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Abstract: Rats use their whiskers as tactile sensors to sense their environment. Active whisking,
moving whiskers back and forth continuously, is one of prominent features observed in rodents.
They can discriminate different textures or extract features of a nearby object such as size, shape
and distance through active whisking. There have been studies to localize objects with artificial
whiskers inspired by rat whiskers. The linear whisker model based on beam theory has been used
to estimate the radial distance, that is, the distance between the base of the whisker and a target
object. In this paper, we investigate deflection angle measurements instead of forces or moments,
based on a linear tapered whisker model to see the role of tapered whiskers found in real animals.
We analyze how accurately this model estimates the radial distance, and quantify the estimation
errors and noise sensitivity. We also compare the linear model simulation and nonlinear numerical
solutions. It is shown that the radial distance can be estimated using deflection angles at two different
positions on the tapered whisker. We argue that the tapered whisker has an advantage of estimating
the radial distance better, as compared to an untapered whisker, and active sensing allows that
estimation without the whisker’s material property and thickness or the moment at base. In addition,
we investigate the potential of passive sensing for tactile localization.
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1. Introduction

Many animals have particular sensor systems to sense their environment. Bats are well known to
use echolocation system with ultrasonic sensors [1]. Weakly electric fish living in turbid water generate
electric discharge and read an image of electric field in order to catch their prey [2]. Sand scorpions
can detect surface waves of vibration caused by prey movement [3]. Rodents are known to use their
whiskers to recognize objects in the environment [4]. Harbor seals also use their whiskers to detect
water trails generated by their prey fish. [5–7]. Rats actively move their whiskers while the harbor seal
does not [8–11].

Rats use their whiskers for texture discrimination or feature extraction of nearby objects.
Many researchers have attempted to apply the whisking property into biomimetic systems by
designing artificial whisker sensors which could discriminate different textures [12,13], estimate radial
distances [14–19], object features [20,21] and terrain mapping [22].

In the attempt to mimic the ability of the rat’s texture discrimination, Fend et al. [23] used a
whisker sensor attached to a mobile robot in order to perform texture discrimination. Kim and
Moeller [24] also performed a texture discrimination task using a biomimetic whisker sensor.
Lepora et al. [12,13] attached a whisker sensor to a Roomba robot and swept the floor surface and
classified different types of surfaces using the whisker deflection measurement. The classification was
based on Naive Bayes algorithm.
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One of the most popular applications of the whisker sensor is radial distance estimation, which
estimates the Euclidean distance between the base of the whisker and the contact point with a target
object. Birdwell et al. [17] showed a method to estimate radial distance using a tapered whisker
deflection and a method using moment and angular velocity of the whisker. Novel methods for
estimating the radial distance were also made using the tapered whisker [18]. While many methods
for contact point estimation are based on the linearized Euler-Bernoulli equation, some methods are
based on the nonlinear Euler-Bernoulli equation. Methods based on the nonlinear Bernoulli-Euler
equation using torque and force measurements reconstructed the whisker shape, which allowed it to
find the radial distance. One study was implemented to measure radial distances of an object in 2-D
space [25], while another was for measuring radial distances of an object in 3-D space [15].

Also, the antenna of insects have been mimicked and a mathematical model was introduced
to describe the dynamics of the antenna sensor when sensing or estimating radial distance, where
the torque information is crucial [16,26–28]. Objects which have no sharp edges could often occur
longitudinal slip or lateral slip. Analysis of slip was given in the work by [19]. Solomon and Hartmann
proposed a method to estimate contact point location, even in situations where lateral slip exists when
a good estimation of the friction coefficient could be made [14]. They also have made an algorithm
which could account for longitudinal slip by constantly updating the contact positions using torque
information [21]. In these works, torque information was crucial as well. Instead of using torque
or force measurements, by measuring a deflection angle at a point of the whisker sensor, the radial
distance could be estimated even without knowing the rotational stiffness of the whisker [19,24,29].

The whisker sensors have an advantage over other proximity sensors including laser, sonar and
infrared sensors. They can be relatively easily designed with a cheap cost. They can provide a time
course of distance information in a sweeping mode and furthermore shape information [19]. In a close
distance, multiple whiskers can provide spatial information for the surrounding environment. The
tactile signals are invariant to the environmental conditions. In contrast, infrared or sonar sensors are
affected by what type of objects are probed, and their reflected signals may change.

Recently, there have been many studies to develop artificial whisker sensors, inspired by both
rat whisker and seal whiskers [30–32]. Interestingly, the whisker sensors with an undulatory form to
model harbor seal whiskers can reduce vortex-induced vibrations in the underwater [30].

Whisker sensors were also used in other applications, such as air flow measurements. Solomon
and Hartmann [20] have proposed that a whisker sensor array, where the individual whisker shaft’s
cross section is similar to a long rectangle, could accurately measure a stationary air flow velocity
when it is blowing perpendicular to the sensor shaft. Rooney et al. have attached an actively moving
whisker sensor on a moving underwater robot in order to guide the robot [33]. Schultz et al. [22] has
proposed various types of applications which may be appropriate for a hovering robot in Mars, such
as rover speed estimation, wheel slip detection, surface roughness measurement.

Many studies are also related with whisker morphology and the mechanical characteristics.
Towal et al. [34] quantified the morphology of rats’ whiskers using 3D and 2D scans. They set
up equations to approximate rat whiskers’ location and shape. Such approximation of whisker
array morphology into a set of equations, and such models could simulate how the rats will sense
objects. Also, the characteristics of the actual rat’s whiskers have been investigated. Hartmann et al.
investigated the mechanical characteristics of whiskers including the resonant frequencies depending
on each whisker [35] while Quist et al. have shown that Young’s modulus varies [36]. The rats are
known for their ability to discriminate different types of textures [37–39].

Figure 1 shows a schematic diagram for whisker contact with an object. Here, we assume that
there is a single point contact with a target object since the whisker has bending stiffness. If the target
object is round, the contact point on the whisker will shift during active whisking, and the contact
distance from the base will change. It may provide the shape information of the target. If the target
object has a sharp corner, the contact distance will be unchanged as the whisker slides over the object
surface. Here, we assume that the whisker has a point contact for distance estimation. Furthermore,
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a set of whiskers can collect more information about a target object or the surrounding environment.
Multiple whiskers are helpful to detect the distance of a target object and recognize its shape [19].
Interestingly, it is reported that there are parallel neural pathways for signaling multi-whisker signals
to the barrel cortex [40,41].

Figure 1. The schematic of the active whisker sensor system. Radial distance is defined as ’distance
between whisker sensor’s pivot point to whisker-object contact point. θ0 denotes the protraction angle,
λ is the deflection angle measured by sensors at position h, and the tangential angle at sensor θ1 is
calculated as θ1 = θ0 − λ.

Williams and Kramer [42] showed advantages of a tapered whisker. First, maximal deflection and
protraction of a tapered whisker were compared with a cylindrical (untapered) whisker and it was
concluded that tapered whiskers have a smaller maximum deflection angle, and a smaller maximum
protraction angle which may increase the spacial acuity. Also, the rotational stiffness was compared
with both types of whiskers. It was shown that the tapered whisker’s rotational stiffness changed more
drastically compared to the cylindrical whisker. Finally, it was shown that tapered whiskers’ natural
frequency varied less compared to the cylindrical whisker when both had a tip break.

In this paper, we handle tapered whiskers, which more closely resemble real animal whiskers,
and derive an analytic model to estimate the radial distance. We first check the noise robustness of
the analytical model which can estimate the radial distance under active sensing using two angle
information, protraction angle and deflection angle. We take a SNR test on the tapered whisker model
for noise sensitivity analysis. We apply the nonlinear Bernoulli-Euler equation for large deflection
angles, since the linearized equation assumes that the deflection is small. To quantify the error of radial
distance estimation, the analytical data will be compared with numerical nonlinear solutions even
with large deflection angles.

