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Abstract: We derived an analytical expression for a resonant-mode based bi-layered cantilever with
distributed mass load. The behavior of mode of vibration, nodal position, frequency shift, as well
as sensitivity under different mass load distributions was theoretically studied. The theoretical
results suggested that asymmetric mass load distribution leads to the shift of nodes as well as the
sensitive regions of a resonant-mode based cantilever. n − 1 local maximal sensitivities and n − 1
local minimal sensitivities are observed when the cantilever vibrates in the nth-order resonance.
The maximal sensitivity is found at the first local maximal sensitivity and the behavior of mass load
length as a function of the maximal sensitivity follows the rule of an exponent decaying function.
The sensitivity increases as the load mass increases for the same mass load distribution, but the
corresponding slopes are different.
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1. Introduction

In the past decades, resonant-mode based cantilevers have shown high potential for the
bio/chemical sensing applications [1–4]. The working principle is based on the shift in the resonant
frequency due to the mass load caused by the specific binding of targets (i.e., microorganism,
chemicals) on their surfaces [5–7]. For any type of sensors, sensitivity is an important parameter
to characterize their performance. The sensitivity (Sm) for a resonant-mode based cantilever sensor is
defined as its change in resonant frequency due to each unit of mass load, that is, Sm = −∆f /∆m [8].
A resonant-mode based cantilever can be single-layered or multi-layered in structure depending on
the beam materials and actuation mechanism [8]. Mathematically, a multi-layered cantilever can be
treated as a single-layered cantilever with equivalent mechanical properties. The equations for the
sensitivity of a single-layered cantilever in a flexural vibration mode in the following two cases have
been known as

Case I: Targets are uniformly bound on the entire surface of a cantilever [9].
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Case II: Targets are bound at the free end of a cantilever [10].
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where λn is the dimensionless nth-mode Eigenvalue; h, W, L are the thickness, width, and length of the
cantilever; E, ρ, and σ are the effective Young’s modulus, density, and the Poisson’s ratio of the beam
material; ∆m and M are the mass of the load and the cantilever itself (∆m<<M).

It is found that sensitivity is inversely proportional to the cantilever size. However, the signal
would be too weak to be detected when the size is very small due to the limitation of measurement
devices. From the viewpoint of material properties, a resonant-mode based cantilever with higher
Young’s modulus and lower density can also increase the sensitivity. However, other material
properties such as coupling coefficient and Q value also need to be considered, which would make
the selection of the cantilever material difficult. Another way to increase the sensitivity is to use
higher-order resonance modes [11–14]. However, there is also a concern about the signal strength.
For the same cantilever, the sensitivity in case II is much higher than that in case I which means
that target distribution has a strong effect on the sensitivity of a resonant-mode based cantilever.
Therefore, besides decreasing the size and replacing materials, controlling the target (i.e., mass load)
distribution is a practical way to increase the sensitivity of a resonant-mode based cantilever.

Some work has been done on studying the effect of mass load conditions on resonant frequency
and sensitivity of resonant-mode based cantilevers. Yi et al. investigated, both experimentally and
theoretically, the resonance frequency of a piezoelectric single-layered cantilever with point mass
loaded at the tip of the cantilever [15]. Dohn et al., derived an analytical expression for the resonant
frequency of a cantilever with point mass load in different positions [16]. Maraldo et al., experimentally
investigated the variation of sensitivity of a piezoelectric bi-layered cantilever with the change of point
mass position and magnitude [17]. In the previous study, we established a theoretical equation for
a bi-layered cantilever attached with point mass and investigated the effect of loading position and
mass magnitude on the sensitivity of the cantilever using a modal analysis method [18]. In this work,
a further theoretical investigation on the mode of vibration, node, resonant frequency, and sensitivity
of a bi-layered resonant-mode based cantilever with distributed mass load was done aiming at
development of a highly sensitive cantilever by controlling the target distribution.

2. Theory and Derivation

A bi-layered cantilever is composed of an active layer made of smart materials
(i.e., magnetostrictive materials, piezoelectric materials) and a passive layer made of structural
materials. Due to magnetostriction or piezoelectric effect of the active layer and restriction of the
structure layer, the cantilever vibrates in a flexural mode when subjected to an alternative magnetic or
electric field along the beam length direction. A bi-layered cantilever with a layer of distributed mass
load is shown in Figure 1.
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Figure 1. Schematic illustration of a resonant-mode based cantilever with a layer of distributed mass
load on its surface. l and w are the length and width of the cantilever beam; tp and ta are the thickness
of the passive layer and active layer; a is length of the mass layer; x-axis is established on the neutral
axis; c is the distance between x-axis and the interface of the two layers.
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The kinetic energy (T) and potential energy (V) of the bi-layered cantilever as shown in Figure 1
are expressed as
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area, density, Young’s modulus, Poisson’s ratio, and moment of inertia of the active layer; Ap, ρp, Ep,
vp, and Ip are the cross-sectional area, density, Young’s modulus, Poisson’s ratio, and moment of inertia

