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Abstract: As the adoption of service-oriented paradigms in the IoT (Internet of Things) environment,
real-world devices will open their capabilities through service interfaces, which enable other
functional entities to interact with them. In an IoT application, it is indispensable to find suitable
services for satisfying users’ requirements or replacing the unavailable services. However, from the
perspective of performance, it is inappropriate to find desired services from the service repository
online directly. Instead, clustering services offline according to their similarity and matchmaking or
discovering service online in limited clusters is necessary. This paper proposes a multidimensional
model-based approach to measure the similarity between IoT services. Then, density-peaks-based
clustering is employed to gather similar services together according to the result of similarity
measurement. Based on the service clustering, the algorithms of dynamic service matchmaking,
discovery, and replacement will be performed efficiently. Evaluating experiments are conducted to
validate the performance of proposed approaches, and the results are promising.

Keywords: Internet of things; semantic similarity measurement; multidimensional model; service
clustering

1. Introduction

1.1. Background

The Internet of things (IoT) integrates user requirement, cyberspace and physical space, which
enables the seamless cooperation of human-machine-thing. SOC (Service-Oriented Computing)
proposes techniques for provision, selection, discovery, and composition of Web services, and integrates
heterogeneous and complicated software entities together organically [1,2]. As the adoption of
service-oriented paradigms in the IoT environment [3], real-world devices will open their capabilities
through service interfaces, which enable other functional entities to interact with them. In an IoT
application, it is indispensable to find suitable services for satisfying users’ requirements or replacing
the unavailable services.

With the rapidly growing number of IoT services, discovery and selection for numerous services
under the dynamic and large-scale environment of IoT is becoming a crucial task. Several middleware
solutions have been proposed for the integration of the physical world with the Web, such as
OpenIoT [4], GSN (Global Sensor Networks) [5], and Xively [6]. These solutions act as service
platforms that manage millions of services around the world, which enable people to share and
monitor environmental data from objects that are connected to the Web. However, most leading
middleware solutions provide only limited service discovery and selection functions. It is effective to
discover services through service matchmaking techniques [7,8]. However, from the perspective of
performance, it is unreasonable to discover services from online repositories directly in the context
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of the IoT-scale environment [9,10]. Instead, if services are classified offline or clustered according to
their similarity, and then the online examining of services will be controlled within several limited
clusters. Then, the performance of finding desired services online will be optimistic [11,12]. Besides,
because of the dynamic of IoT, the selected services may become unavailable or unfit for the current
context, so re-selection and replacing services by similar services from the same cluster is necessary.
Therefore, techniques that cluster services offline according to their similarity are critical for dynamic
service matchmaking, discovery, and replacement [13].

1.2. Motivation

As the research [14] discusses, nearly 12,000 Web services are active on the Web. Even in such
conditions, the similarity measurement and clustering of Web service has become a challenging
problem. The same issue of IoT service will become a much more complex challenge due to the scale
and complexity of IoT. As the IoT service acts on ternary space (i.e., user, cyber, and physical space)
rather than Web service that only exists in cyber space, the context of IoT service is more complex
than Web service. IoT services imply multidimensional semantic, for instance, the physical quantity
observed by the service, the observation capabilities of service, the observation area of the service, and
so on. When clustering or measuring similarity between services, these information should be taken
into consideration.

A bundle of approaches about measuring similarity between Web services has been proposed
in recent years. Basically, it can be divided into: information content-based approaches [15,16] and
semantic-network-structure-based approaches [17,18]. However, it is inappropriate that directly using
existing approaches on IoT services. Existing similarity measurements focus on the hierarchy and
inheritance relations between services in the semantic model. They ignore the relation types, relation
contexts, and relation restrictions that imply meaningful semantic information for distinguishing
service. Besides, service nodes in a semantic model are defined with data-type and object-type
properties. The properties should also not be ignored when computing the similarity between services.

Moreover, existing service models mix multiple feature dimensions of IoT service to construct
complicated models. The dimension-mixed model cannot obtain a well-defined taxonomy structure.
Thus, using semantic structure-based algorithms to measure the dimension-mixed model will not
achieve a satisfactory accuracy. Besides, the property and restriction descriptions of multiple
dimensions interfere with each other when measuring similarity based on service description.
Therefore, using the existing algorithms to measure IoT services will not conform to the equivalence
soundness and disjointedness incompatibility principles of similarity measurement, and the
measurement results cannot reflect the real similarity between services [19]. Without accurate similarity
measurement, it is impossible to obtain satisfactory clustering results, which will influences the effect
of follow-up matchmaking and discovery of services.