Here, we argue that tapered whiskers have advantages in the sense that they are more robust to
noise when estimating the radial distance. Noise robustness of the tapered whisker and the cylindrical
whisker will be compared in simulation experiments. We note that active sensing can play a crucial
role in estimating the radial distance. We also propose that by using two different deflections on the
whisker, it is possible to estimate the distance. Advantages of the tapered whisker will be discussed in
details by analyzing our results.
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2. Methods

Active whisking is one of interesting properties observed in real rodents. To analyze the radial
distance estimation of whiskers, we handle three types of whisker models. To see the deflection
property of the whisker depending on the contact distance, we use Bernoulli-Euler equation.

2.1. Linear Cylinder-Type Whisker

Using the protraction angle and deflection angle at the location of the sensor on the whisker,
the radial distance can be estimated [19,24,29]. This analytical model assumes that the whisker is
under active sensing, which means it rotates the whisker for contact. The distance from the base of the
whisker to the contact point of an object is called radial distance. The relationship with the tangential
angle at an arbitrary location x of the whisker or radial distance can be expressed as

EItan θ =
τ

2d
x2 − τx +

1
3

τd (1)

where E is Young’s modulus, I is the moment of inertia, θ is the tangential angle at x and τ is the
bending moment (rotational force) at whisker base.

We denote the protraction angle as θ0 and the tangential angle at sensor postion x = h as θ1

(where θ1 = θ0 − λ, and λ is deflection angle at a position h) and obtain the Equation (2).

tan θ1

tan θ0
= (

3h2

2d2 −
3h
d

+ 1) (2)

We can choose another sensor position rather than the whisker base (x = 0). Two sensor positions
(x = h1, x = h2) can be applied to the Equation (1). Then

tan θ1

tan θ2
=

3h1
2 − 6dh1 + 2d2

3h2
2 − 6dh2 + 2d2

(3)

We need to note that the above linearized equation from Bernoulli-Euler equation only works for
small angles.

2.2. Linear Tapered Model of Whisker

The analytical linear model [19] is based on a cylinder shaped whisker. Here, we derive an
equation for a tapered whisker. The linear equation of deflection of a tapered whisker was given by
Birdwell et al. [17]. The relationship of bending moment at base, radial distance and tangential angle is

Eα
dy
dx
|x=0= Eαtan θ0 = (

L + 2d
6L3 +

1
d
(

d + 2L
6L2 − 1

3(L− d)
))

M
d

(4)

Eα
dy
dx
|x=h= Eαtan θ1 = (

L + 2d− 3h
6(L− h)3 +

1
d
(

d + 2L
6L2 − 1

3(L− d)
))

M
d

(5)

where α = π/4(rbase/4)4 , L is the length of whisker, d is the radial distance, M is the moment at base
and h is the sensor position from the base. Dividing Equation (4) by Equation (5), we remove M and α.
The tangential ratio equation is derived as

tan θ1

tan θ0
=

(L + 2d− 3h)/[6(L− h)3] + 1
d ((d + 2L)/(6L2)− 1/[3(L− d)])

(L + 2d)/(6L3) + 1
d ((d + 2L)/(6L2)− 1/[3(L− d)])

(6)

d =
−B−

√
B2 − 4AC

2A
(7)

where A, B and C are the coefficients are defined below:
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A =
tan θ1/tan θ0

3L3 − 1
3(L− h)3 , B =

L + 3h
6(L− h)3 −

1
6L2 , C =

L2 − 3hL
6(L− h)3 −

1
6L

(8)

If there are two sensor positions, h1 and h2, we can still use the tangential ratio to estimate the
radial distance (see Appendix A) as follows:

tan θ1

tan θ2
=

(L + 2d− 3h1)/[6(L− h1)
3] + 1

d ((d + 2L)/(6L2)− 1/[3(L− d)])

(L + 2d− 3h2)/[6(L− h2)3] + 1
d ((d + 2L)/(6L2)− 1/[3(L− d)])

(9)

The sensor position h2 = 0 leads to Equation (5).

2.3. Numerical Method of Whisker Simulation

Previous models are based on the linearized Bernoulli-Euler equation M/EI = dφ/ds =−d2y/dx2.
The actual Bernoulli-Euler equation can be written as follows:

1
r
=

M
EI

=
dφ

ds
= − d2y/dx2

[1 + (dy/dx)2]3/2 (10)

where the bending moment is proportional to the curvature, r is the radius of curvature, the
tangential angle of the beam is defined as φ, and the curvature is given by dφ/ds where s is the arc
length along the beam. Since it is difficult to solve Equation (10), a numerical method is used. For
this, the whisker can be divided into N elements. In order to know how the whisker shaft will deflect,
Mi/EIi for each element i should be given [21].

When a force and its location are given, the moment M for each point on the whisker can be
known, since Mi = ri × F where Mi is the moment on the i-th element, ri is the distance between the
force and the element, and Ii is the moment of inertia of the i-th element. After calculating Mi/EIi for
i = 1, ..., N, φ can be obtained as well by integrating M/EI over ds. Since φ is known, (x, y) position for
every element can be estimated. Hence, the whole deflection can be reconstructed. However, it should
be noted that when (x, y) position for each element changes, so will ri and ultimately Mi/EIi will
change. Hence, this calculation should be done iteratively until the results converge. The results can be
validated by inserting x and y in −d2y/dx2/[1 + (dy/dx)2]3/2 in equation (11) to see if it is identical
to M

EI .

2.4. Passive Sensing

Active whisking needs a rotational movement to sweep a whisker close at the base—see Figure 1.
In contrast, a point load (force) is applied to a static cantilever arm with fixed-free condition. This
condition is different from active sensing, but the deflection of the beam can be observed. We call it
passive sensing. If there are two sensors to measure the tangential angle or slope angle, the tangential
ratio can estimate the radial distance as follows:

tan θ1

tan θ2
= (

dy
dx
|x=h1)/(

dy
dx
|x=h2) =

(L− h2)
3[L3(L− 3h1 + 2d)− (L− h1)

3(L + 2d)]
(L− h1)3[L3(L− 3h2 + 2d)− (L− h2)3(L + 2d)]

(11)

Also, the sensors can measure the deflection displacements at two positions. The ratio of the
measurement can produce the distance information.

Y(h1)

Y(h2)
=

[
d− L

6(L− h1)2 +
1

2(L− h1)
] + C1h1 + C2

[
d− L

6(L− h2)2 +
1

2(L− h2)
] + C1h2 + C2

(12)

where C1 and C2 are constant parameters determined by boundary conditions and Y(x) is the vertical
displacement at a given position x (see Appendixes B and C).



Sensors 2017, 17, 1659 6 of 23

3. Experimental Results

We simulated the whisker deflection based on the models mentioned above using MATLAB 2011a
in a computer Intel Core (TM) i5-2500 CPU (3.30 GHz quad-core). The radial distance estimation based
on the linear models will be demonstrated and the estimation errors will be compared. We investigate
the noise sensitivity of a cylindrical whisker and a tapered whisker to see if there is any advantage of
one or the other type of whisker to estimate the radial distance. We will test if the tangential angles at
two sensor positions, that is, the tangential ratio is effective for tactile localization of a whisker.

