profile A2; the rotation angle between the adjacent profile A1 and A2 is θ;
if the correct profile at time t2 is supposed to be A3, then A3 will be parallel to A1, so A3 is the projection
of A2 on A1. Thus, suppose the original point coordinate of the left and right rail surface profile is PL0,
PR0; the corrected point coordinate of left and right rail surface profile will be Equations (1) and (2).

PL = PL0

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (1)

PR = PR0

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (2)

Unified coordinate transformation: Choose the IMU coordinate system as the reference coordinate
system; suppose the coordinate of the left laser scanner coordinate center in the referenced coordinate
system is (RI

L, T I
L); the same, the right laser scanner coordinate center is (RI

R, T I
R); then, the coordinate

of the left and right rail surface profile in the referenced coordinate system can be expressed as
Equations (3) and (4).

PI
L = RI

LPL + T I
L (3)

PI
R = RI

RPR + T I
R (4)

In practical work, as the IMU moves along the rail direction, the trajectory of the IMU coordinate
origin can be calculated by the GPS’s location, the IMU’s attitude and the odometer’s mileage.
Therefore, the pre-processed point cloud reflects the relative position of the actual rail surface points.
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3.4. Calibration of 3D-LPS

The 3D-LPS needs to be calibrated before actual measurement. The main work of calibration is
to find out the transformation parameters of the left and right laser scanner coordinate center in the
referenced coordinate system, (RI

L, T I
L) and (RI

R, T I
R). As shown in Figure 5, the left laser scanner has a

right deflection angle of αl , scanning the inner side of the left rail. The right laser scanner has a left
deflection angle of αr, scanning the inner side of the right rail.

Laser Scanner

αl αr 

Figure 5. System calibration.

The specific calibration steps are:

(i) Choose the center of the left rail top as the coordinate origin; use the gauging rule measuring the
gauge G between the left and right rail; measure the distance from the center of the right rail top
to the center of the left rail top; record as D;

(ii) According to D and the standard rail model, let the center of the left standard rail model top be
the coordinate origin, then the center of the right standard rail model top will be located on (D, 0);

(iii) Let the structured light vertically project onto the rail top and capture the rail surface profile;
(iv) Adjust the left rail surface profile manually until it completely matches with the left standard rail

model; calculate the transformation parameters as (RI
L, T I

L); the same for (RI
R, T I

R).

4. Rail Surface Defect Detection Method

After pre-processing, the rail surface point cloud is unified into the same coordinate system, and it
should be matched with the standard rail model to calculate the rail defects. This section introduces
the ICP algorithm and points out the problem of ICP, then proposes an AICP algorithm based on the
Kalman filter model, which improves the registration accuracy to the sub-millimeter level, so as to
locate the defect area accurately. On this basis, the k-means algorithm [42–44] is used to cluster the
defects and extract the characteristics of each defect area; at last, the decision tree classifier is taken to
identify the type of rail surface defect.

4.1. Rail Profile Registration

ICP: For the 3D point set registration problem, the most widely-used and the most influential
one is the ICP algorithm proposed by Besl and Mckay in 1992. The ICP algorithm is a 3D object
alignment algorithm based on a pure geometric model; its essence is the optimal matching algorithm
based on the least squares method. It repeats the process of first determining the set of corresponding
relationships and then calculating the optimal rigid transformation until a convergence criterion of
correct matching is met, so that the optimal match of the two matching data satisfies the certain
degree of metric, so as to find the the translation transformation T and rotation transformation
R between the target point set P and the reference point set Q. Suppose the target point set
is {Pi, i = 1, 2...}, and the reference point set is {Qi, i = 1, 2...}; in the k-th iteration, find the
point set {Qk

i , i = 1, 2...} from Q that corresponds with target point set P, then calculate the
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transformation matrix between P and {Qk
i , i = 1, 2...}, and update the original point set until the

average distance between the dataset is less than the given τ; that is to say, satisfy the following formula
f (R, T) = ∑n

i=1 ‖Qi − (RPi + T)‖2 = min. The specific steps are:

(i) Take point set Pk
i from target point set P;

(ii) Calculate the point set Qk
i from reference point set Q as the corresponding point set of Pk

i , and
make ‖Qk

i − Pk
i ‖ = min;

(iii) Calculate the transformation from Pk
i to Qk

i , and make ‖Qk
i − Pk

i ‖ = min, then record the rotation
vector as Rk and translation vector as Tk;

(iv) Update the point set, and compute Pk+1
i = RkPk

i + Tk;
(v) Calculate the average distance between Pk

i and Qk
i , and record as dk+1 = 1

n ∑n
i=1 ‖Pk+1

i −Qk
i ‖2;

(vi) If dk+1 ≥ τ, then return to Step 2 until dk+1 < τ or the iteration times are greater than the preset
maximum iteration times.

The ICP algorithm has a good effect on point set registration; however, in this application, there is
sometimes a big difference between the defective rail surface point cloud and the standard rail model.
For example, if the abrasion wear is serious, or the scratches are deep, then the defective rail surface
point cloud would be very different from the standard rail model, resulting in poor registration and
even matching errors. That is why it is necessary to improve the ICP algorithm to match the rail surface
point cloud registration.

AICP: Generally, the rail top and rail side are easily abraded and scratched, which usually causes
the defective rail surface, different from the standard model. The bottom of the rail only has corrosion
because of no contact with the wheel, but the corrosion will not make the rail bottom’s shape very
different from the standard model, so this is an important reference of the data registration afterwards.
At the same time, when the system is moving along the rail, it obtains the rail surface profile every
1 mm. In such a small interval, there is not enough time for the system’s attitude to change suddenly
when obtaining adjacent profiles. Thus, the transformation between the current rail surface profile
and the standard model is closely related to the transformation between the adjacent profile and the
standard model. On this basis, this paper proposes an AICP algorithm, using the Kalman filter model
to predict the transformation of the current profile through the recursion of the adjacent continuous
profiles and then calculating the average distance between each part of point cloud and the standard
point cloud under this transformation parameter and, at last, choosing the corresponding optimal
transformation parameter by evaluating these average distances. The specific steps are:

(i) Suppose the N-th profile point set is PN , and take the transformation (translation TN−1 and
rotation RN−1) between the (N − 1)-th profile point set PN−1 and the standard model QM as the
predicted transformation from PN to QM;

(ii) Divide the rail surface profile into two parts: the rail head part and rail bottom part. Pay
attention that the rail head is different from the rail head clarified by Lin; the rail head here is just
part of the whole rail head and is the upper part of the profile points, which is used to distinguish
from the bottom part of the profile points, the rail head point set PN

H and the rail bottom point set
PN

B , with the (RN−1, TN−1) as the initial value. Calculate the transformation from PN
H ,PN

B to QM
separately, and record as (RN

H , TN
H ),(RN

B , TN
B ), then output each part’s average distance dN

H ,dN
B ;

(iii) Calculate the minimum value of dN
H , dN

B , and take the transformation corresponding with the
minimum value as the calculated transformation from PN to QM;

(iv) Calculate the average distance dN from PN to QM under the transformation parameter
(RN−1, TN−1);

(v) Evaluate the min(dN
H , dN

B ) and dN ; the greater the distance, the smaller the weight and
the smaller the probability. Update the probability pN−1 = dN√

(min(dN
H ,dN

B ))2+(dN)2
and

p
′N =

min(dN
H ,dN

B )√
(min(dN

H ,dN
B ))2+(dN)2

;

(vi) According to the Kalman filter model, update the transformation between PN and QM as
(RN , TN) = pN−1(RN−1, TN−1) + p

′N(R
′N , T

′N).
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4.2. Rail Defect Detection

