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Abstract: Semiconductor quantum dots have attracted extensive interest in the biosensing area
because of their properties, such as narrow and symmetric emission with tunable colors, high
quantum yield, high stability and controllable morphology. The introduction of various reactive
functional groups on the surface of semiconductor quantum dots allows one to conjugate a spectrum
of ligands, antibodies, peptides, or nucleic acids for broader and smarter applications. Among these
ligands, aptamers exhibit many advantages including small size, high chemical stability, simple
synthesis with high batch-to-batch consistency and convenient modification. More importantly,
it is easy to introduce nucleic acid amplification strategies and/or nanomaterials to improve the
sensitivity of aptamer-based sensing systems. Therefore, the combination of semiconductor quantum
dots and aptamers brings more opportunities in bioanalysis. Here we summarize recent advances on
aptamer-functionalized semiconductor quantum dots in biosensing applications. Firstly, we discuss
the properties and structure of semiconductor quantum dots and aptamers. Then, the applications of
biosensors based on aptamer-modified semiconductor quantum dots by different signal transducing
mechanisms, including optical, electrochemical and electrogenerated chemiluminescence approaches,
is discussed. Finally, our perspectives on the challenges and opportunities in this promising field
are provided.
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1. Introduction

Quantum dots (QDs) are colloidal nanocrystalline semiconductors and possess properties such as
a quantum confinement effect. The three major kinds of QDs include the homogeneous structures (CdTe,
CdSe), core-shell structures (CdTe/CdS), and ternary structures (CdTeSe). QDs with particle sizes of
1–10 nm, close to or less than the exciton of the Bohr radius, with significant quantum effects [1,2],
provide a new type of nanomaterial with unique optical and electronic properties. The excellent optical
properties include: (1) Broad and consecutive excitation bands, high absorptivity [3]; (2) Narrow and
symmetric emission, long fluorescence lifetime; (3) Good photostability [4], with low susceptibilities
to photo-bleaching; (4) Tunable emission wavelength (Figure 1) [5–7]. These features make them
fluorescent probes with unparalleled advantages compared to traditional organic dyes [1,8]. In recent
years, quantum dots have been widely applied as fluorescent probes in the biological field.
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The electrical properties of quantum dots include: high band-gap, high absorption coefficient and
large intrinsic dipole moments [9]. Therefore, in the visible region, they can effectively capture
light energy, produce electron-hole pairs, quickly separate electrons and holes, and reduce the
electronic loss, so that they can quickly and effectively implement the optical-electrical signal,
conversion and electrical signal transmission. These features make them unique and excellent tools in
electrochemical and photo-electrochemical sensing. In addition, the conjugation of functional ligands
is expected to be essential for QD-based targeted biosensing applications. However, the semiconductor
nanomaterials cannot specifically recognize the target individually and need to be combined with
a target recognition module.
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473, 481, 500, 518, 543, 565, 587, 610, and 655 nm [6].

Aptamers are artificial oligonucleotides (DNA or RNA) and can bind to various entities
(e.g., metal ions and etc.) with high affinity and specificity, equal to or superior to those properties
of antibodies [10,11]. These aptamers can be identified from combinatorial nucleic acid libraries by
in vitro selection methods [12]. Aptamers have several advantages, including easy synthesis, low
cost, small size and convenient modifications with various functional groups and nanomaterials.
Moreover, proteins tend to be irreversibly denatured in certain conditions, while aptamers are capable
of reversible denaturation.

To modify aptamers onto ODs, four major strategies can be used: (1) Self-assembly between
DNA and QDs [13–16]. Mattoussi et al. firstly used the His6-tagged DNA and dihydrolipoic
acid (DHLA)–QD self-assembly, producing compact QD–DNA conjugates [13]. Some alternative
modification strategies can also be used in compact QD–DNA conjugates, such as self-assembly
of thiolated-DNA onto 3-mercaptopropionic acid (MPA)–QDs [17]. (2) Biospecific interactions,
e.g., biotin–avidin (or streptavidin) interaction [18–22]. Biotin can be linked to aptamers through
its carboxyl group without affecting their activity. Avidin consists of four identical subunits,
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which theoretically means an avidin molecule can bind to four biotin molecules with strong binding
specificity and affinity. The method has the advantages of high specificity, wide workable temperature
and pH range, so it is widely used in the construction of biosensor interfaces. (3) Covalent
interactions [14,15,23–25]. Aptamers can be covalently bound to chemical groups (e.g., hydroxyl
groups, etc.) using well-established bioconjugation reactions. (4) Nucleic acid hybridization.
The aptamer terminal is extended to a small section of the nucleotide sequence, and the aptamer
functionalization can be achieved through hybridization of the extended nucleotide sequence with its
complementary sequence modified on the surface of the nanomaterials.

