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Abstract: In this paper, we propose an underwater object detection method using monocular vision
sensors. In addition to commonly used visual features such as color and intensity, we investigate the
potential of underwater object detection using light transmission information. The global contrast of
various features is used to initially identify the region of interest (ROI), which is then filtered by the
image segmentation method, producing the final underwater object detection results. We test the
performance of our method with diverse underwater datasets. Samples of the datasets are acquired by
a monocular camera with different qualities (such as resolution and focal length) and setups (viewing
distance, viewing angle, and optical environment). It is demonstrated that our ROI detection method
is necessary and can largely remove the background noise and significantly increase the accuracy of
our underwater object detection method.
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1. Introduction

The underwater environment is one of the most challenging conditions for object detection.
The signal received by any sensor can be significantly absorbed and distorted by the water medium [1].
This significantly degrades the performance of object detection methods, leading to high false positive
and false negative ratios. Moreover, in underwater environments, it is quite difficult to deploy and
control sensors [2]. Many state-of-the-art devices and technologies are not suited to underwater
environment operation.

In general, sonar and cameras are two typical sensors widely used for underwater object
detection [3–6]. Sonar sensors are sensitive to geometrical structure information and can provide
information of underwater scenes even in low- and zero-visibility environments. However, the data
acquired by sonar can only present the difference of the distance over the scanning points. Other factors
such as visual features are missed by this type of sensor. As a result, sonar-based systems are feasible for
top-down tasks, such as hydrographic surveying and charting [7], shipwreck searching [8], and marine
geological surveys [9]. In contrast to sonar, cameras can provide more types of visual information at
high spatial and temporal resolutions. Prominent objects can be identified by the various visual features
such as color, intensity [10], texture, and contours [11]. Recently developed binocular or multi-ocular
underwater systems can generate non-scale depth maps [12–14]. Hence, in addition to these top-down
tasks, underwater vision systems possess a better ability to handle down-top tasks where we have
few prior knowledge of the current underwater scenes, such as marine ecology monitoring [15] and
underwater entertainment [16]. However, vision-based underwater object detection methods have not
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yet provided satisfactory results, although, in contrast, sonar has more opportunities to succeed in
underwater object detection.

The drawback of underwater vision systems lies in their instability for underwater object detection.
Underwater images acquired by cameras suffer from intensity degeneration, color distortion, and haze
effects [17]. In order to make the underwater images clear and distinguishable, several underwater
image enhancement or restoration methods have been introduced into object detection models as
a preprocessor before feature extraction [3,18]. However, if these image preprocessors do not adapt to
the underwater optical environment, many new noise sources and false colors will be mistaken for the
objects themselves.

The increasing demand for vision-based applications enhances the importance of camera-based
object detection methods in underwater scenes. The monocular camera system may be a better option
for underwater environments provided it is sufficiently robust to the underwater conditions. In order
to reach this goal and improve the performance of the monocular vision system for underwater object
detection, light transmission information is introduced as a novel cue to identify underwater objects in
the region of interest (ROI). This transmission information is combined with the color and intensity
features to detect the ROI, which is then filtered and segmented to produce the results of underwater
object detection.

To the best of our knowledge, our novel method in this study is the first investigation of
the potential of transmission information for monocular vision-based underwater object detection.
The global contrast of the color, intensity, and transmission information is combined to initially identify
the ROI in underwater images. In the post-processing phase, the ROI maps are filtered and segmented
to generate the final results for underwater object detection. Based on the results presented in this paper,
the performance of the transmission information and ROI detection for underwater object detection
can be demonstrated. Finally, the contribution of this work is the establishment of a novel image
dataset for underwater object detection. More than 100 underwater videos have been collected from
YouTube [19] and 800 frames have been selected to establish the dataset. These samples are diverse and
different in camera type (focal length, aperture, etc.), imaging condition (viewing distance, viewing
angle, background, water quality, etc.), and target object (man-made object, aquatic animal, etc.).