This paper proposes the multidimensional semantic model for describing IoT services.
Each dimension constructs a semantic model including well-defined service classification, service
properties, and property constraints. Based on this multidimensional service model, we propose an
MDM (Multiple Dimensional Measuring) algorithm to calculate the similarity between services on each
dimension by taking both model structure and model description into consideration. The similarity
between services on each dimension is measured concurrently. If the context of service changes, MDM
just needs to re-measure the similarity of changed dimensions, rather than existing approaches which
require re-measuring the whole similarity. Thus, compared with dimension-mixed approaches, MDM
is more accurate and efficient. After that, based on the result of similarity measurement, we employs
density-peaks-based clustering [20] to divide services into clusters according to the distribution of their
similarity. The similar service clusters are generated automatically without the artificial estimating of
parameter (e.g., cluster size or number of cluster). Different services have personalized cluster sizes,
which take the heterogeneity of service context into consideration. After clustering, the agile service
matchmaking and discovery are possible. In particular, this paper has the following contributions:
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1. This paper proposes the MDM algorithm for measuring the similarity between IoT services
based on multidimensional service model. The accuracy and efficiency of MDM outperform the
dimension-mixed approaches.

2. MDM algorithm employs a density-peaks-based clustering approach to gather similar services
together according to the actual distribution of services. It avoids the complicated process of
estimating or optimizing parameters.

3. To evaluate the applicability of proposed approaches, we use a combined data set including real
and synthetic data. The experiment results indicate that the performance of proposed approaches
are applicable to real-life scenarios.

2. Preliminaries: Multidimensional Service Model and Model Vectorization

A series of works have been proposed to formally describe IoT services in ontology models, such
as references [21–28]. However, existing models mix multiple feature dimensions of IoT service to
construct complicated models. Therefore, in a model hierarchy multiple classifying criterions are
referenced. The dimension-mixed model cannot obtain a well-defined taxonomy structure, and the
distance and positional relationships between nodes are meaningless to reflect the similarity between
services. Therefore, using semantic structure-based algorithms to measure the similarity between
services will not achieve a satisfactory accuracy. Besides, the restrictions and property descriptions of
different dimensions interfere with each other when measuring similarity based on service descriptions.

Based on the multidimensional service model proposed in our previous work [29], the service
classification, service properties, and property constraints of each dimension are well defined. Then,
the MDM algorithm discussed in Section 3 can calculate the similarity between services on each feature
dimension accurately and concurrently. To reflect the similarity meeting the perspectives of different
users, the whole similarity values are aggregated by users’ personalized weight values. In this section,
four representative dimensions are described to demonstrate the idea of multidimensional model,
shown in Figure 1. The other parts of service model and the detailed discussion about the problem of
existing model are presented in [29].

Figure 1a shows the dimension of observation principle, which is based on the standard definition
of observation physical principle described in [30]. As a sensor is a converter of transforming
nonelectrical effects into electrical signals, several steps are needed before outputting the electric
signal. For example, the measurement principle of capacitive water-level sensor is dielectric-constant.
This sensor is fabricated in a form of a coaxial capacitor where the surface of each conductor is coated
with an isolating layer. If the water level increases, water occupies more and more space between
the coaxial conductors, then transforming the capacitance. The model of this dimension is helpful to
discover suitable services according to users’ application scenarios. For instance, magnetic sensors are
unfit for the environment with magnetic interference.

Figure 1b depicts the dimension of observation quantity type. It defines the physical quantities that
be measured by the IoT services. The quantity type model is a key criterion for service matchmaking;
it avoids the ambiguous representation of physical quantity. For instance, the services of body
temperature and environment temperature have the similar type of output. Without an exact definition
of quantity type, a body temperature service may be offered to user when he requires observing the
ambient temperature. The model is constructed based on the Climate and Forecast standard of W3C
CF (Climate and Forecast)-feature ontology [31], which makes a standard definitions for common
observed physical quantity. For instance, it has more than 50 quantity types to express temperature,
such as surface air temperature, canopy temperature, and dry-bulb temperature, etc.