The combinations of QDs and aptamers are expected to provide various detection platforms,
including optical, electrochemical and electrochemical luminescence [26], brings more opportunities
for bioanalysis (Table 1). The detection of a variety of analytes, such as proteins, small molecules
and tumor cells is available. Here, we summarize recent advances of aptamer-functionalized QDs in
biosensing applications. We also discuss the properties and structure of QDs, and the application of
biosensors based on aptamer-modified QDs in the context of different signal transducing mechanisms,
and further our perspectives are provided on the challenges and opportunities in this promising field.

Table 1. A brief overview of QD-aptamer biosensors.

Biosensor Representative Targets Limit of Detection

Optical detection

Fluorescence
Thrombin 0.45 nM [27]

MCF-7 cells 201 cells mL−1 [28]

FRET

Thrombin 1 nM [29]
Mucin 1 250 nM [30]
Insulin 0.6 pM [31]
VEGF 5 pM [32]
PDGF 0.4 nM [33]

Cocaine 1 µM [34]
Aflatoxin B1 3.4 nM [35]

Pb2+ 90 pM [36]

ET
Thrombin 40 µM [37]
Cocaine 1 µM [37]

CRET ATP 100 nM [38]

ECL

Thrombin 1 aM [39]
ATP 7.6 nM [40]
Pb2+ 10.8 pM [41]

Leukemia cells 46 cells mL−1 [42]

Electrochemical
detection

Electrochemical without detection
by photoexcitation

Thrombin 0.5 pM [43]
CCRF-CEM cells 50 cells mL−1 [44]

Photoelectrochemical
(PEC) detection

Mucin 1 0.52 nM [45]
Cocaine 1 µM [46]

SK-BR-3 cells 58 cells mL−1 [47]

2. Aptamer-Modified QDs for Optical Detection

The excellent optical properties of semiconductor QDs are due to the photoexcitation of the QDs
and the transfer of valence-band electrons to the conduction band. Different photophysical fluorescent
and chemiluminescence mechanisms (as schematically outlined in Figure 2), combined with specific
recognition of aptamers, are used to develop biosensor systems for proteins and small molecules [26].

2.1. Fluorescence Detection

QDs have been widely used in aptamer-based biosensors for their fluorescent properties.
An on-chip aptamer-based luminescence assay was developed for protein detection by Remcho
and co-workers [27]. They used two DNA thrombin aptamers that recognized two different epitopes
of thrombin and bound them to different nanoparticles. Aptamer-functionalized magnetic beads were
then used to capture the target (thrombin) and another aptamer-functionalized QDs were employed as
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fluorescent labels for signal generation. In the presence of thrombin, the two aptamers bind to thrombin
to form a sandwich, which is then monitored by fluorescence microscopy. The sandwich assay was
carried out with disposable microfluidic devices, which were fabricated on double-sided tapes and
polymeric materials by a laser cutting approach. This new approach demonstrated the potential of
application in fundamental research or protein analysis for diagnosis. Hua et al. used QDs/SiO2

nanoparticles synthesized by coating QDs on the surfaces of monodispersed silica nanoparticles
(SiO2 NPs), which was beneficial to signal amplification. They demonstrated a novel fluorescent and
electrochemical assay to selectively collect and detect MCF-7 cells [28].
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Figure 2. Schematic representation of different QD-based sensing configurations [26]. (a) luminescence,
(b) electron transfer, ET, (c) Förster resonance energy transfer, FRET, or (d) photocurrent generation.