In Section 3, we introduce the global contrast-based ROI detection method. The dark
channel-based method for light transmission estimation is proposed in Section 4. Then, in Section 5,
the image segmentation method is performed on the ROI maps, producing the final underwater object
detection results. Section 6 presents the results and performance of our ROI detection using separated
and comprehensive features, and our underwater object detection method is then compared with
state-of-the-art methods. The conclusions are presented in Section 7.

2. Related Works

2.1. Underwater Object Detection

In contrast to the vast achievements of object detection in air, very few methods have been
proposed to detect objects in underwater environments. According to the characteristics of the objects
of interest, underwater object detection methods can be classified into two categories. One comprises
several methods to detect man-made objects, and the other is used to detect natural aquatic objects.

For the man-made underwater object detection methods, any special features and priors of the
interest objects would be crucial to distinguish them from the background. For example, Yu et al.
demonstrated that a vision-based system performed well at underwater navigation. The authors
tested a number of colors that are visually salient in underwater environments [20]. Lee et al. used
an light-emitting diode (LED) ring with five large lights as a docking mark underwater. The docking
position was identified and located by a camera loaded onto autonomous underwater vehicles [21].
Dudek et al. proposed a color correction model and introduced it into an underwater object detection
system. In order to prevent the ill-posed problem in underwater image restoration, the correspondence



Sensors 2017, 17, 1784 3 of 14

between the raw images and corrected results were learned from the training data [22]. As an extension
to this method, an object detection method was proposed by combining a number of low-complexity
but moderately accurate color feature detectors [23]. The results achieved by these methods uncovered
the key problems for man-made underwater object detection, including feature improvement and
image correction. In order to improve the performance of the image features, a novel scale and
rotationally invariant feature were extracted, enabling the vision system to identify the man-made
landmarks [24]. Negre et al. compared the performance of the color and shape features for object
detection and demonstrated that the color feature is unreliable in underwater scenes. Alternatively,
Haar-like features were designed for detecting dock marks [25]. Aiming to enlarge the contrast between
the objects and background, Lee et al. proposed an updated underwater image restoration method to
process the raw input data. The contribution of the image preprocessing to underwater object detection
was demonstrated by comparing the results before and after image preprocessing [26]. Kim et al. jointly
used color correction, multiple-template-based object selection, and color-based image segmentation
methods to update the conventional approach [27]. Rizzini et al. proposed a two-phase mechanism for
man-made object detection. The first phase was established by a saliency detection method, whereas
in the second phase, a low-pass filter was proposed to segment the saliency maps. The ROI detection
was demonstrated to perform well across several datasets collected at different depths [28]. These
studies have provided important insights into this research. However, unlike our work, the method
proposed by Rizzini merely aimed to detect the man-made objects that have salient contour features.
Hence, only shape features have been validated to identify the objects of interest. Moreover, the
transmission information was not considered in the method proposed by Rizzini, but is highlighted in
our proposed method.

Unlike the task of detecting carefully designed man-made objects, natural aquatic objects are
more difficult to detect. They are visually similar to the water background because of light absorption
and haze effects, and we have few priors of the natural objects in new scenes. We cannot select features
specific to any one object, thus, more generalized features have been utilized. In order to address these
issues, a multi-phase mechanism is used to underlie the detection method for natural aquatic objects.
Some are based on the image preprocessor, whereas some introduce the phase of ROI detection before
the final detection. There are also methods jointly using these two phases. For example, Edgington
et al. extracted low-level spatial features to detect events of interest over multiple frames. In this
work, the classical Itti model was used, which extracted the initial ROI. This method is efficient and
can be performed in an unsupervised fashion. However, as the Itti model works on local features,
it is very sensitive to image noise. As a result, the Itti model-based method may not work very well
for underwater backgrounds [29]. Chuang et al. used the phase Fourier transform (PFT) to estimate
the image saliency from which the textural features of fish are extracted. The experimental results
demonstrated that the PFT method performed well at describing the textural features. However,
the PFT saliency detection method cannot provide satisfactory results for object detection tasks, as it
is only sensitive to the contours of the objects of interest [30]. Zhu et al. proposed an underwater
object detection method based on the discriminative regional feature integration method. In this
method, three features, including regional contrast, regional property, and regional background
descriptors, are jointly used to establish a comprehensive saliency map for underwater images [31].
Li et al. proposed a region contrast-based method by using the image segmentation method as the
preprocessor. The region segmentation method may benefit from the removal of noisy data points but
will cause false detections in the high-intensity regions. As a result, the region segmentation-based
method can detect all salient regions with high-intensity, however, most regions are not consistent
with the ground-truth [32].