As shown in Figure 6, after being processed by AICP, the point set registration accuracy is down
to the sub-millimeter level. It is easy to locate the candidate defective area accurately by comparing
the deviation of registered rail surface profile and the standard model with the given threshold. By
combining the continuous defective profiles together, the candidate defect points are merged into
candidate defect regions. The minimum circumscribed rectangle and center of each defect region are
calculated for the using the k-means clustering, which connects the small defect region with large defect
area and clusters the defect regions with similar characteristic together. At last, the location, shape,
depth, length, width, gradient, minimum circumscribed rectangle and other geography characteristics
can be calculated. The specific steps are:

(i) Suppose the current profile is P = {Pi|i = 1, 2...n} after registration. Let n stand for the point
number in current profile, and let the standard model be QM = {Qj|i = 1, 2...m}. For every
point Pi, take its x coordinate as the reference, and choose the point in QM that has the closest x
coordinate value with Pi as Pi’s corresponding point, then pick out P’s corresponding point set
Q = {Qi|i = 1, 2...n} in QM;

(ii) Make the deviation of Q and P, and calculate the deviation set D = {Di = Qi − Pi|i = 1, 2...n};
(iii) Let τD be the depth threshold of the rail surface defect, and pick out the point in P that has

a deviation value in D greater than τD as the defect point, then gather these defect points as the
current profile’s defect point set C = {Dk|Dk > τD, 1 < k < n}; k means the defect point number
in the current profile;

(iv) Take continuous defective profiles as a defect point set PD = PDst|s = 1, 2...N; t = 1, 2...sk, and let
sk be the defect point number of the s-th profile

(v) Use k-means method to cluster all of the defect point sets, and divide into M bounding boxes
DB = DBm|m = 1, 2...M; each box would contain several defect point set. Record its number Nm,
and calculate its center Cm, radius Rm and distance between different defect point sets Dm;

Defect Classification

Registration with AICP

Data Processing

Calibration
Data

IMU
Data

Origin Rail Surface Points

Rail Surface ModelRail Surface Points

After AICPLocation Defect Points

Defect Points Cluster

Data Collection 
and Processing

Points 
Registration

Defect 
Detection

Figure 6. Defect detection and classification procedure.

According to the process above, Step 3 defines a depth threshold τD, which is an empirical value.
For rails in service, their head parts have more or less abrasion, so τD is necessary to highlight serious
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defects and is mainly determined by rail service time. In this step, τD takes a value of 1 mm on the
rail head and 0.5 mm on the rail bottom. Step 4 obtains many small defects. In this step, the location,
depth, length, width, gradient, minimum circumscribed rectangle can be figured out. Step 5 connects
some defects together to provide regional characteristics, for example the center, radius, maximum
class separation distance, minimum class separation distance, and so on. All of these characteristics
help to achieve defect detection and provide effective information for defect classification.

4.3. Rail Defect Classification

According to the discussion above, different defects have different characteristics. In general,
the train wheel contacts and rubs against the rail head, which causes abrasion, corrugation,
scratch and peeling. Therefore, the corrosion on the rail bottom could be distinguished by position,
but corrosion on the rail head is still mixed with other defects. As we know, the friction will cause the
rail head (the part contacting the train wheel) to be lower than the standard rail model, then the depth
deviation for the rail model is positive. The other way around, the corrosion on the rail head will return
to a negative depth deviation, which differentiates the rail head corrosion from the other four defects.
Among the four classes of defect, abrasion and corrugation have a smooth profile, but scratching and
peeling have sharp edges, so the difference is reflected in the gradient. Abrasion and corrugation can
be distinguished by wave peaks and wave troughs. Scratching is always long and narrow, that is to say
the length-width ratio is bigger than peeling. Based on these judgments, the decision tree (DT) [45–47]
is adopted to classify the defect and constructed as follows in Figure 7.
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Figure 7. Decision tree construction.