3.1. Results with Linear Cylinder-Type Whisker

We initially tested a classical whisker model, a linear cylinder-type whisker. Figure 2a shows the
estimation of radial distance depending on the tangential ratio. The robustness to noise using the linear
model is shown in Figure 2b. It is shown in Equation (2) that two angle informations are sufficient
to estimate the radial distance. We note that when these angle values are noisy, the tangential ratio
will vary, giving an estimate with error. Interestingly, Equation (2) shows that without the moment
information and Young’s modulus, the radial distance can be estimated.
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Figure 2. Torque invariance characteristic of analytical model (a) x-axis: radial distance, y-axis:
tan θ1/tan θ0, (b) The variation of radial distance estimation with noise applied relative to the size
of each angle, θ0 and θ1. Using the given analytic equation, radial distance d can be estimated with
tan (θ1 + ε)/tan (θ0 + ε), where ε is gaussian noise (sensor position h = 0.1).

The moment invariance characteristic in Equation (2) may only be valid because the system is
linearized; regardless of any bending moment, the distance can be estimated with the tangential ratio.
To see if the moment invariance characteristic holds even for cases where large deflection occurs, the
numerical method was used. For the analytical equation, the two parameters to decide the tangential
angle θ1 are moment τ and radial distance d. In contrast, the numerical method needs a force at the
point load P, and the point where the contact is held on the whisker.

Therefore, we first take numerical simulation by varying the position of point load and the
magnitude of load. From the point load, the whisker deflection can be estimated, and then we can
extract the actual radial distance, protraction angle and deflection angle. Hence, we can increase the
point load magnitude and change the protraction angle. It should be noted that actual radial distance
will generally becomes smaller as the point load magnitude is larger.

From the simulation results, we can extract the actual protraction angle and deflection angle. Since
it is assumed that the whisker sensor will only be given these two values, the estimated radial distance
was given by using these two information plugged into the linear model expressed in Equation (2).
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The estimated radial distance can be compared with the actual radial distance, and the estimation error
can be calculated. The radial distance estimation error is defined as

err(%) =
|dactual − dest|

dactual
× 100 (13)

where dactual denotes actual radial distance and dest denotes estimated radial distance. In Figure 3, the
error relationship with protraction angle and the actual radial distance is shown. Because the radial
distance cannot be controlled to be constant, the data is discriminated with radial distance ranges.
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Figure 3. Linear model of cylindrical whisker’s estimation error analysis. The radial distance estimation
error (a) shown with protraction angle θ0 and radial distance, and (b) shown with only protraction
angle θ0. The larger the protraction angle, the larger the error becomes as expected (the estimation
error is calculated as (dactual − dest)/dactual).

As expected, when the protraction angle is small, the radial distance estimation error is close
to zero. When the protraction angle increases, the magnitude of error will increase. The simulation
results also show that when the radial distance is smaller than a certain value, then the radial distance
will be overestimated while the other cases will overestimate it. Anyway, the linear model will be
quite accurate as long as the protraction angle is under approximately 15 degrees regardless of actual
radial distance.

3.2. Results with Linear Tapered Model of Whisker

We examined the whisker deflection using linear tapered model. Using the same information,
θ0 and θ1, the radial distance can be estimated even with a tapered whisker. To verify if the derived
linear equation is correct, simulation results of the linear equation are compared with the numerical
method. Such validation is shown in Figure 4. We initially take numerical simulation for a point load
with position and magnitude, and estimate the deflection of a tapered whisker. After a numerical
simulation, the bending moment at base and the actual radial distance d can be extracted. Using these
two parameters, the deflection of a tapered whisker based on the linear model can be given. The
simulation results are compared and it is clearly seen that when protraction angle is small, the results
closely match but the gap increases as the protraction angle increases (or as the point load magnitude
increases). This simulation result validates the linear tapered model.
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Figure 4. Bending tapered whiskers. Comparison with numerical methods and linear methods. Several
cases with different moment values when radial distance is 0.3 are shown. The red dashed lines are the
result of linear simulation while the other colored solid lines are the results of the numerical method.
It is shown that for small protraction angle, the results are closely matched.

Figure 4 gives a rough idea of how the numerical method and the linear model differ for a tapered
whisker, and Figure 5 provides a more thorough comparative analysis. In Figure 5a,b, it is clearly seen
that the estimated radial distance is always overestimated regardless of protraction angle and radial
distance. Also, if the protraction angle and/or radial distance is small, the estimation error will be
small as expected.
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Figure 5. Comparison of results of linear model and numerical method for tapered whisker. (a) radial
distance (actual) vs. tangential ratio (b) radial distance (actual) vs. radial distance (estimated).

We checked how the parameters such as protraction angle and moment influence the radial
distance estimation as shown in Figure 6. The estimation error is involved with those parameters,
Figure 6a–d can reveal the main characteristics. Figure 6a,b give similar results since the actual
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radial distance and estimated radial distance are somewhat similar. From these figures, small angle
protraction and small radial distance will result in small estimation error. When protraction angle is
large, the estimation error will be large as well. It should be noted that for the tapered whisker case, as
the point load is given closer to the tip, the error will greatly increase. This is due to the fact that when
the point load is near the tip, the tip will bend significantly since it has a low moment of inertia value
which will make large gap between the linear model and numerical method.

0.2 0.4 0.6 0.8 1
0

5

10

15

20

radial distance (actual)

e
s
ti
m

a
ti
o
n
 e

rr
o
r 

(%
)

 

 

0~5 deg

5~10 deg

10~15 deg

15~20 deg

20~25 deg

25~30 deg

30~35 deg

35~40 deg

0.2 0.4 0.6 0.8 1
0

5

10

15

20

radial distance (estimated)

e
s
ti
m

a
ti
o
n
 e

rr
o
r 

(%
)

 

 

0~5 deg

5~10 deg

10~15 deg

15~20 deg

20~25 deg

25~30 deg

30~35 deg

35~40 deg

(a) (b)

0 10 20 30 40
0

5

10

15

20

25

protraction angle θ0 (degree)

e
s
ti
m

a
ti
o

n
 e

rr
o

r 
(%

)

 

 

0.3 <radial distance < 0.4  

0.4 <radial distance < 0.5    

0.5 <radial distance < 0.6

0.6 <radial distance < 0.7

0.7 <radial distance < 0.8

0 1 2 3 4
0

5

10

15

20

25

moment 

e
s
ti
m

a
ti
o
n
 e

rr
o
r 

(%
)

 

 

0~5 deg

5~10 deg

10~15 deg

15~20 deg

20~25 deg

25~30 deg

30~35 deg

35~40 deg

(c) (d)

Figure 6. Linear model of tapered whisker’s estimation error analysis (legends in (a), (b), (d) indicate
protraction angles); radial distance estimation error shown with (a) radial distance (actual) (b) radial
distance (estimated) (c) protraction angle (d) bending moment at the whisker base (moment was scaled
by assuming E = 1 and rbase = 1).

Figure 6c shows interesting results. Most of the estimation error for radial distance is closely
related to the protraction angle. However, the estimation error will quickly escalate for large radial
distances. This result is consistent with Figure 6a,b. Figure 6d shows the relationship between bending
moment and estimation error, and the increase of bending moment generally decreases the estimation
error. Generally, for the same protraction angle, the larger the radial distance, the smaller the bending
moment will be. The high error cases occur where the radial distance becomes close to the whisker
length (the contact point close to the tip). For such cases, the moment at base would be small.

If the contact distance is small, large bending moment and small error can be expected. Small
protraction angle often has an advantage in maintaining small estimation error. Above all, the radial
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distance should be smaller than 0.4 times whisker length to keep less than 5% error. That is, if a target
object is relatively close to the whisker base, it can reduce the estimation error, although it may need
large moment. For an object with small radial distance, a large protraction angle can be allowed to
keep the small error. Sample points shown in Figure 6 were collected by changing the point load (force)
on many sample positions of the whisker. Subsequently the simulation determines the contact distance
and the bending moment as well as the curvature and protraction angle of the whisker. Many samples
of varying distances can be observed on the same protraction angle or the same moment as shown in
Figure 6.