QDs can be also used in the construction of biosensors by FRET. The first QD-aptamer biosensor
on the basis of FRET is reported by Levy et al. [48] (Figure 3). In order to ensure that a substantive
conformational change would occur upon analyte binding, they synthesized a typical two-piece beacon
which is consisted of a 5-biotinylated anti-thrombin aptamer conjugated to streptavidin-coated Qdot
525 (Qdot Corporation, Hayward, CA, USA) and an 3-quencher-labeled antisense oligonucleotide
hybridized to ensure the occurrence of FRET. Meanwhile, to ensure the efficient quenching of
quantum dots, multiple aptamer beacon–oligonucleotide quencher pairs were attached to each
QD. With thrombin, the aptamer folded into a stabilized quadruplex structure, and resulted in the
displacement of the antisense oligonucleotide quencher conjugate, and then caused an increase in Qdot
525 emission. A specific fluorescence response is demonstrated for real-time detection of unlabeled
thrombin at 37 ◦C. But, this design is not optimal, because multiple target molecules (thrombins) are
necessary to overcome the QD quenching, as multiple antisense-quencher strands are bound per QD,
which means that very low thrombin concentrations cannot be detected easily.Sensors 2017, 17, 1736 5 of 14 
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Some QD-aptamer beacon designs were also reported to realize label-free detection of
thrombin [29,49], platelet derived growth factor (PDGF) [33], epithelial tumor marker mucin 1 [30],
and cocaine [34,50], respectively.

With various signaling and reporting designs, the reported QD-aptamer beacons were either
2-piece or 3-piece constructs that formed stable structures on QDs and functioned upon target-induced
strand displacement. Chi et al. developed a “one-piece” QD-aptamer beacon that is competitive
and less costly in clinical experiments [51]. In this way they employed a one-stranded anti-thrombin
aptamer probe which was covalently conjugated to Qdot565 (excitation at 570 nm; emission at 602 nm)
to develop a label-free biosensing system. The BOBO-3 (peak emission at 565 nm), a DNA intercalating
dye, which can intercalate into a double helix and induce a FRET-mediated emission while QD is
illuminated at 365 nm, was used. After thrombin meets the aptamer, conformational change is induced
and then caused BOBO-3 dissociate from QD-aptamer conjugate. Thus, the FRET-mediated BOBO-3
emission was reduced, which could be used to quantify the thrombin concentration. This strategy
achieved a limit of detection (LOD) of 1 nM thrombin ad it is of the best detection limits for QD-aptamer
based assays (e.g., 1 M LOD for thrombin in Levy et al. [48]; 1 nM LOD for thrombin in Swain [29];
0.4 nM LOD for PDGF in Kim et al. [35]; 250 nM LOD for mucin 1 in Cheng et al. [36]; 0.5 M LOD for
cocaine in Zhang et al. [37]).

Other “single-piece” QD-aptamer beacons using quenching materials as competitive acceptors
in FRET have also been reported. Li et al. bound aptamer-conjugated QDs to graphene oxide (GO)
sheets and formed a GO/aptamer-QD ensemble to enable the fluorescence of QDs to be quenched
by nano−metal surface energy transfer (NSET) from the QDs to the GO sheets [36]. When target
molecules, i.e., Pb2+ ions, were present, the conformational change of aptamer induced by Pb2+ led
QDs to detach from the GO sheet. As a result, the fluorescence of the QDs was recovered. This sensor
exhibits a detection limit of 90 pM and high selectivity toward Pb2+ in the presence of various metal
ions. Wang et al. used near-infrared quantum-dots (NIR-QDs) as the energy donor and oxidized
carbon nanoparticles (OCNPs) as the energy acceptor to detect insulin in vivo [31]. Duan et al. realized
simultaneous detection of pathogenic bacteria with an aptamer-based biosensor with dual FRET
from QDs to carbon nanoparticles (CNPs) [37]. Sabet et al. used Au nanoparticles (AuNPs) and
aptamer-conjugated QDs to detect aflatoxin B1 (AFB1) in rice and peanut [35].