2.2. Comparison to Previous Work

Generally, the goal of our work is identical to that of natural aquatic object detection, i.e., to look
for prominent objects without any priors. However, there are two main differences between our
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method and the previous studies in this area. One is the usage of transmission information to detect
underwater objects by a monocular camera system. This is more efficient and feasible for underwater
object detection. The other is ROI detection by the global contrast of underwater images with various
features, including color, intensity, and transmission. This ROI detection phase not only guarantees
accuracy during image segmentation but also provides a higher flexible structure in contrast to existing
template-based methods.

2.3. Proposed Method

The framework of our method is illustrated in Figure 1. In the first phase, various features
including intensity, color, and transmission are extracted from the raw underwater images. It should
be noted that the commonly used underwater image restoration or enhancement preprocessors are not
introduced. This not only makes the whole system more efficient but can also prevent the influence of
errors within the image processing.
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Figure 1. Framework of our underwater object detection method. ROI = region of interest.

The raw underwater images have a relatively low image contrast and barely present the objects
of interest in the clarity desired. In order to address this, we use the ROI to originally identify the
region of the underwater objects. The global contrast of various features is calculated and combined in
this phase.

In the last phase, the extracted ROI is filtered and corrected by the image segmentation method,
producing the final results of the underwater object detection. A low-scale model such as the Otsu
technique is used here, demonstrating the significant contribution of our ROI detection to underwater
object detection.

3. ROI Detection

We focus on bottom-up ROI detection using global feature contrast (Figure 1) under the
assumption that an object of interest exists in an image. Motivated by the psychological realization that
our visual biases are preferentially projected on the region with high contrast, our contrast calculation
for ROI detection is based on the following considerations:
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1. Global contrast considerations: separating natural aquatic objects from the background and
highlighting the entire body of the objects.

2. Consideration of various features: detecting a reliable ROI using multiple cues including the
color, intensity, and transmission features extracted from the underwater images.

3. Efficiency considerations: ROI detection should be fast, have low memory footprints, and be easy
to apply in underwater scenes.

Based on these guidelines, we propose a global contrast-based method to define the values of
interest. Specifically, the value of interest of a pixel is defined by its global contrast to all other pixels in
a scene, i.e., the value of interest of a pixel x can formulated as

INx = λi
x + λc

x + λt
x, (1)

where INx is the value of interest at x; λi
x, λc

x, and λt
x are the contrast metrics in intensity, color, and

transmission, respectively.
The global contrast metric in intensity λi

x can be formulated by the summation of the distance
measurement between pixels in the gray values:

λi
x = ∑

∀Iy∈I
D(Ii

x, Ii
y) = ∑

∀Iy∈I
‖Ii

x − Ii
y‖, (2)

where D(Ii
x, Ii

y) is the distance measurement between pixels x and y, calculated by the absolute
difference in the gray values Ii

x and Ii
y.

The global color contrast metric λc
x can be formulated by the summation of the Euclidean distance

measurement between pixels in the L× a× b color space:

λc
x = ∑

∀Iy∈I
D(Ic

x, Ic
y) = ∑

∀Iy∈I

(
(Ic

x(L)− Ic
y(L))2 + (Ic

x(a)− Ic
y(a))2 + (Ic

x(b)− Ic
y(b))

2
)1/2

, (3)

where D(Ic
x, Ic

y) is the distance measurement between pixels x and y, calculated by the Euclidean

distance in the L× a× b color space [Ic
x(L), Ic

x(a), Ic
x(b)] and

[
Ic
y(L), Ic

y(a), Ic
y(b)

]
.