3.3. Noise Robustness Comparison of a Cylindrical and a Tapered Whisker

In the previous sections, the inaccuracy occurrence due to large deflection has been quantified for
cylindrical and tapered whisker sensors. For real implementation, it is also very important for whisker
sensor systems to be robust to noise. In order to test such robustness for each whisker type, Gaussian
noise were added to both protraction angle θ0 and tangential angle θ1 described in Figure 1. Using
the two noisy angle information, the radial distance was re-estimated. All the simulations were based
on linear models. In order to assume that the simulation results are close to the actual system, the
protraction angle for all cases was fixed at 15 degrees.

For previous simulations, the sensor position was fixed. However, to see the effect of sensor
position as well as the radial distance, both parameters are changed. From Figure 7, it is shown that
as the radial distance increases, the estimation error increases for both cases. It can be intuitively
understood that the distance of a closer object could be estimated more accurately compared to that of
an object at a far distance.
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Figure 7. Error standard deviation as a function of radial distance and sensor position with tapered
whisker. All the simulations were done when protraction angle θ0 = 15◦.

Also, for both cases, the uncertainty or standard deviation will decrease as the sensor position
(distance from base) increases. This can be understood intuitively as well since if the sensor is very close
to the base, the protraction angle and tangential angle will be almost identical, not giving additional
information. However, the sensor position should not be too far or it would become impractical. The
difference between the tapered whisker and cylindrical whisker seems to be small in the perspective
of standard deviation, but the magnitude of the standard deviation of the tapered whisker sensor is
always smaller than of the cylindrical sensor, which means the tapered whisker is more robust to noise
when compared to the cylindrical sensor.
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In Figure 8a,b, different levels of noises were tested. For Figure 8a, Gaussian noise with σ = 0.1
degree and for Figure 8b Gaussian noise σ = 0.5 degree. While the estimates for small noise, both
methods seem to be usable, while the passive sensing method (stationary whisker with object moving
towards the whisker sensor) with larger noise seems to be unreliable, unless an appropriate estimation
algorithm is employed with multiple measurements.
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Figure 8. Radial distance estimation using analytical models of active and passive sensing (a) tapered
case; Gaussian noise [σ = 0.1◦] applied (b) tapered case; Gaussian noise [σ = 0.5◦].

Here, we derive an analytical model of a tapered whisker. Either passive or active sensing models
need at least two different angle information in order to estimate the radial distance without knowing
moment, rotational stiffness or force. For the active sensing case, only one deflection angle sensor on
the whisker is required if the DC motor has an encoder on it (encoder can measure protraction angle).
However, since there is no protraction angle in passive sensing case, at least two deflection angle
sensors are required. Putting the two sensor locations at h1 and h2, and the corresponding tangential
angles as θ1 and θ2, the radial distance d can be estimated through the following equation.

d =
(L− h2)

3(L4 − 3h1L3 − (L− h1)
3L)− k(L− h1)

3(L4 − 3h2L3 − (L− h2)
3L)

2k(L− h1)3(L3 − (L− h2)3)− 2(L− h2)3(L3 − (L− h1)3)
(14)

where k = tan θ1/tan θ2, the tangential ratio with θ1 and θ2.
Figure 9a compares the active and passive sensing using a cylindrical whisker sensor and Figure 9b

compares the active and passive sensing using a tapered whisker sensor. Figure 9c,d summarizes the
statistical characteristics in distance estimation of the cylindrical and tapered whisker for nine intervals
of radial distances by drawing multiple boxplots. Since each boxplot is a summarization of an interval
of estimated radial distances, it is bounded to have at least a small value even if the estimated radial
distances are exactly the same as the actual radial distances. Nevertheless, the boxplots distinguish the
statistical characteristics of distance estimation for active and passive sensing.
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Figure 9. Comparing radial distance estimation using the cylindrical and tapered analytical model for
active and passive sensing (distance 1 indicates the tip position) (a) cylindrical whisker: Gaussian noise
[σ = 0.25◦] (b) tapered whisker: Gaussian noise [σ = 0.25◦] (c,d) the mean and variance of the results
of (a,b).

From the results of Figure 9, the obvious conclusions are that the active sensing strategy is better
than the passive sensing strategy regardless of sensor type (cylindrical or tapered). Also, active tapered
whisker is slightly better than the active cylindrical whisker in terms of noise sensitivity, and the
passive tapered whisker is better than the passive cylindrical whisker.

3.4. Practical Considerations

While all the analytical models and numerical methods for tapered whiskers assumed that the
whisker is an ideal cone, either for actual animals and sensor manufacturing, such ideal shape cannot
exist. Even if one attempts to make one, the tip will break with great ease. Williams and Kramer [42]
measured the taper ratio of eleven types of animal whiskers, three whiskers for each animal and found
that some animals have small taper ratio whiskers (4 ∼ 9) while other animals, including the rat and
the mouse, had large taper ratio (10 ∼ 24), where the taper ratio is defined as ratio = rbase/rtip.
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In Figure 10, the relationship of radial distance - tangential ratio for various cases with different
taper ratio is shown. It can be seen that the taper ratio 1 (cylindrical whisker) to 5 differ greatly, 5 to
10 has a relatively small difference, and 10 to 1000 has a smaller difference. Hence, if the taper ratio
is approximately around 10, it could be regarded as a very close approximate of a tapered whisker
with almost zero tip width. We need to assume that the overall moment of inertia is similar for
such approximation.
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Figure 10. Simulations with different types of taper ratio. Taper ratio, defined as ρ = rbase/rtip varies
from 1 to 1000. Taper ratio 1 means that it is a cylinder-type whisker, and taper ratio 1000 indicates a
high slope of a tapered whisker (tip radius being close to zero).

In Figure 11, the tangential angle θ1 is given as a function of sensor position h and protraction
angle θ0. While Figure 11a, where radial distance is 0.5, the protraction angle could be extended to
approximately 45 degrees, and Figure 11b had radial distance 0.9 and the protraction angle could
be extended to approximately 10 degrees. From the simulation, we saved only the data when the
deflected whisker’s tip had the largest distance in the x-axis. When the radial distance was large, the
tip bended severely making the tip bend inside. Hence, Figure 11b only showed data for protraction
angle within 10 degrees.
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Figure 11. Tangential angle when the protraction angle and sensor position vary. (a) radial distance
fixed to 0.5, (b) radial distance fixed to 0.9. The tangential angle shown in (a) monotonically increases
when protraction angle increases. The tangential angle may decrease at a certain point in (b).

From Figure 11, two conclusions could be made. First, tapered whiskers touching objects with its
tip would flick due to its small rotational stiffness. This result is consistent with the results by Williams
and Kramer [42]. Since the difference between protraction angle and tangential angle is very small
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when the radial distance is large, it would be more difficult to discriminate radial distances. In other
words, it is more vulnerable to noise.

3.5. Radial Distance Estimation Based on Deflection Displacement

One could estimate the radial distance with two different deflection measurements (vertical
deflection). The deflection at a point and the moment can be expressed, assuming the whisker is of
cylindrical shape, as

EIy(x = h1) =
−τh1(h2

1 − 3dh1 + 2d2)

6d
(15)

EIy(x = h2) =
−τh2(h2

2 − 3dh2 + 2d2)

6d
(16)

where h1 and h2 are arbitrary points on the whisker, d is the radial distance, y(x = h) is the vertical
deflection at x = h and τ is the bending moment sensed at base. Using Equations (15) and (16), the
radial distance could be estimated from the following equation.

y(x = h1)

y(x = h2)
=

h1(h2
1 − 3dh1 + 2d2)

h2(h2
2 − 3dh2 + 2d2)

(17)

Like the other methods, using deflection displacement could also cancel the moment term. For
this method, there should be two sensors along the whisker sensor for radial distance estimation.