A number of innovative optical detection technologies had also been developed. Willner’s group
firstly utilized the self-assembly of the “split” aptamer in the presence of target molecules to develop
a series of optical bioanalytical assay [32,34]. Taking cocaine detection as an example [34], one of the
subunits of anti-cocaine aptamer was linked to CdSe/ZnS QDs, and the other subunit was incorporated
with dye that had the ability of quenching fluorescence of QDs by FRET. In the presence of cocaine, the
complex was constructed and thus facilitated the detection of cocaine with a detection limit of 1 × 10−6 M.Sensors 2017, 17, 1736 6 of 14 
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III-catalyzed VEGF regeneration [26].
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As shown in Figure 4, Willner’s group combined the Exonuclease III (Exo III) recycling
amplification assay with self-assembly for vascular endothelial growth factor (VEGF) detection [26,32].
They also developed an amplified optical aptamer sensing system based on the exonuclease III (Exo III)
recycling of VEGF. Here the 5′ end and 3′ end of the aptamer is modified with a QD and a black
hole quencher, respectively. The VEGF induces self-assembly of the aptamer subunits and caused
the digestion of the quencher units and the recycling of the analyte, leading to restoration of the QD
luminescence (detection limit 5 pM). In addition, they demonstrated this system could be used to
analyze VEGF in human blood. Electron transfer (ET)-based fluorescence quenching of the CdSe/ZnS
QDs as a process to develop aptamer-sensors for cocaine and thrombin detection has also been reported
by Willner and co-workers [37]. For example, for thrombin detection, the thiolated anti-thrombin
aptamer is modified on the glutathione-functionalized CdSe/ZnS QDs by covalent coupling, and then
formed a duplex structure with complementary strand, which led to the intercalation of doxorubicin
(DB) into the duplex structure and accompanied the quenching of the fluorescence of the QDs. In the
presence of thrombin, the structure was unfolded due to the thrombin/aptamer complex was more
stable. DB was then removed from the QD nucleic acid and fluorescence was restored. Upon the
detection of the protein, this aptamer-sensor led to the turn-on of the fluorescence of the QDs.

2.2. Chemiluminescence Detection

2.2.1. Chemiluminescence Resonance Energy Transfer

QDs are also used as energy acceptors of energy which is generated by chemiluminescence [52,53].
Research has shown that the hemin/G-quadruplex horseradish peroxidase (HRP)-mimicking
DNAzyme can catalyze the oxidation of luminol by H2O2 to yield chemiluminescence [54].
Willner’s group incorporated hemin and ATP into nucleic acid subunits, including fragments of
the HRP-mimicking DNAzyme (I, II) and anti-ATP aptamer domains (IV, V), which self-assembled
active DNAzyme and catalyzed the reproduction of chemiluminescence, as shown in Figure 5A.
The catalytic processes realized the detection of ATP with detection limits 10 Mm [53]. This method
was also can used in detection of thrombin. The DNAzyme stimulated chemiluminescence resonance
energy transfer (CRET) to CdSe/ZnS QDs was used to build sensing platforms for detecting ATP or
thrombin. Take detection of ATP as an example, the detail was shown in Figure 5B.Sensors 2017, 17, 1736 7 of 14 
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One of the nucleic acid subunits reacted with CdSe/ZnS QDs, and thus the self-assembly of
the ATP-aptamer subunits/hemin-G-quadruplex DNAzyme caused the CRET signal when ATP and
hemin appear. The CRET signals are intensified with the concentration of ATP, due to the higher
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chemiluminescence signals. In the CRET process, this sensor had an advantage of low chemiluminescence
signal background. Finally, the detection limit of ATP was corresponding to 100 nM, which was much
lower than with single chemiluminescent detection. At the meantime, this method provided a possibility
to design various aptasensor assays with different sized QDs.

2.2.2. Electrogenerated Chemiluminescence

Electrogenerated chemiluminescence (ECL) method includes the generation of species at electrode
surface undergoing electron-transfer reactions to form excited states, where light is produced when it
decays to the ground state. It is the combination of chemiluminescence (CL) and electrochemistry [55],
whose main advantage is that the background interference caused by the excitation light scattering
is effectively avoided. This technology integrated the advantages of increased sensitivity and
electrochemical potential control for luminescence analysis, and it has become one of the areas of
interest for analytical chemists.

Bard and et al. firstly found that QDs could electrogenerated light emission under the potential
pulsing or cycling, known as ECL [56,57]. So far, an alternative QDs ECL approach, based on coreactant,
has been widely used. When reacting with the co-reactants, efficient and stable ECL in aqueous
solution can be obtained by applying a cathodic or anodic potential to the QDs. Therefore, a number
of biosensing systems using QDs as ECL labels were developed.