The global contrast metric in transmission λt
x can be formulated by the summation of the distance

measurement between pixels in the transmission information:

λt
x = ∑

∀Iy∈I
D(It

x, It
y) = ∑

∀Iy∈I
‖It

x − It
y‖, (4)

where D(It
x, It

y) is the distance measurement between pixels x and y, calculated by the absolute
difference in transmission It

x and It
y.

In Equations (2)–(4), the intensity and color contrast originate from the underwater image data,
whereas the transmission contrast in Equation (4) is based on the processing with our method.

4. Light Transmission Estimation

The underwater optical imaging process can be modeled as the accumulation of the formulated
imaging light and hazing light [17]:

Ix = Bρx exp[−αrx] + B(1− exp[−αrx]), (5)

where Bρx exp[−αrx] and B(1− exp[−αrx]) are the imaging light and hazing light, respectively, Ix is
the image at x, B is the ambient light, rx is the transmission at x, ρx is the reflectivity at x, and α is the
attenuation factor of the water medium.
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According to the dark channel definition, the dark channel can be represented as the minimum
value in any channel over the pixels in a local patch:

Idark
x = min

c∈{r,g,b}
(min

y∈Ωx
Ic
y) = min

c∈{r,g,b}
(min

y∈Ωx
(Bcρc

y exp[−αcry] + Bc(1− exp[−αcry]))), (6)

where Idark
x is the dark channel at x; c is the color channel; Ωx is a local patch centered at x; ry is the

transmission of a pixel y in the local patch; Bc, ρc
y, and αc are the corresponding parameters in the

color channel.
Assuming that the transmission over all pixels in a local patch is homogeneous, rx = ry ∀y ∈ Ωx.
Hence; the dark channel model can be transformed as

Idark
x = Bdarkρdark

y exp[−αdarkrx] + Bdark(1− exp[−αdarkrx], (7)

where Bdark, ρdark
y , and αdark are the corresponding parameters in the dark channel.

According to the dark channel prior, most patches of a non-hazed image are required to include
a few low-intensity pixels in at least one channel (dark channel) [33,34]. This implies that the value of
the dark channel for the imaging light is low, approximating to zero:

Bdarkρdark
y exp[−αdarkrx] ≈ 0.

Hence,

Idark
x = Bdark(1− exp[−αdarkrx]). (8)

In an underwater scene, the ambient light Bdark can generally be assumed as homogeneous at all
pixels. Therefore, the intensity of the dark channel varies exponentially with transmission:

rx =
− log((Bdark − Idark

x )/Bdark)

αdark . (9)

According to the dark channel model, the brightest pixel of the dark channel over all pixels in an
image is a representation of the ambient light:

max
z∈I

(Idark
z ) = Bdark, (10)

where z is the pixel included in the underwater image. Consequently, the scene transmission estimation
(Equation (9)) can be transformed as follows:

rx =
− log((max

z∈I
(Idark

z )− Idark
x )/(max

z∈I
(Idark

z ))

αdark , (11)

where the attenuation factor for the dark channel light αdark in water is commonly provided in
particular tables [35]. Underwater images are commonly acquired in coastal waters listed as Type II
water. There are also some images acquired in turbid inland waters, where the attenuation factor is
categorized as Type IV. Based on the water type consideration, the attenuation factor of the water
medium can be typically adjusted based on Ocean Type II and Lake Type IV, as follows:

αc =


0.70 i f c = red
0.85 i f c = green
0.90 i f c = blue

for Type II, αc =


0.35 i f c = red
0.40 i f c = green
0.50 i f c = blue

for Type IV. (12)
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It should be mentioned that it is difficult to exactly estimate the attenuation factor of unknown
waters. Hence, our method cannot accurately estimate the depth information similar to other
multi-ocular systems, whereas the relative transmission information can be obtained by our method.
This transmission scale is sufficient to describe the transmission contrast between pixels.