5. Experiments and Results

The 3D-LPS is jointly developed by Wuhan University and Shenzhen University. In order to verify
its performance, a series of experiments indoors and outdoors is performed. Some of the experimental
environment is shown in Figure 8. The parameters of each sensor are selected as: the odometer
installation wheel circumference is 500 mm, and the odometer’s frequency is 500 Hz, which means the
odometer will output a pulse every 1 mm. The pulse triggers the laser scanner to capture a profile.
Eight hundred points are sampled on one profile. The accuracy in the width direction is 0.3 mm and in
the height direction is 0.01 mm. The IMU has an attitude accuracy of 0.02◦ and an azimuth accuracy of
0.05◦. The platform moves at a speed of about 1.5 m/s.
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In order to evaluate the accuracy of the calibration, The static collected dataset Data 1 is constructed
to verify the unilateral and bilateral precision, respectively. For the purpose of verifying the matching
effect of the proposed AICP algorithm, the dynamic collected dataset Data 2 is constructed to compare
with ICP in terms of iteration times, calculation time, bias after registration and the matching accuracy.
In order to verify the effectiveness of the defect detection algorithm, an indoor short-range defective
marker dataset Data 3 is constructed to compare the recognition results with the ground truth results.
An outdoor long-range rail defect dataset Data 4 is collected to compare the classification results with
the results obtained by human vision.

Figure 8. Experiment environment.

5.1. System Calibration Accuracy Verification

Data 1 is used to verify the accuracy of system calibration. The calibration is a critical component
of a measurement system [48]. For the Wuhan high-speed rail, ten groups of rail surface profiles
are obtained in different sleepers, and the gauge of the sleeper is measured by a gauging rule.
The rail with a specification of 60 kg/m is used, and it has a standard gauge of 1435 mm. Under the
calibration parameters, we calculate the average distance DHM between the rail head surface profile
and the standard rail model, the average distance DBM between the rail bottom surface profile and the
standard rail model to evaluate the calibration accuracy of unilateral laser sensor and the IMU center.
We calculate the gauge of the left rail profile and the right rail profile GP and compare it with the gauge
measured by the gauging rule to evaluate the calibration accuracy of the left laser sensor and the right
laser sensor. The results are shown in Table 1.

It can be seen from the results that, under the calibration parameters, the rail profiles measured in
different places on the rail are well coincident with the standard rail model. From Table 1, the deviation
between the gauge calculated under the calibration parameter and the gauge measured by the gauging
rule proves the accuracy of the system calibration. The average distance between the rail head surface
profile and the standard rail model is about 1–2 mm, which is larger than the average distance between
the rail bottom surface profile and the standard rail model. This is reasonable because the rail used
in the experiment has only been in service for a short time, and the rail head has a slightly abrasion,
while the right side rail head has a deeper abrasion than the left side. Meanwhile, the inner side of
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the rail was abraded more seriously. Even with the above complications, the system calibration still
achieves an accuracy of sub-millimeters.

Table 1. System calibration accuracy.

ID DL
HM (mm) DR

HM (mm) DL
BM (mm) DR

BM (mm) GP (mm) GM (mm)

1 0.95 0.53 1.95 1.41 1435.34 1435.42
2 0.86 0.51 1.89 1.53 1435.46 1435.57
3 0.63 0.54 1.81 1.24 1435.81 1436.02
4 0.72 0.41 1.74 1.28 1436.35 1436.29
5 0.78 0.38 1.75 1.32 1436.19 1436.24
6 0.91 0.61 1.79 1.43 1436.25 1436.37
7 0.87 0.42 1.71 1.35 1435.78 1436.12
8 0.76 0.58 1.85 1.38 1435.49 1435.42
9 0.92 0.49 1.91 1.41 1435.81 1435.64

10 1.12 0.64 1.95 1.49 1436.06 1436.31

5.2. Comparison of AICP with ICP

Data 2 is used to verify the efficiency and effectiveness of the AICP algorithm. For Shenzhen
Metro Line 1, a 400 m-long rail is profiled dynamically, and four typical rail sections are selected.
The first section has very few defects. The second section has some defects on the rail head. The third
section has some defects on the rail bottom. The forth section has some defects on both the rail head
and the rail bottom. We choose 1000 profiles for each section manually and compute the statistics
value to study the difference. The result is listed in Table 2. The iteration times IT, the calculation
time CT, the total calculation time TT, the accuracy rate of registration AR and the average distance D
of the ICP and AICP are calculated, which are listed in Table 2. In Table 2, the unit for CT and TT is
seconds, and the unit for D is millimeters; the subscript F denotes the full rail profile; H denotes the
head part; and B denotes the bottom part.