For example, Zhu’s group developed a series of aptasensors with the QDs ECL as the signal
transduction for the detection of lysozyme, ATP and thrombin [58–60]. Aptasensors detecting lysozyme
and ATP were built with the specific affinity between aptamer and target, on the basis of Watson–Crick
base pairing. Taking lysozyme detection for example [60], thiolated anti-lysozyme aptamer were
modified onto the pretreated Au electrode via an Au-S bond, and then incubated with lysozyme
solution to form the aptamer-lysozyme bioaffinity complexes. The free aptamer were hybridized with
biotin modified complementary DNA (biotin-cDNA) oligonucleotides. The avidin-modified QDs were
bound to the biotin-cDNA. The ECL signal of the biosensor reflected the amount of QDs bonded to the
cDNA oligonucleotides, indirectly inversely proportional to the bonded target analyte.

This sensing system can also detect other target molecules by changing the recognition unit.
In addition, with incorporation of signal amplification strategies, the detection sensitivity can be further
improved. Xie et al. used AuNPs/graphene-modified electrode to build an ECL sensing interface for
thrombin detection, and ultrahigh sensitivity was achieved with a detection limit of 10 fM [61]. Jie et al.
used a novel dendrimer/CdSe-ZnS-quantum dot nanocluster (NC) as an probe, which amplified the
QD’s ECL signal compared with the single QDs linked to aptamer [62]. Meanwhile, a DNA device
cycle-amplifying method was developed with greatly improved sensitivity, providing a sensitive and
selective detection platform for cancer cells.

Hai et al. constructed a “turn-on” ECL sensor for Pb2+ detection using QDs with combination
of a G-quadruplex aptamer [41]. Moreover, Liu et al. designed an “off-on” ECL aptasensing
method to sensitive detecting ATP with G-quadruplex/hemin wrapped AuNPs to quenching ECL
emission of quantum dots, as G-quadruplex had strong catalytic ability to the decrease of dissolved
oxygen [40]. Shan et al. reported another amplified ECL quenching mechanism [39]. They used the
remarkably efficient energy-transfer between CdS:Mn nanocrystals (NCs) film and CdTe QDs-doped
silica nanoparticles (CdTe/SiO2 NPs) for the detection of thrombin.

In addition, sandwich structure (aptamer1-target-aptamer2) is constructed for detection.
Huang et al. applied QDs ECL in aptasensor field by this sandwich method [60]. Two anti-thrombin
aptamers can combine with thrombin to form a stable structure. With thrombin, the sandwich structure
(aptamer I-thrombin-aptamer II) could be formed. ECL signal was caused by avidin–QDs which was
bound tightly to the aptamer II. In this way, thrombin could be measured with range from 0 to
20 g mL−1 and detection limit of 2.72 nM. This biosensor exhibited the potential cycling stability and
good selectivity responses to the target, which expands the application of QDs ECL.
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Zhang et al. built a new ECL platform for leukemia cell detection by constructing a similar
sandwich structure. Unlike the former aptamer I-thrombin-aptamer II structure, they used two
identification elements, which were aptamer and concanavalin (con A). A conjugated ZnO@CQDs
was used for specific recognition of the cell surface carbohydrates [42]. In the presence of tumor
cells, aptamer-cell-con A structure was formed. The use of carbon quantum dots (CQDs)-coated ZnO
nanospheres (ZnO@CQDs) enhanced and amplified the ECL intensity and signal. The proposed device
has the advantages of high specificity, sensitivity and good stability, and will be a promising tool for
sensitive detection of leukemia cells.

Yang et al. covered the tubes of ACNTs with chitosan (CTS)-CdS QDs complex films by
electrodeposition reactions between CTS-CdS QDs and an ACNTs electrode [63]. Through this
method, they fabricated a CdS QDs/ACNTs electrode with good biocompatibility and high ECL
intensity. After anti-thrombin aptamer was bound to the film, this electrode detected thrombin with
advantages of high efficiency, sensitivity, specificity and stability. Since thrombin concentration was
positively correlated with the level of the ECL intensity, the specific reaction between aptamer and
thrombin could reduce ECL intensity. Wang et al. designed enhanced ECL of CdS thin films by
ssDNA-AuNP conjugates, with the free aptamer for the detection of thrombin [64]. The system
showed 5-fold enhancement of ECL intensity compared to that with no Au NPs. The detectable
concentration of thrombin ranged from 100 aM to 100 fM. Li et al. also used water soluble thioglycolic
acid (TGA)-modified CdSe QDs, and thus it could bind more aptamer by the carboxyl and the amino
groups to improve the ECL signal [65].