The contrast calculation and ROI detection results are displayed in Figure 2. In order to fairly
compare the detection performance given by different features, three typical conditions are included
in Figure 2. The first row presents the conditions where the object is semitransparent and very
similar to the background in hue. A typical scene where the objects are distinct from the background
is presented in the second row. In the third row, significant background noise is presented in the
scenes. From Figure 2, we can see that for the objects that are similar to the background (first row
of Figure 2), the color and intensity contrasts between the object and background are insignificant.
In this case, the transmission contrast performs well at detecting the objects, contributing most to
the comprehensive ROI detection results. On the contrary, better performances are achieved by the
color and intensity features if the object has a distinguishable appearance against the background
(second row of Figure 2). Details of the object can be correctly depicted by the color contrast. From the
third row of Figure 2, the transmission contrast, compared to the color and intensity contrasts, works
more effectively at removing the background noise. It is a reasonable result as the background noise,
although somewhat confused with the objects themselves, is distinguishable from the objects in the
transmission scale. In general, the transmission contrast can more stably detect the ROI in all cases,
indicating a good performance at detecting the entire body of the objects. The color and intensity
contrasts in some cases perform better at detecting details such as textures and contours. Moreover,
from Figure 2, we can see that the ROI can roughly identify the object region while much background
noise is present in the edge regions and the transformation exists in the body of the detected objects.
To remove these effects, image segmentation is required (Section 5).
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Figure 2. Typical samples of the region of interest (ROI) detection. (a) Color; (b) intensity;
(c) transmission; (d) color global contrast; (e) intensity global contrast; (f) transmission global contrast;
and (g) ROI detection.

5. Image Segmentation

In order to filter and correct the ROI results, here, we use the simple Otsu method to segment the
ROI maps [36]. The reasons for the application of this method are two-fold. The Otsu method adapts
well to the processing of the ROI maps as the object is distinguishable from the background in the gray
histogram of the ROI maps. Moreover, the Otsu method is efficient and linear to the size of the maps in
complexity. Samples of the segmentation results are displayed in Figure 3. From the results, it can be
observed that the underwater objects are correctly detected and clearer contours are presented, closely
evolving the body of objects.
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6. Experimental Evaluation and Analysis

To demonstrate the performance of our underwater object detection method, both qualitative
and quantitative evaluations are proposed in this section. We first present the global contrasts and
ROI detection results in diverse underwater image data. The corresponding quantitative receiver
operating characteristic (ROC) curves are also provided for the ROI. Then, the results of the object
segmentation are presented and compared to other typical object detection methods performed
on the underwater images, such as the Otsu [36], saliency [37], compatible color [38], contour
segmentation [39], and pulse-coupled neural network (PCNN)-based methods [40]. The code for
the baseline methods was downloaded from the websites provided by the authors and defaults are
used for them. With the first comparison to the Otsu method, the contribution of the ROI detection
to object detection can be clearly demonstrated. The Itti and compatible color-based methods have
been successfully used and present exemplary performance in water, whereas the last two methods are
the typical large-scale and state-of-the-art models for object segmentation in common environments.
The performance of our method can be highlighted in contrast to them.