Some examples are shown in Figure 9, where the black point set denotes the standard rail model,
the blue point set denotes the full rail profile ICP matching result, the green point set denotes the
results of rail head part in ICP matching, the cyan point set denotes the results of the rail bottom part
in ICP matching and the red point set denotes the AICP algorithm matching results. As shown in the
"TT" column of Table 2, the AICP algorithm is faster than the ICP algorithm. In Group 1, the measured
profiles have a few defects as shown in Figure 9a, and the results of ICP are similar to AICP on both
the rail head and the rail bottom, shown in the D columns. In Group 2, comparing the DH column
and the DB column, we can see that if taking the rail head part as the reference, DH is much bigger,
which indicates that there are defects on the rail head part, as shown in Figure 9b. From the blue parts,
we can see that the rail head has an abrasion of about 1 mm. When taking the head part as the reference
(the green part), the bottom part is obviously not correctly matched to the model bottom. In Group 3,
comparing the DH column and the DB column, we can see that if taking the rail bottom part as the
reference, DB is much bigger, which indicates that there are defects on the rail bottom part, as shown
in Figure 9c. From the blue parts, we can see that there is corrosion on the rail bottom. When taking
the bottom part as the reference (the cyan), the head part is obviously not correctly matched to the
model head. In Group 4, evaluating the DH column and the DB column, we can see that if taking
the rail head part as the reference, DH and DB are both much bigger, which indicates that there are
defects on the both rail head part and the rail bottom part, as shown in Figure 9d, where the blue parts
themselves do not match the model. Let us take the red part as the best matched transform; we can
see that the rail head has abrasion on the top and the side, and the rail bottom has obvious changes
from the rail model. In this case, the matching results of ICP with the rail head as the reference are bad,
and the matching results with the rail bottom as the reference are totally wrong. From the comparison
results, we can conclude that the proposed AICP is much faster and more effective than the ICP, and it
brings good matching results in each case.
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Table 2. Effect of AICP and ICP.

ID Type Statistical value ITF CTF DF ITH CTH DH ITB CTB DB TT AR

1

ICP
Average value 26.8 0.267 0.273 55.6 0.173 0.196 48.3 0.163 0.067 0.603 99.9%

Standard deviation 2.21 0.048 0.011 3.22 0.018 0.012 3.64 0.024 0.006 - -
Maximum value 30 0.346 0.291 60 0.198 0.213 54 0.203 0.075 - -

AICP
Average value 22.4 0.238 0.273 35.1 0.117 0.196 48.2 0.161 0.067 0.516 99.9%

Standard deviation 1.02 0.006 0.012 1.45 0. 003 0.014 2.74 0.022 0.006 - -
Maximum value 24 0.246 0.293 37 0.121 0.217 52 0.198 0.075 - -

2

ICP
Average value 25.8 0.264 0.423 51.3 0.148 0.361 46.2 0.162 0.069 0.574 33.3%

Standard deviation 2.24 0.045 0.012 5.62 0.024 0.025 3.12 0.022 0.007 - -
Maximum value 29 0.338 0.441 61 0.186 0.395 50 0.192 0.081 - -

AICP
Average value 24.6 0.241 0.424 33.5 0.119 0.364 49.6 0.164 0.068 0.525 99.9%

Standard deviation 1.84 0.018 0.012 3.23 0.005 0. 026 2.81 0.018 0.006 - -
Maximum value 27 0.268 0.443 38 0.127 0.396 53 0.191 0.077 - -