3. Aptamer-Modified QDs for Electrochemical Detection

3.1. Electrochemical Detection without Photo-Excitation

With their great electrochemical properties, QDs act as electroactive species for signal amplification
in biosensing. The surface-modified aptamer, with excellent electrical conductivity, is used as a sensitive
layer of the electrochemical sensor. For example, Li et al. developed a novel aptamer biosensor for
detecting thrombin, and they immobilized aptamer-modified water soluble CdSe QDs on the surface
of a glassy carbon electrode (GCE) [65]. With the larger surface area and ion centers of CdSe QDs,
the electrochemical signal could be improved. As demonstrated, this constructed biosensor performed
better than that without CdSe QDs immobilization.

After combining aptamers with QDs of high amplification and coding features, Hansen et al. first
designed electrochemical biosensors for multi-protein targets with high selectivity and sensitivity [43],
as shown in Figure 6. The researchers fixed several thiolated aptamers on a gold surface, which made
it possible to capture QD-tagged thrombin or lysozyme. The added protein sample displaced
immobilized protein-QD conjugates. Then, they monitored the displacement by the electrochemical
stripping detection of the residual nanocrystals. This method provided a detection limit of 0.5 pM.
The electrochemical sensing protocol based on interaction of aptamers and protein could detect
ultrarace levels of biomarkers and facilitate an early detection of diseases.

Liu et al. built a versatile sandwich strategy for sensitive and selective detection of cancer cells by
employing DNA concatamer and QDs as signal amplifier [42]. Firstly, they used MWCNTs@PDA@AuNPs
complex as electrode materials to load a lot of concanavalin A. The immobilized Con A was applied to
capture cancer cells in high stability. Meanwhile, the trapped cancer cells (CCRF-CEM cells) were detected
with aptamer-DNA concatamer-QDs probes by fluorescence and electrochemical methods. This sandwich
cytosensor display high sensitivity with the detection limit of 50 cells mL−1. Furthermore, it helps separate
cancer cells from normal cells, and has promising applications in cancer diagnosis and treatment.

3.2. Photoelectrochemical (PEC) Detection

Since combining optical methods and electrochemical sensors can couple photo-irradiation with
electrochemical detection, photoelectrochemical (PEC) sensors is a special electrochemical sensing
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method. To separate the excitation and detection signal, the PEC method showed high signal-to-noise
ratios. In PEC detection, signal was based on analytes induced photocurrent change of the photoactive
species modified electrode. Thus, the photoactive materials were very important for the performance
of the PEC sensors.
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Figure 6. Operation of the aptamer/QD-based dual-analyte biosensor, through displacement of the
tagged proteins with the target analytes. (A) Monolayer of thiolated aptamers is mixed with the bound
protein-QD conjugates; (B) The tagged proteins is displaced by the sample; (C) The remaining captured
nanocrystals are dissolved and apply their electrochemical-stripping detection [43].

Among the photoactive materials, semiconductor QDs, such as CdS, CdSe, PbS and CdTe,
which have narrow band gap deposition and can respond to visible light, have received considerable
attention in PEC sensing. Upon illumination with photons having energy equaling to or larger than
the band gap of the semiconductor, electron–hole pairs are generated, which result in photocurrent.
According to the direction of electron transfer on the conduction band, the photocurrent can be divided
into anodic photocurrent and cathode photocurrent. When the conduction band electrons are transferred
to the electrode material, and the electron donor in the solution transfers the electrons to the valence
band holes, an anodic photocurrent is generated. Ascorbic acid (AA) and triethanol-amine (TEOA) are
usually exploited as a nontoxic and efficient electron donor. In contrast, when the conduction band
electrons are transferred into the solution and combine with the electron acceptor, and the electrons on
the surface of the electrode are transferred to the valence band, a cathode photocurrent is generated.