Figure 1c indicates the dimension of application domain deriving from reference [30].
This dimension will help users to choose the services that are fit for their application domain.
For instance, if we select a service to measure the gas concentration in coalmine domain, the service
must be coalmine dedicated and “intrinsically-safe”.
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Figure 1d shows the measurement capability dimension. This model is derived from the capability
model of W3C SSN (Semantic Sensor Network) ontology [32]. Due to the performance of IoT service
may be influenced by operation environment, this model expresses the measurement capabilities of
services under certain conditions, consisting the concepts of sensitivity, frequency, drift, and accuracy,
etc. It can be used to check whether the service has been properly used or to determine how a service
will perform in a particular environment. It is also an important criterion for service matchmaking.
For instance, the capability of a temperature observation service is: with temperature −200 to 500 ◦C
the accuracy is ±1.0 ◦C, while from 500 to 800 ◦C it is ±0.5%.
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Based on the formally multidimensional model, the semantic similarity between IoT services can
be measured. Before measuring, the model of services should be vectorized, that is, transforming the
model description of a service to a tuple of terms. The model conversion approach of [33] is adopted.
After vectorization, the semantic concept C will be denoted as a tuple, as Equation (1) defines:

tuple =
{

C,
[
δi, γδi

]
,
[
oj, γoj

]
,
[
oj, Cx

oj

]
, Cx

oj
, λ

y
oj

}
(1)

where in OWL-annotated semantic documents, C is the name (or URI) of the concept C, each [] is a
property term including a property and its restriction, δi (i = 1 . . . n) is a datatype property of the
concept C, γδi is a restriction for the datatype property δi, oj(j = 1 . . . m) is an object property of the
concept C, γoj is a restriction for the object property oj, Cx

oj
(x = 1 . . . k) is a concept related by the object

property oj, and λ
y
oj is a Boolean operation between concepts Cx

oj
.

After the model vectorization, the semantic description of an IoT service i can be represented as
a tuple:

tuplei = {term1, term2, . . . , termi, . . . , termn}

Example 1. We use a simplified model structure (shown in Figure 2) to demonstrate the process of model
vectorization. In this model, C1 to C5 are classes that form the inheritance structure, s1 to s4 are service
instances (i.e., objects that belong to different classes). P1 and P2 are object properties that denote the
relationships between service instances. Assuming that we want to measure the similarity between s1, s2, and
s3. Before similarity measurement, we should vectorize the model of services into tuples as following according
to above discussion:

tuples1 = {s1, s3, C4, P2, typeO f , [typeO f , C4], [P2, s3]} ;

tuples2 = {s2, s3, C3, P2, typeO f , [typeO f , C3], [P2, s3]} ;

tuples3 = {s2, s3, C4, P1, typeO f , [typeO f , C4], [P1, s2]} ;
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3. MDM Similarity Measurement

Before clustering IoT services, the similarities (or distances) between services should be measured
based on MDM. MDM matches both the structure information of the model hierarchy and the
description of service properties, relations and restrictions. It employs Li’s approach [34] as the
similarity computing method of structure information, which proposed a hybrid semantic similarity
model by adopting a nonlinear model. For measuring the similarity of service description, based on
the model vectorization algorithm discussed in Section 2, it adapts the TF-IDF (Term Frequency and
Inverse Document Frequency) [35] and Cosine Similarity to calculate the similarity of service tuples.
By combining the similarity of structure and description, MDM can measure the similarity of every
dimension accurately and concurrently. Then, the overall similarity will be generated by aggregating
the similarity of multiple dimensions according to users’ preferences, for instance, allocating different
weights for different dimensions.

3.1. Structure Similarity

A series of algorithms for measuring structure similarity have been proposed, considering the
aspect of information content [15,16], depth in the hierarchy [36,37], semantic density [34,38], and
shortest path length [39,40], etc. In order to achieve a good similarity measure, Li [34] investigated the
effectiveness of a variety of strategies considering possible structure information. Its research results
demonstrate that comparing the performance against human common sense is the only way to evaluate
the quality of a method for calculating concept similarity. Therefore, the closer the result compares
with human judgment, the better it will be. The work of [34] has confirmed the hypothesis that the
human judgment of similarity is a nonlinear process. Its measurement algorithm, which models the
length and depth of shortest path into a nonlinear function and combines them by multiplication,
can obtain a dramatic improvement compared to previous methods. We employ their approach to
calculate the structure similarity of services. Given the service a and b, the structure similarity on
dimension i between their class C can be measured by Equation (2).