3

ICP
Average value 27.8 0.322 0.418 30.6 0.109 0.201 74.8 0.297 0.157 0.728 33.4%

Standard deviation 2.31 0.052 0.013 3.21 0.008 0.015 5.47 0.017 0.011 - -
Maximum value 31 0.407 0.442 35 0.121 0.223 82 0.323 0.173 - -

AICP
Average value 14.5 0.188 0.418 45.2 0.139 0.201 24.3 0.109 0.155 0.436 99.9%

Standard deviation 4.67 0.038 0.014 3.18 0.016 0.013 6.74 0.011 0.011 - -
Maximum value 22 0.237 0.445 50 0.168 0.219 35 0.127 0.175 - -

4

ICP
Average value 21.6 0.237 0.566 53.4 0.167 0.471 53.6 0.306 0.408 0.721 0.01%

Standard deviation 6.43 0.074 0.035 4.36 0.025 0.023 7.01 0.049 0.015 - -
Maximum value 30 0.357 0.621 60 0.205 0.503 63 0.382 0.445 - -

AICP
Average value 26.7 0.257 0.568 30.2 0.109 0.472 16.8 0.129 0.098 0.495 99.9%

Standard deviation 3.21 0.021 0.029 3.43 0.008 0.016 4.92 0.018 0.013 - -
Maximum value 32. 0.288 0.618 35 0.122 0.496 24 0.158 0.117 - -
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Figure 9. Result of ICP and AICP: (a) With less defects; (b) With defects on the rail head; (c) With
defects on the rail bottom; (d) With defects on both the head and bottom.
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5.3. Rail Surface Defect Extraction

Data 3 is used to evaluate the defect-extraction performance of the proposed algorithm. A 1.5-m
rail is placed indoors, and 10 artificial defects are made. We measure and record the length and
maximum depth of each defect with a micrometer. We scan all of the defects and repeat 10 times.
We compare the defect length (that is, along the direction of rail extension) Len, the defect width (that
is, perpendicular to the direction of rail extension) Wid and the maximum depth Dmax extracted by
the 3D-LPS with the actual length Length, actual width Width and the actual maximum depth Depth
measured by human workers. In this procedure, the k-means clustering algorithm takes k = 5 to
divide the defective region every 100 profiles (100 mm long). The center of the longest continuous
defective region is chosen to be the original cluster center; thus, two cluster centers (one on the rail
top and the other on the rail bottom) can be quickly computed. The other three centers are randomly
chosen outside of these two continuous regions. In this way, the computation time is proven to be
greatly shortened. The results are shown in Table 3.

Table 3. Result of rail surface defect extraction.

ID Len (mm) Length (mm) Wid (mm) Width (mm) Dmax (mm) Depth (mm)

1 22 22.76 1.5 1.56 1.7745 1.80
2 15 15.54 1.2 1.24 0.8174 0.84
3 18 18.18 1.8 1.78 1.3548 1.36
4 4 4.08 32.7 32.64 0.6854 0.66
5 4 4.12 26.4 26.22 0.8123 0.80
6 5 4.96 15.3 15.12 1.0254 1.08
7 5 4.92 7.8 7.76 1.1214 1.12
8 5 4.94 10.2 10.24 1.0146 0.98
9 6 6.08 9.3 9.38 0.8564 0.86
10 6 6.12 10.5 10.68 0.9631 0.96

As shown in Table 3, 10 typical artificial defect areas are made and measured. Groups 1–3 are
the result of defect extraction of vertical defects on the rail top, as shown in Figure 10a. Groups 4–6
are the result of defect extraction of horizontal defects on the rail top, as shown Figure 10c. Groups 7
and 8 are the result of defect extraction of horizontal defects on the rail edge, as shown in Figure 10b.
Groups 9 and 10 are the result of defect extraction of sloping defects on the rail edge, as shown in
Figure 10d. Experimental results show that the proposed algorithm is very sensitive to defects with
an obvious change in depth and can locate the defects accurately with a millimeter length accuracy
and a sub-millimeter depth accuracy. To be more exact, the system can recognize defects with length
(along the direction of the rail extension) larger than 2 mm, width (perpendicular to the direction of
the rail extension) larger than 0.6 mm and depth larger than 0.5 mm. The algorithm is less sensitive to
changes in length, and the defect area detected is larger than the ground truth. This is mainly because
the defect depth of the edge area is too small (sub-millimeter level) to be observed by human vision.
In summary, the proposed algorithm is effective at detecting defects with an obvious change in depth.
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Figure 10. Examples of typical artificial defect extraction: (a) Vertical defects on the top; (b) Horizontal
defects on the edge; (c) Horizontal defects on the top; (d) Sloping defects on the edge.