Willner et al. developed a PEC detection strategy for cocaine with supramolecular aptamer
complexes and semiconductor quantum dots [46]. As shown in Figure 7, they employed CdS QDs
as photoactive materials for characterizing the formation of the supramolecular complex between
the splitting anti-cocaine aptamer subunits and cocaine. When an electron donor (triethanolamine)
appeared, the cocaine complex, CdS-QDs-labeled aptamer subunits, generated photocurrents after
being stimulated by light, which enables the PEC detection of cocaine. Due to the excellent
photosensitivity of CdS QDs, this method realized the analysis of cocaine with a detection limit
to 1 × 10−6 M.
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Figure 7. (A) Photoelectrochemical cocaine sensor with the self-organization of cocaine/aptamer subunits
on an Au electrode. (B) Photocurrent action spectra with the analysis of different concentrations of
cocaine [46].

Nanocomposites, with the combined advantages of all their materials, can be also applied for
PEC biosensing. Tian et al. combined the unique PEC properties of TiO2 nanotube (TiO2 NTs) arrays
with QDs, and built a novel sensitive PEC aptasensor for detecting gene MUC1 [45]. Firstly, the TiO2

NTs were fabricated on a titanium foil. Then the gold nanoparticles (AuNPs) were electrodeposited in
TiO2 NTs tubes, and improved the electrical conductivity of TiO2 NTs and bind MUC1 aptamers by the
Au–S bond. Subsequently, photosensitizer CdTe QDs were also attached to the TiO2 NTs by bingding
CdTe QD-labeled c-DNAs to MUC1 aptamers. The MUC1 combined with aptamer competitively.
The concentration of MUC1 could be measured by the proposed aptasensor with good reproducibility,
low detection limit and stability. Liu et al. synthesized ZnO nanospheres/graphene composite as
photoactive materials to improve PEC performance, for the high photoelectric activity of ZnO hollow
nanospheres and superior charge transportation and separation of grapheme [47]. Combining with S6
aptamer, it can photoelectrochemically detect SK-BR-3 cells.

4. Conclusions and Perspectives

In this review, the applications of aptamer-modified semiconductor quantum dots as hybrid
systems for biosensing have been extensively discussed. Different from conventional organic
fluorophores or fluorescent proteins, QDs are synthesized by wet chemical synthesis methods.
QDs possess many advantages, including broad absorption bands, tunable emission wavelengths,
narrow emission bandwidths, and slow photobleaching. After the surface of QDs is modified by one
of many flexible functionalization approaches, they can be transformed into a versatile nanoplatform
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for aptamer conjugation. The prepared aptamer-modified semiconductor QDs bioconjugates can be
used for biomedical applications.

The application of hybrid nanostructures is based on the analysis and the use of optical
electrochemistry, based in turn on the extensive photophysical mechanisms of QDs, including
fluorescence, chemiluminescence and functional recognition of aptamers. Since aptamers can be
selected against numerous targets, the aptamer/semiconductor QDs sensors appear to be a promising
new sensing platform for broad environmental, biotechnological, and clinical applications.

One important topic in the application of QDs for sensing processes relates to the amplification
of the detection platforms. The use of exonuclease III (Exo III), as a biocatalyst for the autonomous
regeneration of the target DNA or the aptamer−substrate was discussed. They can be successfully
applied for sensing a wide range of molecules, allowing low levels of detection and reduced
interference of other compounds in complex samples. However, in view of the size-controlled
luminescence properties of QDs, we can expand the detection for different target analytes at the
same time. The vast majority of QDs can be only found in bulk solution, which hinders the routine
analysis applications so far. Therefore, the future challenge is the innovation of QDs synthesis and
conjugation methods, to prepare aptamer/QD-based hybrids with increased stability, sensitivity and
binding specificity.

The rapid progress in the application of other functional materials for sensing (e.g., graphene, etc.)
and the elucidation of their new optical properties, suggests that by coupling the aptamer/QD-based
hybrids with such graphitic carbon nanostructures, novel sensing and detection platforms could be
designed. How to incorporate the aptamer/QD-based hybrids into cells and carry out the in vivo
sensing of analytes may be a challenge in the future.
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