SimCi (a, b) =

{
e−αl · eβh−e−βh

eβh+e−βh i f Cai 6= Cbi

1 i f Cai = Cbi

(2)

where h denotes the depth of the subsume Class of Cai and Cbi, and l is the shortest path length
between Cai and Cbi. α and β are the impacts of l and h. Li [34] configures the optimal parameters that
α = 0.2 and β = 0.6. Under these parameters, the correlation coefficient between this measurement and
human similarity judgments is 0.8914, while correlation between different people is 0.9015. It indicates
that the measurement performs nearly at a level of human replication.
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3.2. Service Description Similarity

Assuming that S is the candidate service set S = {s1, s2, . . . , si, . . . , sm}, then according to
Equation (1), S can be represented as:

S = {tuple1, tuple2, . . . , tuplei, . . . , tuplem}

Then we construct the feature vector of each service using the TF-IDF. TF-IDF is the product of
two statistics: term frequency (TF) and inverse document frequency (IDF). The former is the frequency
of a term in a document, while the latter represents the occurrence frequency of the term across all
documents. It is obtained by dividing the total number of documents by the number of documents
containing the term and then taking the logarithm of that quotient. The higher TF-IDF of a term, the
more important it is for a document. In our study, corpus is the service set, document and term are
tuple and description term respectively. We adopt TF-IDF to calculate the frequency of terms in the
service tuple. The TF of a term in a service tuple is:

TFterm =
f

|tuple|

|tuple| is the size of terms of the tuple, and f is the occurrence frequency of term in this tuple. The
IDF of the term can be measured by:

IDFterm = log
|S|

|{tuple ∈ S : term ∈ tuple}|

The cardinality of service set S is denoted as |S|, and |{tuple ∈ S : term ∈ tuple}| represents the
amount of tuples that includes the term. Thus, the TF− IDF can be calculated by:

TF− IDFterm = TFterm · IDFterm

Then, a vector of a service by calculating the TF-IDF of terms in its tuple is obtained. For a service
s, its tuple tuples = {term1, term2, . . . , termi, . . . , termk} and its vector is:

vectors = {TFIDF1, TFIDF2, . . . , TFIDFi, . . . , TFIDFk}

The similarity between two vectors can be measured by the cosine-similarity. The IDF not only
strengthens the effect of terms whose frequencies are very low in a tuple, but also weakens the effect
frequent terms. For instance, the property subClassof: Thing occurs in most ontology concepts, then
the IDF of it is close to zero. Therefore, the terms with low IDF value will have weak impact on the
cosine similarity measurement. The description similarity on the dimension d between two services i
and j can be measured by:

SimPd(i, j) =
vectori · vectorj∣∣∣∣vectori||·||vectorj

∣∣∣∣ (3)

3.3. Multidimensional Aggregation

The similarity in the i dimension between two services a and b can be calculated by combining
simC (Equation (2)) and simP (Equation (3)). δ is the impact parameter which indicates the effect of
structure information on the similarity measurement.

Simi(a, b) = δ · simCi (a, b) + (1− δ) · simPi (a, b) (4)
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The similarity values of each dimension can be aggregated by weights according to the
users’ preferences:

Sim(a, b) =
n

∑
i=1

wi · simi(a, b) ,
n

∑
i=1

wi = 1 (5)

where n is the dimension number of semantic service model.

4. IoT Service Clustering

This paper employs density-peaks-based clustering [20] to divide services into clusters according
to the potential density distribution of similarity between services. Density-peaks-based clustering is a
fast and accurate clustering approach for large-scale data. After clustering, the similar services are
generated automatically without the artificial determining of parameter. The distance between two
services can be calculated by Equation (6):

Dist(a, b) = 1− Sim(a, b) (6)

4.1. Local Density and Distance Calculating

The density-peaks algorithm is based on the assumptions that cluster centers are surrounded
by neighbors with lower local density, and they are keep a large distance from other points with
higher density. Assuming that S = {si}N

i=1 is the service set that will be clustered, si is a service
of S, IS = {1, 2, . . . , N} is the set of index. For each service si in S, two quantities are defined: its
local density ρs and its distance θs from services of higher density. The local density ρ of service i is
defined as:

ρi = ∑
j

χ
(
dij − dc

)
(7)

where dc is a cutoff distance. If x < 0, χ(x) equals to 1, otherwise χ(x) = 0. θ is calculated by
measuring the closest distance between the service i and other services with higher density than i:

θi = min
j:ρj>ρi

dij (8)

For the service with highest density, its density is defined as: θi = maxj
(
dij
)
. Note that θi is much

larger than the typical nearest neighbor distance only for services that are local or global maxima in
the density. Algorithm 1 describes the procedure of calculating clustering distance. Firstly, the data
density are sorted in descending order, set {qi}N

i=1 is the index generated from the descending order, i
is the index of descending order and qi is the original index. Then, the clustering distance θi of service
si is calculated by θi = Dist(i, j), sj is the service that has larger density (than si) and closest to si. In S,
we use ni to denote the index of sj, namely, ni = j. {ni}N

i=1 is defined as:

nqi =


arg min

qj
j < i

{
dqiqj

}
, i ≥ 2;

0, i = 1.

(9)

The clustering distance of the point with largest density is defined as maxj
(
dij
)

that is the
maximum value of all data points, and the index is nq1

= 0.
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Algorithm 1. Calculating Clustering Distance

Input: F: the matrix of distances between services;
ρ: local density of each service;

Output: θ: the clustering distance of each service;
nqi

: the index of service that has larger density and closest to sqi
;

Sort in descending order by density ρ

1: {ρi}N
i=1

2: qi←descending order index of density;
Distance assignment of θ

3: {ni}N
i=1← 0;

4: for i:=1 to N do
5: θqi←dmax;
6: for j:=1 to i−1 do
7: if dist(sqi

, sqj
) < θqi then

8: θqi = dist(sqi
, sqj

);
9: nqi

= qj;
10: end if
11: end for
12: end for
13: θq1 = max

j≥2
θj;

4.2. Cluster Center Selecting

For services {xi}N
i=1 in S, their local density and clustering distance can be calculated: {(ρi, θi)}N

i=1.
Cluster centers are the services that have both large ρ and large θ. In order to eliminate the difference of
magnitude, the ρ and θ of each service are normalized to [0,1]. Then, the values that are comprehensive
consideration of ρ and θ are calculated:

γi = ρiθi, i ∈ IS (10)

Obviously, the higher value of γ, the more likely it becomes a cluster center. {γi}N
i=1 are sorted in

descending order. The sorted γs are drawn on the coordinate plane, the horizontal axis is the index of
γ, the vertical axis is the value of γ, as shown in Figure 3. This coordinate plane is defined as decision
graph. In addition, then a number of service points are intercepted from front to back as the cluster
centers. The decision graph shows that the γ values of cluster centers are larger and discrete, while
non-center services are continuous and smooth. The transition of γ value from the cluster centers to
the non-center services has a significant “jump”, this “jump” can be detected by numerical detection
method [41]. Therefore, the cluster center of the dataset S will be determined according to decision
graph and numerical detection method.
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4.3. Cluster Assignment

After the center of every cluster is assumed, the next step is to assign non-center services to
clusters. Algorithm 2 describes the procedure of cluster assignment. Each service are assigned in the
order of density descending, which is from the cluster center services to the cluster core services to the
cluster halo services in the way of layer by layer.

Suppose that nc is the total number of cluster centers, naturally, the number of clusters is also
nc.
{

mj
}nc

j=1 is the index of corresponding service for each cluster center, i.e., service smj is the center

of the jth cluster. {ci}N
i=1 is the cluster of each service belongs to, i.e., service si belongs to cluster ci.

According to the definition of {ni}N
i=1 in Equation (9), ni is the index of service which has larger density

than ith service (si) and closest to si.