of the passive layer; u(x, t) =
n
∑

i=1
ϕi(x)qi(t) where ϕi(x) is the mode shape function and qi(t) is the

generalized coordinate.
Equations (3) and (4) can be further simplified as
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It is known that the mode shape function ϕn = sin βnx− sinhβnx− αn(cos βnx− cosh βnx) [9]

(where αn =
sin βnl + sinhβnl

cosh βnx + cos βnx
; n = 1, 2, 3, . . . and the values of βn for the first four order modes are

β1 = 1.87510/l, β2 = 4.69410/l, β3 = 7.85476/l, β4 = 10.99554/l, respectively) satisfies the boundary
conditions of a single-layered cantilever

Combining Equations (4) and (5) and Lagrange’s Equation, the governing vibration equation of
the cantilever with distributed mass load is given by

(K−ω2
n M)q = 0 (7)

Obviously, the resonant frequency and mode of vibration of a cantilever is dependent on K and M
which are affected by mass load distribution. By solving Equation (7), q and ωn are determined and
the resonant frequency fn is calculated by

fn = ωn/2π (8)

Finally, sensitivity Sm,n is obtained by

Sm,n =
fn,0 − fn,m

∆m
(9)

where ∆m is the load mass; fn,0 and fn,m are the nth-order resonant frequency of the cantilever without
and with mass load.

3. Materials and Mass Load Conditions

In this study, the commercially available magnetostrictive alloy MetglasTM 2826 (Metglas Inc.,
Conway, SC, USA) is selected as the active layer and copper is selected as the passive layer. The material
properties and mass load conditions are listed in Table 1.
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Table 1. The cantilever beam material properties and mass load conditions in this study.

Properties Beam Materials Symbol Unit Value

Young’s modulus Copper Ep GPa
110 [19]

Metglas 2826 Ea 105 [20]

Density Copper ρp kg/m3 8.9 × 103 [19]

Metglas 2826 ρa 7.9 × 103 [20]

Poisson’s ratio
Copper vp / 0.36 [19]

Metglas 2826 va / 0.33 [21]

Length Copper
l mm 1

Metglas 2826

Width
Copper w mm 0.2

Metglas 2826

Thickness
Copper tp µm 15

Metglas 2826 ta

Length ratio of
mass load to the
cantilever beam

Copper a/l / 0, 0.1, 0.2, . . . ,
1.0

ρmAm/ρ0A0 / r / 0.5, 0.6, 0.7, 0.8,
0.9, 1

4. Results and Discussion

4.1. Effecton Modes of Vibration and Nodal Positions

Figure 2 shows the behavior of mode of vibration of the cantilever with different mass load
distribution (a/l). Disregarding the fixed end, n − 1 nodes are observed for the nth-order resonance
mode. Moreover, the change in mode of vibration with mass load distribution causes the nodes to shift
(i.e., the difference between the nodal position x of the cantilever with mass load a/l 6= 0 and without
mass load a/l = 0) to the fixed end of the cantilever beam.
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Figure 2. The mode of vibration of the cantilever with different mass load distribution (a/l) under:
(a) First-order resonance mode; (b) Secnd-order resonance mode; (c) Third-order resonance mode;
(d) Fourth-order resonance mode where ρmAm/ρ0A0 = 1.
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To further investigate the behavior of nodal position under different mass load distributions,
the nodal shift ∆x as a function of a/l is plotted as shown in Figure 3. Clearly, for all the nodes,
the nodal shift firstly increases to the maximum and then decreases to zero as a/l increases to 1.
Since a/l = 1 means that the mass is uniformly and symmetrically distributed on the entire surface
of the cantilever, we can conclude that asymmetric mass load distributions (i.e., a/l 6= 1) cause the
nodes to shift. However, the value of nodal shift is not related to the degree of symmetry of mass
distribution. For example, for the second-order resonance, the sequence of a/l causing the nodes shift
from the largest to the smallest is a/l = 0.7, 0.8, 0.6, 0.9, 0.5, 0.4, 0.3, 0.2, 0.1. Moreover, the value of
a/l corresponding to the maximal nodal shift is found near the nodal position and decreases with the
resonance order increasing for the same node. For example, the value of a/l corresponding to the
maximal shift for node 1 in the second-order, third-order, and fourth-order resonances are ~0.75, ~0.45,
and ~0.3, respectively.
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Figure 3. Behavior of nodal shift ∆x of the cantilever with different mass load distribution (a/l)
under: (a) Second-order resonance; (b) Third-order resonance; (c) Fourth-order resonance where
ρmAm/ρ0A0 = 1.