4. Discussion

There are methods to estimate the radial distance of a cylindrical whisker. In this paper, we
introduce two active whisking methods of distance estimation for tapered whiskers. One method uses
two different angle information, protraction angle and deflection angle. This method seems similar
to the approach using a torque sensor and an angular sensor [20,28], while the method handles the
deflection angle. The other model is based on two different deflection measurements. The idea can be
applied to both active sensing and passive sensing. The potential or limitation of localization with
passive sensing has not been studied in detail. We explored the potential in this paper.

We show an approach which can evaluate the accuracy of linear models in large deflection angles.
Through simulations which compare active and passive sensing as well as cylindrical (untapered)
and tapered whiskers, it could be concluded that active sensing provides better accuracy and
noise-robustness for distance estimation than passive sensing, and a tapered whisker has an accuracy
of estimating the radial distance, compared to a cylindrical whisker. The distance estimation is based
on deflection angles at two different sensor positions, or the protraction angle and deflection angle.

The results may be consistent with the work of Michenson et al. [43] since the deflection
of the whisker is correlated with the bending force in the follicle. From the results, we argue
that tapered whiskers have more advantages than cylindrical whiskers both in engineering and
biological perspectives.

4.1. Tapered Whisker

Tapered whiskers are often found in animals including rodents. Such tapered structure with small
cross section area at whisker tip has many advantages; it allows the whisker to probe small surface
features, it maintains smaller deflection angle when whisker is passively sensing a moving object,
compared to an untapered whisker which cannot be expected to have a large curvature, and also it has
robustness in resonant frequency when the tip of the whisker breaks [42].

In our paper, we attempted to observe more advantages of a tapered whisker sensor in an
engineering perspective. We derived a new model for tapered whiskers. The model tested by
Birdwell et al. [17] estimates the radial distance by measuring the moment or the derivative of moment
at base. However, our model uses the protraction angle and a single deflection angle on the whisker
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shaft without measuring the bending moment. The model shows the radial distance can be predicted
without Young’s modulus information or moment related to the material property.

This model is based on a linearized Bernoulli-Euler equation, which means that the accuracy will
drop when the assumption of small angle approximation breaks. To see how well this linear equation
holds for large protraction angles, numerical solutions were compared with the linear model results.
The results showed that even when there is a difference between the linear model and numerical
model, the error could be predicted depending on the radial distance, and more accurate estimation
could be compensated in this way. To estimate the radial distance, possibly rodents might use an
analogy of the protraction angle and deflection angle rather than moment information dependent on
the material property of the whisker or the whisker shape.

Our experiments showed that tapered whiskers have better precision of distance estimation
in a noisy environment than cylindrial whiskers. The effect can be observed in both active and
passive sensing.

4.2. Active and Passive Sensing

In the experiments, active and passive sensing for two types of whiskers, cylindrical whiskers and
tapered whiskers were compared, respectively. Though the simulations are based on linear models,
it would still give insight of active and passive sensing. The results showed that active sensing is
more robust to noise for both of the whisker types. We note that tapered whiskers are better than
cylindrical whiskers in both active and passive sensing. Also, active sensing is beneficial in radial
distance estimation. Th results might provide a hypothesis of why rats actively move their whiskers
for tactile perception.

One may argue that rats sense the change of deflection angle rather than the deflection angle
itself, similar to the claim of Solomon and Hartmann [20] that rats would sense the change of moment
rather than the moment itself. Recently Merkel and slow adapting afferents in the follicle of rats have
sensitivity to bending moment and its rate of change [44]. The active tapered whisker model could be
differentiated with time to make a model based on the change of tangential angle.

∂
∂t (tan θ1)
∂
∂t (tan θ2)

=
sec2θ1 · θ̇1

sec2θ2 · θ̇2
(18)

≈ θ̇1

θ̇2
(19)

From Equation (A38), it is shown that given the protraction angle, the tangential angle and their
change, the radial distance could be estimated. It should be noted that the above equation is based on
the assumption that the radial distance does not change with time. The detailed derivation is given in
the appendix.

For active whisking, measurements of tangential angle at two positions h1 and h2 can determine
the radial distance. However, if they are too close, the tangential ratio becomes close to 1 and the
distance estimation can be inaccurate and sensitive to noise. If the two measurements of tangential
angles are different, more accurate estimation will be possible. However, if the two positions are too
far, the deflection estimation at a position far from the whisker base becomes inaccurate, which may
produce relatively large error in distance estimation. Recently it is reported that primary whisker
neurons encode whisker curvature, not whisker angle during active sensation [45] and also the Merkel
cells and slow adapting cells in the follicle respond to the bending moment and the rate of moment
change [44]. If h2 = 0 is applied to the tangential ratio equations, θ2 becomes the protraction angle and
it corresponds to the whisker angle. Possibly the tangential angle at another position along the whisker
arc could be measured and the tangential ratio could be estimated. There are many mechanosensors
inside the follicle, responding to the whisker deflection. The primary afferent neurons at two points
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along the longitudinal direction of the whisker shaft in the follicle might sense the whisker bending
observed at different arc positions of whisker above the skin. Possibly the ratio of the measurements
can determine the radial distance.

For passive sensing, deflection measurements at two different positions can estimate the radial
distance. In a passive sensing mode, the whisker is influenced by the external force, while active
sensing is involved with a torque or bending moment caused by self-generated movements. We
assumed the fixed-free condition of a cantilever beam for passive sensing, where the slope at the
whisker base is zero. However, the rat whiskers have a pivot point and different analysis may be
needed to explain the whisker bending of rat whiskers. Our analysis and results for passive sensing
may be quite different from those of biological whiskers.

4.3. Re-Tuning for Whisker Length and Thickness Change

If the length and thickness of the whiskers have no change, rats would be able to acquire
information from its whiskers in a consistent way. However, there will be cases when short whiskers
will grow longer due to whisker breakage or perhaps because the rat whiskers are not fully grown. For
either case, the whisker length and possibly the thickness of the whisker will constantly change in the
whisker growing process. Hence, if the rats actually use radial distance estimation methods based on
either moment or change in moment [20], tangential angle or change in tangential angle, then the rats
will need to re-tune its brain due to the characteristics change of the whisker.

Assuming that the growth of rat whisker will change only the length, or length and radius of
the base together, the robustness to such change could be analyzed using the deflection equation
for tapered whiskers. If the rats use radial distance estimation methods based on torque or change
in torque information, the variation will exist for both cases of variation (length only or length and
whisker base radius). For this method, if the length changes (but not the base radius), torque term
will become more dominant but since the whisker will become more slender, the torque or change
of torque at base will fall. Therefore, the re-tuning process would differ for case by case. If both the
whisker length and the base of radius change as well, the torque term will become less dominant, but
for this case as well, the whisker will become thicker which will make the torque value higher. For this
method, all the variables are intertwined making it inconclusive.

If the whisker used tangential angle information, and only the whisker’s length grow, than for
that case the tapered whisker will become more like a cylindrical whisker since the previous tip part
would become more thicker. If the radius of the base changes as well as the length (in the same ratio),
than the normalized results for both cases will be identical. For better analysis, the growth rate of the
actual whisker (for the length and base of diameter) would be acquired as well as the actual whisker’s
mechanical characteristics for numerical validation of the proposed hypothesis.