5.4. Result of Defect Classification

Data 4 is used to validate the defect classification accuracy of the 3D-LPS. For the Wuhan
high-speed rail, Shenzhen Metro Line 1 and indoor rail, 450 defects (150 abrasion, 80 corrugation,
50 scratch, 120 corrosion, 50 peeling) are collected as a dataset to validate the accuracy of the
classification module. The rail defects are extracted from the rail surface point cloud and classified
into five categories: abrasion, corrugation, scratch, corrosion and peeling. The ground-truth types
of the defective area are identified by human eyes in the point cloud using the visualization
software CloudCompare. The results are shown in Table 4.

Table 4. Classification result by DT.

Defect Type Predicted

Abrasion Corrugation Scratch Corrosion Peeling Total

Actual

Abrasion 141 6 2 0 1 150

Corrugation 6 74 0 0 0 80

Scratch 3 2 43 0 2 50

Corrosion 0 0 0 120 0 120

Peeling 2 1 3 0 44 50

Table 4 shows the confusion matrix of the classification results obtained by our decision tree
classifier (DT). The confusion matrix is used to evaluate the classification accuracy and reliability.
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From Table 4, we can see that 422 (141 + 74 + 43 + 120 + 44) defects are correctly classified, which denotes
an overall accuracy of 93.78%. The corrosion classification accuracy is up to 100%, which is because
the position (head or bottom) and depth deviations (positive or negative) are accurate and unique.
The abrasion and corrugation are less correctly classified. A possible reason is that the choice of
the depth deviation threshold is not robust enough. The scratching and peeling are two types that
are easily confused (two scratches incorrectly classified as peeling and three peelings as scratches)
due to the fact that the gradient threshold is hard to set. Another important reason for incorrect
classification is that some defects are the mixture of multiple types of defects. For example, scratching or
peeling can exist in abrasion or corrugation (in this test, 11 scratches and nine peelings coexist
with abrasion and corrugation, but 5 scratches, 3 peelings and 3 abrasions are classified incorrectly,
the miss-classification ratio coming from coexisting defects is up to 55%), and we will try to solve this
problem in our future work. Overall, the experimental results show that the proposed classification
algorithm is effective and reliable.

6. Conclusions

This paper introduced a 3D laser profiling system for rail surface defect detection to acquire rail
surface’s depth data accurately and efficiently and proposed an AICP algorithm based on the Kalman
filter model. The improved ICP algorithm takes into account the characteristics that the attitude of
adjacent profiles changes smoothly and slowly, and the initial value of ICP for the current profile is
predicted by the adjacent continuous profiles, which greatly improves the convergence speed. On the
other hand, partly registration was calculated to select the optimal registration parameters, and the
Kalman filter model was adopted to update the final optimal registration parameters, which solves the
problem of the wrong match in the ICP algorithm. Using the proposed AICP algorithm, the registration
achieved an accuracy of sub-millimeters and made possible the accurate location of defects. In addition,
the k-means algorithm was employed to cluster the defects and extract the characteristics of each defect
area, based on which a decision tree classifier was applied to identify the type of rail surface defect.
The experimental results showed that the proposed algorithm can register the rail surface profile with
the standard rail model quickly and accurately and locate the defect area correctly, as well as achieving
a good performance on defect classification. In our future work, we will try other learning algorithm,
such as SVM [49,50], to train the classifier to further improve the classification accuracy.
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