6.1. Dataset and Experimental Setup

In order to fairly evaluate the performance of various methods, samples in the test datasets
were elaborately selected. They were all acquired by the monocular vision sensor (camera) but were
diverse in quality (such as resolution and focal length) and imaging setup (viewing distance, viewing
angle, and optical environments). All the tests were run using MATLAB 2013a on a Windows PC
with a 2.4 GHz core and 4 GB of memory. The quantitative performance of the ROI detection is
presented by the ROC [41], and the object detection after segmentation was evaluated with respect to
six criteria [42]—precision (Pr), similarity (Sim), true positive rate (TPR), F-score (FS), false positive
rate (FPR), and percentage of wrong classifications (PWC):

Pr = tp
tp+ f t , TPR = tp

tp+ f n , Fs = 2 × Pr × TPR
Pr + TPR ,

Sim = tp
tp+ f p+ f n , FPR = f p

f p+tn , PWC = 100× f n+ f p
tp+tn+ f p+ f n ,

(13)

where tp, tn, f p, and f n denote the numbers of the true positive, true negative, false positive, and false
negative, respectively. Every pixel in each testing image was used to calculate these parameters.
The parameter tp was evaluated by the number of pixels that belong to the object in both the detection
results and ground-truth for each image sample. The parameter tn is the number of pixels that are
included in the background of both the detection results and ground-truth for each image sample.
The number of background pixels in the ground-truth is used to calculate the parameter f p if they are
mistaken as the object in the detection result. The parameter f n corresponds to the number of pixels
that are the object in the ground truth but the background in the detection results. In each of these
experiments, we kept the resolution of all inputs as the original resolution. The size of the window for
the dark channel model was selected as 15 × 15.
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6.2. ROI Detection

In addition to the samples given in Section 4, more results of the ROI detection in five typical
scenes are presented in Figure 4. The first and second rows display two samples acquired from the
bright shallow ocean and seabed, respectively. The third row displays an image acquired in inland
water. A sample acquired from the polar ocean is shown in the fourth row, while the bottom row
presents a scene from the tropical ocean. Among them, the background hue and attenuation factors
are distinctive.
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From Figure 4, we can see that various features provide different contrast calculation results.
In some cases, the map of the transmission contrast includes many false textures, such as the results in
the first and second rows. This is because some low-quality imaging sensors will cause transitions at
the edges of underwater images. This effect will be exacerbated by the exponential calculation in the
dark channel model. However, in other cases, the transmission contrast performs well at identifying
the entire body of the objects of interest. In contrast, the color and intensity are more sensitive to the
appearance of the objects. As a result, for the nearby objects, especially those that are large in size,
the color and intensity contrast can correctly detect the objects, such as the results in the second and
fourth rows. On the contrary, for the farther objects, the appearance of the objects is quite similar to
the background because of the effects of light attenuation and scattering. In this case, color or intensity
contrast cannot completely detect the objects, and several holes exist in the ROI regions, such as the
results in the first, third, and fifth rows. Generally, the transmission contrast can visually detect the
ROI well. In some cases, it significantly contributes to noise removal, whereas, in other cases, it benefits
underwater object identification. Moreover, based on the results in Figure 4, it is surprising to find
that a complementarity relationship exists between the intensity, color, and transmission features.
This implies the results given by our ROI detection method are reasonable.

Moreover, with respect to the feature contrast and ROI detection results, the quantitative
evaluations of the ROC curves on 150 diverse data samples are presented in Figure 5. The testing
samples were downloaded from YouTube. The ocean water and inland lake scenes are included in the
data samples. There is at least one object of interest in each image. Hence, in each sample, a meaningful
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evaluation can be given and the overall ROC curves are calculated by the average results. We can
see from Figure 5 that our ROI detection method achieves the best result with an area under the
curve (AUC) value of 0.9000. The second-best result is achieved by the transmission contrast with
an AUC of 0.8545. However, relatively poor results are achieved by the color and intensity contrasts.
This evaluation indicates that the ROI detection as a preprocessor will adequately benefit underwater
object detection as it achieves good precision for object identification.
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In addition, from Figure 5, we can see that the transmission feature and its corresponding contrast
are quite important for underwater object detection tasks. The reason underlying the degenerated
performance of the intensity and color contrasts is that the light attenuation and scattering effects
confuse the underwater objects with the background. As a result, the contrast between the objects and
background is low and cannot clearly determine the location and the region of the underwater objects.