4.4. Radial Distance Estimation with Only Tangential Angle by Active Whisking

The radial distance method for tapered whiskers used protraction angle and a tangential angle,
assuming that the rat will be able to know both information. However, it could be assumed that the
rat could sense tangential angles from the follicle, but not the protraction angle. If this is the case, a
simple modification of the original tapered whisker model can be shown. Assuming that the follicle
can measure at least two tangential angles inside the follicle, the radial distance can be estimated as

tan θ1

tan θ2
=

L + 2d− 3h1

6(L− h1)
3 +

1
d
(

d + 2L
6L2 − 1

3(L− d)
)

L + 2d− 3h2
6(L− h2)

3 + 1
d (

d + 2L
6L2 − 1

3(L− d) )
(20)

This equation implies that the ratio of two tangential angles at two different positions along the
longitudinal axis of the follicle can determine the radial distance without any information of elastic
property or thickness of whisker.
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4.5. Future Works

In this paper, we showed simulation results. Therefore, for future works, actual experiments
should be conducted in order to validate our results. Also, it could be better if analytical equations
could be derived from the nonlinear Bernoulli-Euler equation for results with high precision and fast
computation. Nevertheless, the results shown in this paper could be meaningful since it shows the
advantage of tapered whiskers in both engineering and biological perspectives.

The actual implement of whisker sensors is another issue. Since there are three different types of
radial distance estimation methods, each method could be chosen for user-specific needs. It might
be better to use a tapered whisker for more accurate results. There may be a case where deflection
measurement is easier than deflection angle. In such case, the third model in this paper could be used.

If one uses a tapered whisker sensor, there is a possibility that the tip will break, leaving the
remaining whisker damaged. However, since there may be a curvature change only within the contact
point, it is not an important issue whether the tip is broken or not. Even though a tapered whisker
sensor with a broken tip will no longer be able to measure the radial distance as far as before, the
radial distance estimation method does not change, since the distance estimation only depends on the
deflection angles at two different positions, or the protraction angle and deflection angle, not on the
material property of the whisker or the moment at base. .

Putting all the facts described above in mind, a practical algorithm which could allow the whisker
sensor to estimate radial distance in real time with high precision could be tested with biological and
artificial whiskers.

Rats normally use multiple whiskers for probing objects. The barrel cortex of rodents processes
multiple whiskers in parallel [40,41]. It seems that they collect information obtained from multiple
whiskers, and process the knowledge of environmental situation. The distance and texture information
can be more accurate if more whiskers probe the same object. For future work, we will see if multiple
whiskers can have more advantages of processing tactile signals. The analysis with multiple whiskers
may reveal a high level of tactile processing including shape recognition or texture discrimination. In
this paper, we showed an analysis of tapered whiskers and the simulation for radial distance estimation.
For future work, we can design artificial whiskers to test an advantage of the tapered whiskers.
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Appendix A. Radial Distance Estimation by Active Sensing with a Tapered Whisker

In this section, the radial distance estimation method using a tapered whisker with two different
angle information (protraction angle and tangential angle at an arbitrary point on the whisker)
is derived.

First, the linear deflection equation was derived in Birdwell et al. [17]. The following equations
summarize the derivation. First of all, the moment or torque on the whisker can be expressed as

M(x) = F(d− x) for 0 ≤ x ≤ d (A1)

where d is the contact distance and x is the measured position.
The area moment of inertia of an ideal tapered whisker can be expressed as

I =
πr4

4
(A2)
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r = rbase(1−
x
L
) (A3)

I =
π

4
(

rbase
L

)4(L− x)4 = α(L− x)4 (A4)

where α = π
4 (

rbase
L )4.

From the Euler equation,

M(x) = F(d− x) = EI
d2y
dx2 = Eα(L− x)4 d2y

dx2 (A5)

d2y
dx2 =

F
Eα

d− x
(L− x)4 (A6)

dy
dx

=
F

Eα

L + 2d− 3x
6(L− x)3 + C1 (A7)

y =
F

Eα
[

d− L
6(L− x)2 +

1
2(L− x)

] + C1x + C2 (A8)

Starting from Equation (A8), Birdwell et al. (2007) showed the analytical solution for a tapered
cantilever beam deflection when force and force location are given. While the analytical solution was
given in Birdwell et al. (2007) for force on cantilever beam (fixed - free boundary condition), we derived
an analytical solution for an active tapered beam. The active whisker or active beam is involved with
torque or rotational force as shown in the work [29]. For an active beam, two boundary conditions are
given as

(1)yx=0 = 0 (A9)

(2)yx=d = 0 (A10)

where d is the contact distance.
Using the the first boundary condition (see Equation (A9)) and Equation (A8), we obtain

y(x = 0) =
F

Eα
[
d− L
6L2 +

1
2L

] + C2 = 0 (A11)

C2 = − F
Eα

[
d− L
6L2 +

1
2L

]. (A12)

where L is the whisker length.
The the second boundary condition (Equation (A10)) and Equation (A8) leads to

y(x = d) =
F

Eα
[

d− L
6(L− d)2 +

1
2(L− d)

] + C1d + C2 = 0 (A13)

y(x = d) =
F

Eα
[

d− L
6(L− d)2 +

1
2(L− d)

] + C1d− F
Eα

[
d− L
6L2 +

1
2L

] = 0 (A14)

C1 =
F

dEα
(

d− L
6(L− d)2 −

1
3(L− d)

) =
F

dEα
[− 1

2(L− d)
]. (A15)

Differentiating Equation (A8) with x,

dy
dx

=
F

Eα

L + 2d− 3x
6(L− x)3 + C1 =

F
Eα

L + 2d− 3x
6(L− x)3 +

F
dEα

(
d− L

6(L− d)2 −
1

3(L− d)
) (A16)
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Eα
dy
dx

= [
L + 2d− 3x
6(L− x)3 +

1
d
(

d + 2L
6L2 − 1

3(L− d)
)]

M
d

(A17)

Inserting x = 0 and x = h in Equation (A17) can lead to

Eα
dy
dx
|x=0 = [

L + 2d
6L3 +

1
d
(

d + 2L
6L2 − 1

3(L− d)
)]

M
d

(A18)

Eα
dy
dx
|x=h = [

L + 2d− 3h
6(L− h)3 +

1
d
(

d + 2L
6L2 − 1

3(L− d)
)]

M
d

(A19)

where x = 0 is the whisker base position, x = h is the sensor position to measure the slope and M is
the bending moment.

Dividing Equation (A19) by Equation (A18),

dy/dx|x=h
dy/dx|x=0

=

(
L + 2d− 3h
6(L− h)3 +

1
d
(

d + 2L
6L2 − 1

3(L− d)
))

(
L + 2d

6L3 +
1
d
(

d + 2L
6L2 − 1

3(L− d)
))

(A20)

Since dy/dx can be substituted with tan θ for small angle, Equation (A20) can be represented as

tan θ1

tan θ0
=

(
L + 2d− 3h
6(L− h)3 +

1
d
(

d + 2L
6L2 − 1

3(L− d)
))

( L + 2d
6L3 + 1

d (
d + 2L

6L2 − 1
3(L− d) ))

(A21)

where tan θ1 = dy/dx|1 and tan θ0 = dy/dx|0. The equation can be re-written into a quadratic equation
for parameter d. We can solve the solution for radial distance d while the whisker length L is fixed.

The distance estimation only depends on the protraction angle and deflection angle, not on the
material property of the whisker or the moment at base. We also note that the area moment of inertia
related with the thickness is not a cruicial factor when we assume that the tip width is close to zero.