Algorithm 2. Cluster Assignment

Input: qi: the descending order of index according to density ρ;{
mj

}nc

j=1
: the index of cluster center of cluster j;

nc: total number of clusters (centers);
nqi : the index of service which has larger density than sqi and closest to sqi ;

Output: {ci}N
i=1: the cluster of each service belongs to, i.e., si belongs to ci;

1: {ci}N
i=1 ← −1 ; //initialization of ci

2: for j:=1 to nc do
3: cmj =j; //cluster centers
4: end for
Non-center services assignment
5: for i:=1 to N do //descending order of index
6: if cqi = −1 then
7: cqi = cnqi

;
8: end if
9: end for

If the dataset has more than one cluster, each cluster can be furthermore divided into two parts:
cluster core and cluster halo. The cluster core with higher density is the core part of a cluster. The
cluster halo with lower density is the edge part of a cluster. The procedure of determining cluster core
and cluster halo is described in Algorithm 3. We define the border region of a cluster as: the border
region of cluster c1 is consisted by the services si that belongs to c1, and the distance between si and sj

(which belongs to another cluster c2) is less than dc. An average density bound is defined as
{

ρb
ci

}nc

i=1
,

ρb
ci

is the average density bound of cluster ci. If the density ρ of service s is larger than ρb
ci

, then service
s belongs to the core part of cluster ci; otherwise, it belongs to the halo part of cluster ci.

After clustering, the similar service neighbors are generated automatically without the estimation
of parameters. Moreover, different services have personalized neighbor sizes according to the actual
density distribution, which may avoid the inaccurate matchmaking caused by constant neighbor size.



Sensors 2017, 17, 1727 11 of 17

Algorithm 3. Determining Cluster Core and Cluster Halo

Input: F: the matrix of distances between services;
dc: cut-off distance;
{ci}nc

i=1: the cluster of each service belongs;
Output: {hi}N

i=1: the signal of core or halo that service si belongs to;

Initialization
1: {hi}N

i=1 ← 0;

2:
{

ρb
ci

}nc

i=1
← 0;

3: for i:=1 to N−1 do
4: for j:=I + 1 to N do
5: if ci 6= cj and dist

(
si, sj

)
< dcthen

6: ρij =
1
2

(
ρi + ρj

)
;

7: if ρij > ρb
ci

then

8: ρb
ci
= ρij;

9: end if
10: if ρij > ρb

cj
then

11: ρb
cj
= ρij;

12: end if
13: end if
14: end for
15: end for
16: for i:=1 to N
17: if ρi < ρb

ci
then

18: hi = 1; //belongs to halo part of cluster ci
19: end if
20: end for

5. Experimental Evaluation

In this section, we evaluate the performance of proposed MDM measurement and service
clustering. We use a combined data set including real and synthetic data, which collects service from
multiple sources and adds essential service instances and descriptions. The data sources of combined
service set are shown in Table 1. In this paper, 510 real sensor services are collected from 6 sensor sets,
including indoor and outdoor sensors. Then, the amount of service is expanded to 1000, and essential
semantic service descriptions are supplemented for similarity measuring. The experimental evaluation
is performed under the environment of 64-bit Windows 7 Professional, Java 7, Intel Xeon Processor
E5-2650 2.3GHz processor, and 32 GB RAM. Section 5.1 discusses about the performance of MDM, and
Section 5.2 discusses about the performance of service clustering.

Table 1. Service set.

Source Number of Services Number after Expansion

Outdoor

ABM 105 200
LSM 100 200

CCMWS 93 200
DHCIS 76 200

Indoor
IntelLab 54 100

MavHome 82 100

Total 510 1000
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5.1. Performance of Similarity Measurement

To evaluate the performance of similarity measurement, we employ the most widely used
performance metrics from the information retrieval field. The performance metrics in this experiment
are defined as follows:

Precision. Precision is used to measure the preciseness of a search system. Precision for a single
service refers to the proportion of matched and logically similar services in all services matched to this
service, which can be represented by the following equation:

Precision =
|A ∩ B|
|B|

where A is the number of logically similar service and B is the number of matched services calculated
by MDM.

Recall. Recall is used to measure the effectiveness of a search system. Recall for a single service is
the proportion of matched and logically similar services in all services that are logically similar to this
service, which can be represented by the following equation:

Recall =
|A ∩ B|
|A|

F-measure. F-measure is employed as an aggregated performance scale for a search system. In this
experiment, F-measure is the mean of precision and recall, which can be represented as:

F−measure =
2× Precision× Recall

Precision + Recall

When the F-measure value reaches the highest level, it means that the aggregated value between
precision and recall reaches the highest level at the same time.