6.3. Underwater Object Detection

Figure 6 presents the experimental results of the five aforementioned methods and our method
in five scenes. The first column in Figure 6 presents the original images; the second column shows
the ground-truth; the third to seventh columns respectively show the results of the Otsu, saliency,
compatible color, contour segmentation, and PCNN-based methods; the last column presents the
results of our approach. Visually, the results produced by our approach are better than those by
the other methods as our approach is the only one that can both remove the background noise and
completely detect the underwater objects. A comparable robustness against the noise is given by the Itti
method, which, however, mistakes a large part of the object bodies for the background. This indicates
that the Itti method may be more adaptive to blob- or point-like objects under the original image size.
These factors make this method vulnerable when a large object appears in the scene. From the second
column, we can see that the Otsu method can barely handle the issue of inhomogeneous intensity in
the underwater data, and a large part of the background with low intensity is falsely detected as the
objects themselves. This result further demonstrates the importance of the ROI detection for object
detection in water. The other three methods, including the compatible color, contour segmentation,
and PCNN-based methods, do not perform well at removing the background noise in these underwater
scenes although they succeed in many other tasks.
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Figure 6. Underwater object detection. (a) Underwater image; (b) ground-truth; (c) Otsu;
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(h) our approach.

To further examine the quantitative performance of our method, the quantified evaluation for
object detection is provided with an average of 150 samples. Table 1 summarizes the differences in the
average performances of the different methods. Our method provides the best results in the six criteria
and exhibits a remarkably higher performance. These evaluation results indicate that our method
can adequately cater for underwater detection tasks, as a detection rate of about 50% is sufficient to
identify object regions in an image [36].

Table 1. Average performance comparison of Otsu, saliency, compatible color, contour, PCNN, and our
method. Precision (Pr); true positive rate (TPR); F-score (FS); similarity (Sim); false positive rate (FPR);
percentage of wrong classifications (PWC).

Method Pr TPR Fs Sim FPR PWC

Otsu 0.3969 0.8808 0.5473 0.3767 0.2716 24.5898
Saliency 0.7847 0.3674 0.5005 0.3337 0.0201 12.2007

Compatible color 0.8068 0.6151 0.6980 0.5361 0.0318 9.4436
Contour 0.4090 0.9026 0.5629 0.3917 0.2495 22.5067
PCNN 0.3210 0.6733 0.4347 0.2777 0.2795 28.7212

Our method 0.9654 0.7260 0.8288 0.7076 0.0066 6.0863

From the results presented in Figure 6 and Table 1, the information fusion-based methods such as
the Itti model and our model likely have more opportunities to adapt to underwater environments.
They can largely remove the background noise. However, the Itti model cannot detect the entire body
of the objects, especially those large in size. This issue is caused by the down-sampling process of the
Itti model. For the other three image segmentation methods, such as the Otsu, contour, and PCNN
methods, they are more sensitive to the local gradient of the gray value. As a result, they are susceptible
to underwater backgrounds that vary in light intensity. To address this problem, the compatible
color-based method tries to restore the underwater image by color compensation. However, the color
compensation is unstable and will generate false information in unknown waters, which may further
degenerate the object detection results.

In contrast to all the compared methods, the complexity of our method is relative high. Our global
contrast calculation requires large computing resources. However, this problem possibly can be solved
by using the advanced computational hardware or optimizing the algorithm. The histogram based
method for example can be used to accelerate the contrast calculation process. Due to the high time-cost
color enhancement phase, the compatible color based method is the slowest one.
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7. Conclusions

In this paper, a novel monocular vision-based method specializing in underwater object detection
is proposed. A two-phase framework is designed as an ROI detection method in the first phase and
segmentation in the last phase. The framework is demonstrated to be robust in underwater environments.
In addition to the commonly used color and intensity information, the transmission information of our
method is introduced, which increases the correctness of underwater object detection.

However, in some cases, especially when artificial illumination is used, the underwater optical
environments are significantly polluted, and the dark channel-based model is no longer correct.
In these cases, the errors in the transmission estimation may make our method unstable.
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