Using Equation (A21), we can find the radial distance d as follows:

d =
−B−

√
B2 − 4AC

2A
(A22)

where A, B and C are the coefficients defined as follows:

A =
tan θ1/tan θ0

3L3 − 1
3(L− h)3 , B =

L + 3h
6(L− h)3 −

1
6L2 C =

L2 − 3hL
6(L− h)3 −

1
6L

(A23)

If there are two sensor positions, h1 and h2, not the whisker base, to measure deflection of the
whisker, the tangential ratio is given by

tan θ1

tan θ2
=

L + 2d− 3h1

6(L− h1)
3 +

1
d
(

d + 2L
6L2 − 1

3(L− d)
)

L + 2d− 3h2
6(L− h2)

3 + 1
d (

d + 2L
6L2 − 1

3(L− d) )
(A24)

Appendix B. Passive Sensing with a Tapered Whisker

In this paper, passive sensing simulation for tapered whisker was used to compare it with active
sensing simulation. The analytic model for passive sensing is derived in this section. Starting from
Equation (A8),
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y =
F

Eα
[

d− L
6(L− x)2 +

1
2(L− x)

] + C1x + C2 (A25)

and using the boundary conditions dy
dx |x=0 and y|x=0 = 0, the constant can be found. C1 = − F

Eα [
L+2d
6L3 ]

and C2 = − F
Eα [

2L+d
6L2 ]. Finally, the equation can be written as

dy
dx

=
F

Eα
[
L− 3x + 2d
6(L− x)3 −

L + 2d
6L3 ] (A26)

Since the protraction angle will always be zero, we need two tangential angles measured from
the whisker shaft. Naming the position for each sensor as x = h1 and x = h2 and inserting them into
Equation (A26),

dy
dx
|x=h1 =

F
Eα

[
L− 3h1 + 2d
6(L− h1)3 −

L + 2d
6L3 ] (A27)

dy
dx
|x=h2 =

F
Eα

[
L− 3h2 + 2d
6(L− h2)3 −

L + 2d
6L3 ] (A28)

tan θ1

tan θ2
= (

dy
dx
|x=h1)/(

dy
dx
|x=h2) =

(L− h2)
3[L3(L− 3h1 + 2d)− (L− h1)

3(L + 2d)]
(L− h1)3[L3(L− 3h2 + 2d)− (L− h2)3(L + 2d)]

(A29)

where we set k = ( dy
dx |x=h1)/(

dy
dx |x=h2) = tan θ1/tan θ2.

The final equation for radial distance estimation for passive sensing can be expressed as

d =
(L− h2)

3(L4 − 3h1L3 − (L− h1)
3L)− k(L− h1)

3(L4 − 3h2L3 − (L− h2)
3L)

2k(L− h1)3(L3 − (L− h2)3)− 2(L− h2)3(L3 − (L− h1)3)
(A30)

Appendix C. Radial Distance Estimation Based on Two Deflection Measurements by
Passive Sensing

The derivation of the equation of radial distance estimation starts from the

EIy = −1
6

x3Fu(x) +
1
6
(x− d)3Fu(x− d) +

1
6

C1x3 +
1
2

C2x2 + C3x + C4 (A31)

where F = M/d. Inserting all the constants yields

EIy = −1
6

x3 M
d

+
1
2

Mx2 − 1
3

Mdx =
−Mx(x2 − 3dx + 2d2)

6d
(A32)

Hence, by putting h1 and h2 in the above equation where h1 6≡ h2

EIy(x = h1) =
−Mh1(h2

1 − 3dh1 + 2d2)

6d
(A33)

EIy(x = h2) =
−Mh2(h2

2 − 3dh2 + 2d2)

6d
(A34)

Using the above two equations, a simple form without momentum can be obtained as

y(x = h1)

y(x = h2)
=

h1(h2
1 − 3dh1 + 2d2)

h2(h2
2 − 3dh2 + 2d2)

(A35)
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From the above equation, the radial distance can be estimated with two different deflection
measurements. From Equation (A25), the deflection for a tapered whisker is given as

Y(x) =
F

Eα
[

d− L
6(L− x)2 +

1
2(L− x)

] + C1x + C2. (A36)

The ratio of Y(h1)/Y(h2) can be used to estimate the contact distance.

Y(h1)

Y(h2)
=

[
d− L

6(L− h1)2 +
1

2(L− h1)
] + C1h1 + C2

[
d− L

6(L− h2)2 +
1

2(L− h2)
] + C1h2 + C2

(A37)

Appendix D. Radial Distance Estimation from Angular Velocity by Active Whisking

∂

∂t
(tan θ1)

∂
∂t (tan θ2)

=

(
L + 2d− 3h1

6(L− h1)
3 +

1
d
(

d + 2L
6L2 − 1

3(L− d)
))

( L + 2d− 3h2
6(L− h2)

3 + 1
d (

d + 2L
6L2 − 1

3(L− d) ))
·

∂

∂t
τ · 1

d
∂

∂t
τ · 1

d

=
sec2θ1 · θ̇1

sec2θ2 · θ̇2

≈ θ̇1

θ̇2
(A38)

References

1. Obrist, M.K. Flexible bat echolocation: The influence of individual, habitat and conspecifics on sonar signal
design. Behav. Ecol. Sociobiol. 1995, 36, 207–219.

2. Nelson, M.E.; Maciver, M.A. Prey capture in the weakly electric fish Apteronotus albifrons: Sensory
acquisition strategies and electrosensory consequences. J. Exp. Biol. 1999, 202, 1195–1203.

3. Brownell, P.H.; van Hemmen, J.L. How the sand scorpion locates its prey. APS March 2000 Meeting,
Minneapolis, MN, USA, 20–24 March 2000.

4. Polley, D.B.; Rickert, J.L.; Frostig, R.D. Whisker-based discrimination of object orientation determined with a
rapid training paradigm. Neurobiol. Learn. Mem. 2005, 83, 134–142.

5. Dehnhardt, G.; Mauck, B.; Hanke, W.; Bleckmann, H. Hydrodynamic trail-following in harbor seals (Phoca
vitulina). Science 2001, 293, 102–104.

6. Schulte-Pelkum, N.; Wieskotten, S.; Hanke, W.; Dehnhardt, G.; Mauck, B. Tracking of biogenic hydrodynamic
trails in harbour seals (Phoca vitulina). J. Exp. Biol. 2007, 210, 781–787.

7. Wieskotten, S.; Dehnhardt, G.; Mauck, B.; Miersch, L.; Hanke, W. Hydrodynamic determination of the
moving direction of an artificial fin by a harbour seal (Phoca vitulina). J. Exp. Biol. 2010, 213, 2194–2200.

8. Towal, R.; Hartmann, M. Right–left asymmetries in the whisking behavior of rats anticipate head movements.
J. Neurosci. 2006, 26, 8838–8846.

9. Towal, R.; Hartmann, M. Variability in velocity profiles during free-air whisking behavior of unrestrained
rats. J. Neurophysiol. 2008, 100, 740–752.

10. Szwed, M.; Bagdasarian, K.; Ahissar, E. Encoding of vibrissal active touch. Neuron 2003, 40, 621–630.
11. Hartmann, M. Active touch, exploratory movements, and sensory prediction. Integr. Comp. Biol. 2009,

49, 681–690.
12. Lepora, N.; Evans, M.; Fox, C.; Diamond, M.; Gurney, K.; Prescott, T. Naive Bayes texture classification

applied to whisker data from a moving robot. In Proceedings of the 2010 International Joint Conference on
Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–8.



Sensors 2017, 17, 1659 22 of 23

13. Lepora, N.; Fox, C.; Evans, M.; Mitchinson, B.; Motiwala, A.; Sullivan, J.; Pearson, M.; Welsby, J.; Pipe, T.;
Gurney, K.; Prescott, T. A general classifier of whisker data using stationary naive bayes: Application to
BIOTACT robots. In Proceedings of the 12th Annual Conference of Towards Autonomous Robotic Systems
Sheffield, UK, 31 August–2 September 2011; pp. 13–23.

14. Solomon, J.; Hartmann, M. Artificial whiskers suitable for array implementation: Accounting for lateral slip
and surface friction. IEEE Trans. Robot. 2008, 24, 1157–1167.