In order to filter out the dissimilar services with lower similarity values, an optimal threshold
value is needed to be estimated. In addition, the aggregative metric of F-measure is used as the
primary benchmark for estimating the optimal threshold value. Besides, parameter δ is the impact
of description and structure similarity for similarity measuring. To obtain the best performance, an
optimal δ value should also be estimated. The initial values of two parameters are set to 0, and
increasing incrementally by 0.1 until 1.0.

Figures 4 and 5 demonstrate the variation of F-measure values of dimension-mixed and
multidimensional model as the changing of these two parameters. When the value of F-measure
reaches the highest point, it achieves the best performance, and the optimal value of threshold and δ

will be determined. As Figures 4 and 5 indicates, δ = 0.5 and threshold = 0.8 are the optimal values
of dimension-mixed model, and the F-measure is 40 with these parameters; meanwhile δ = 0.7 and
threshold = 0.7 are the optimal values of multidimensional model, and the F-measure is 63 with
these parameters. Besides, the overall F-measure values of multidimensional model are higher than
dimension-mixed model.

The performance comparison between multidimensional and dimension-mixed model is shown
in Figure 6. As the results indicate, the performance of similarity measurement based on the
multidimensional model outperforms to the dimension-mixed way. The reason is that, employing
the multidimensional model, both description similarity and structure similarity can be measured
accurately. For the structure similarity, each dimension has a well-defined semantic structure in which
the distance and positional relationships between nodes are meaningful to reflect the similarity between
services. For the description similarity, each dimension only focuses on the descriptions that are
contributed to expressing the features of current dimension. Conversely, using the dimension-mixed
way, which mixes the semantic structures and descriptions of all dimensions into a complicated model,
the measurement can only obtain an overall similarity value.
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5.2. Performance of Service Clustering

In this section, we evaluate the performance of clustering. The number of service that will be
clustered is 1000 with essential semantic description and structure, as Table 1 describes. The cut-off
distance dc for calculating local density of services is set to 0.03. As Figure 7 shows, although the
service set is high overlap in data distribution, the proposed approach successfully detects the cluster
structure. The services are clustered into 5 clusters, the borders of clusters are clear, and each cluster is
dense and compact.
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The size of service set and the number of feature dimensions are two important factors to evaluate
the efficiency of proposed clustering approach. Figure 8 shows the time of clustering as the size of
services is increased from 100 to 1000. The time of clustering 1000 services is 3.2 s. The results show
that the clustering time is linear with respect to the number of IoT services to be clustered, and the
clustering time of hundreds services is controlled within a few seconds. Figure 9 shows the time of
clustering as the dimensions of service model increasing from 1 to 10. The number of services that
will be clustered is set to 1000. The minimum clustering time is 2.8 s, when there are four feature
dimensions of the model; and the maximum clustering time is 3.3 s, when the number of feature
dimensions is eight. The results show that the clustering time will not increase as the increase of
dimension number. It is because that MDM measures each dimension’s similarity concurrently. Thus,
the whole time of measuring similarity of all dimensions is equal to the time of single dimension that
takes longer time than other dimensions. Besides, the clustering is based on the measurement result of
MDM (distances between services), it will not be influenced by the dimension number. Therefore, the
proposed approaches improve the accuracy of similarity measurement and service clustering in the
condition of not increasing the computation time.
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The experimental results demonstrate that, the proposed clustering approach is able to cluster
hundreds of IoT services in a reasonable amount of time. In the application domains of IoT SOC
paradigm, the number of services usually does not exceed several thousands. Besides, if the scale
of services is very large, the service clustering can be performed offline. Thus, the performance of
proposed clustering approach is competent for applying in real application scenarios.

6. Conclusions

This paper proposes a multidimensional model-based approach to measure the similarity between
IoT services. Then, density-peaks-based clustering is employed to gather similar services together
according to the result of similarity measurement. A combined data set is used to evaluate the proposed
approaches, which collects service from multiple sources and adds essential service instances and
descriptions. The experiment results demonstrate that the performance of proposed approaches are
promising and applicable to real-life scenarios.

Currently, the experiments are conducted using a centralized single dataset, and the size of test
set is limited. Our future works include extending the experiments using distributed datasets and
expanding the number of service set. Moreover, we plan to propose a quantitative model to diagnose
the quality of service clustering, then to determine when the clustering structure becomes unacceptable
and require re-clustering as the evolution of services.
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