15. Clements, T.; Rahn, C. Three-dimensional contact imaging with an actuated whisker. IEEE Trans. Robot.
2006, 22, 844–848.

16. Kaneko, M. Active antenna. In Proceedings of the IEEE International Conference on Robotics and
Automation, San Diego, CA, USA, 8–13 May 1994; pp. 2665–2671.

17. Birdwell, J.; Solomon, J.; Thajchayapong, M.; Taylor, M.; Cheely, M.; Towal, R.; Conradt, J.; Hartmann, M.
Biomechanical models for radial distance determination by the rat vibrissal system. J. Neurophysiol. 2007,
98, 2439–2455.

18. Solomon, J.; Hartmann, M. Radial distance determination in the rat vibrissal system and the effects of
Weber’s law. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 3049–3057.

19. Kim, D.; Möller, R. Biomimetic whiskers for shape recognition. Robot. Auton. Syst. 2007, 55, 229–243.
20. Solomon, J.; Hartmann, M. Biomechanics: Robotic whiskers used to sense features. Nature 2006, 443, 525.
21. Solomon, J.; Hartmann, M. Extracting object contours with the sweep of a robotic whisker using torque

information. Int. J. Robot. Res. 2010, 29, 1233–1245.
22. Schultz, A.; Solomon, J.; Peshkin, M.; Hartmann, M. Multifunctional whisker arrays for distance detection,

terrain mapping, and object feature extraction. In Proceedings of the IEEE International Conference on
Robotics and Automation, Edmonton, AB, Canada, 1–2 August 2005; pp. 2588–2593.

23. Fend, M. Whisker-based texture discrimination on a mobile robot. In Lecture Notes in Computer Science;
Springer: Berlin, Germany, 2005; pp. 302–311.

24. Kim, D.; Moeller, R. A biomimetic whisker for texture discrimination and distance estimation. In From
Animals to Animats 8, Proceedings of the International Conference on Simulation and Adaptive Behavior; MIT Press:
Cambridge, MA, USA, 2014; pp. 140–149.

25. Scholz, G.; Rahn, C. Profile sensing with an actuated whisker. IEEE Trans. Robot. Autom. 2004, 20, 124–127.
26. Ueno, N.; Kaneko, M. Dynamic active antenna-a principle of dynamic sensing. In Proceedings of the IEEE

International Conference on Robotics and Automation, 8–13 May 1994; pp. 1784–1790.
27. Kaneko, M.; Kanayama, N.; Tsuji, T. Vision based active antenna. In Proceedings of the IEEE International

Conference on Robotics and Automation, Minneapolis, MN, USA, 22–28 April 1996; pp. 2555–2560.
28. Kaneko, M.; Kanayama, N.; Tsuji, T. Active antenna for contact sensing. IEEE Trans. Robot. Autom. 1998,

14, 278–291.
29. Kim, D.; Möller, R. Passive sensing and active sensing of a biomimetic whisker. In Proceedings of

the International Conference on the Simulation and Synthesis of Living Systems, Bloomington, IN, USA,
3 June 2006; pp. 127–131.

30. Kottapalli, A.; Asadnia, M.; Hans, H.; Miao, J.M.; Triantafyllou, M. Harbor seal whisker inspired flow
sensors to reduce vortex-induced vibrations. In Proceedings of the 28th IEEE International Conference on
Micro Electro Mechanical Systems, Estoril, Portugal, 18–22 January 2015.

31. Kottapalli, A.; Asadnia, M.; Hans, H.; Miao, J.M.; Triantafyllou, M. Harbor seal inspired MEMS artificial
micro-whisker sensor. In Proceedings of the 27th IEEE International Conference on Micro Electro Mechanical
Systems, San Francisco, CA, USA, 26–30 January 2014.

32. Mitchinson, B.; Prescott, T. Whisker Movements Reveal Spatial Attention: A Unified Computational Model
of Active Sensing Control in the Rat. PLoS Comput. Biol. 2013, 9, e1003236.

33. Rooney, T.; Pearson, M.; Welsby, J.; Horsfield, I.; Sewell, R.; Dogramadzi, S. Artificial active whiskers for
guiding underwater autonomous walking robots. In Proceedings of the 14th international Conference
on climbing and walking robot and the support technologies for mobile machines, Paris, France,
6–8 September 2011.

34. Towal, R.; Quist, B.; Gopal, V.; Solomon, J.; Hartmann, M. The morphology of the rat vibrissal array: A model
for quantifying spatiotemporal patterns of whisker-object contact. PLoS Comput. Biol. 2011, 7, e1001120.



Sensors 2017, 17, 1659 23 of 23

35. Hartmann, M.; Johnson, N.; Towal, R.; Assad, C. Mechanical characteristics of rat vibrissae: Resonant
frequencies and damping in isolated whiskers and in the awake behaving animal. J. Neurosci. 2003,
23, 6510–6519.

36. Quist, B.; Faruqi, R.; Hartmann, M. Variation in Young’s modulus along the length of a rat vibrissa. J. Biomech.
2011, 44, 2775–2781.

37. Arabzadeh, E.; Petersen, R.; Diamond, M. Encoding of whisker vibration by rat barrel cortex neurons:
implications for texture discrimination. J. Neurosci. 2003, 23, 9146–9154.

38. Arabzadeh, E.; Zorzin, E.; Diamond, M. Neuronal encoding of texture in the whisker sensory pathway.
PLoS Biol. 2005, 3, e17.

39. Von Heimendahl, M.; Itskov, P.; Arabzadeh, E.; Diamond, M. Neuronal activity in rat barrel cortex underlying
texture discrimination. PLoS Biol. 2007, 5, e305.

40. Petersen, C. The Functional Organization of the Barrel Cortex. Neuron 2007, 56, 339–355.
41. Feldmeyer, D.; Brecht, M.; Helmchen, F.; Petersen, C.; Poulet, J.; Staiger, J.; Luhmann, H.; Schwarz, C. Barrel

cortex function. Prog. Neurobiol. 2013, 103, 3–27.
42. Williams, C.; Kramer, E. The advantages of a tapered whisker. PLoS ONE 2010, 5, e8806.
43. Mitchinson, B.; Gurney, K.; Redgrave, P.; Melhuish, C.; Pipe, A.; Pearson, M.; Gilhespy, I.; Prescott, T.

Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex. Proc. R.
Soc. Lond. Ser. B Biol. Sci. 2004, 271, 2509–2516.

44. Severson, K.; Xu, D.; de Loo, M.V.; Bai, L.; Ginty, D.; O’Connor, D. Active Touch and Self-Motion Encoding
by Merkel Cell-Associated Afferents. Neuron 2017, 94, 666–676.

45. Campagner, D.; Evans, M.; Bale, M.; Erskine, A.; Petersen, R. Prediction of primary somatosensory neuron
activity during active tactile exploration. Elife 2016, 5, e10696.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Linear Cylinder-Type Whisker
	Linear Tapered Model of Whisker
	Numerical Method of Whisker Simulation
	Passive Sensing

	Experimental Results
	Results with Linear Cylinder-Type Whisker
	Results with Linear Tapered Model of Whisker
	Noise Robustness Comparison of a Cylindrical and a Tapered Whisker
	Practical Considerations
	Radial Distance Estimation Based on Deflection Displacement

	Discussion
	Tapered Whisker
	Active and Passive Sensing
	Re-Tuning for Whisker Length and Thickness Change
	Radial Distance Estimation with Only Tangential Angle by Active Whisking
	Future Works

	Radial Distance Estimation by Active Sensing with a Tapered Whisker
	Passive Sensing with a Tapered Whisker
	Radial Distance Estimation Based on Two Deflection Measurements by Passive Sensing
	Radial Distance Estimation from Angular Velocity by Active Whisking