4.2. Effecton Resonant Frequency

Figure 4 shows frequency shift of the cantilever as a function of mass load distribution under
different order resonances. It can be seen that the frequency shift increases as a/l increases for each
resonance mode. However, the curves are nearly flat when the values of a/l fall in some specific ranges
as marked by the colored arrows. In the other words, mass loaded in these regions has little contribution
on frequency shift. It is worth noting that the nodal number is the same as that of the flat regions
and each nodal positionnearly corresponds to the middle of a flat region. This phenomenon is very
similar with the experimental results for the cantilevers reported by Johnson, B.N. et al. [22] and that
of free-standing mangetostricitive sensors in longitudinal vibration mode [23]. Particularly, when the
mass is loaded at a node, there would be no effect on resonant frequency shift. Therefore, it is believed
that the closer the mass is loaded to the node of the cantilever, the less is contributed to the frequency
shift and vice versa. Since the nodal positions shift as mass load distribution changes, the mass
sensitive regions shift as the nodes move.



Sensors 2017, 17, 1621 6 of 9
Sensors 2017, 17, 1621 6 of 9 

 

 
Figure 4. The behavior of frequency shift of the cantilever with different mass distribution where ρmAm/ρ0A0 = 1. 

4.3. Effecton Sensitivity 

Figure 5 shows sensitivity (Sm) of the cantilever as a function of mass distribution under 
different resonance modes. For the first order resonance, the sensitivity increases slowly at 
beginning and then increases dramatically as a/l increases. For the higher order resonance modes, 
the sensitivity first increases to the maximum and then fluctuates with decaying amplitude as a/l 
increases which results in n − 1 peaks (local maximum) and n − 1 valleys (local minimum) for the 
cantilever vibrating in the nth-order resonance and these values are found to be the points of 
inflection of the curves in Figure 4. Below the value of a/l for the maximal sensitivity, the higher the 
resonance order, the faster the sensitivity increases as a/l. It is also found that the value of a/l for each 
local minimum is close to, but slightly larger than, the corresponding nodal position. Taking the 
fourth-order resonance as an example, the values of a/l for the three minimal sensitivities are ~0.4, 
~0.7, and ~0.95 while the three nodal positions are ~0.36, ~0.64, and ~0.91, respectively. 

 
Figure 5. The behavior of sensitivity of the cantilever as the change of mass distribution under 
different resonance modes where ρmAm/ρ0A0 = 1. 

Moreover, a/l for the maximal sensitivity shifts to the fixed end as the resonance order increases 
as shown in Figure 6. It is found that the data curve can be fitted well by an exponent decaying 
function as follows 

 (10) 

where y0 = 0.05842, A = 21.72383, c = 1.62126 × 10−4; x represents a/l. 
Therefore, a/l corresponding to the maximal sensitivity of the cantilever under higher order 

resonances can be predicted, based on Equation (10). 

)/(
0max,

cx
m AeyS 

Figure 4. The behavior of frequency shift of the cantilever with different mass distribution where
ρmAm/ρ0A0 = 1.

4.3. Effecton Sensitivity

Figure 5 shows sensitivity (Sm) of the cantilever as a function of mass distribution under different
resonance modes. For the first order resonance, the sensitivity increases slowly at beginning and
then increases dramatically as a/l increases. For the higher order resonance modes, the sensitivity
first increases to the maximum and then fluctuates with decaying amplitude as a/l increases which
results in n − 1 peaks (local maximum) and n − 1 valleys (local minimum) for the cantilever vibrating
in the nth-order resonance and these values are found to be the points of inflection of the curves in
Figure 4. Below the value of a/l for the maximal sensitivity, the higher the resonance order, the faster
the sensitivity increases as a/l. It is also found that the value of a/l for each local minimum is close
to, but slightly larger than, the corresponding nodal position. Taking the fourth-order resonance as
an example, the values of a/l for the three minimal sensitivities are ~0.4, ~0.7, and ~0.95 while the
three nodal positions are ~0.36, ~0.64, and ~0.91, respectively.
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Figure 5. The behavior of sensitivity of the cantilever as the change of mass distribution under different
resonance modes where ρmAm/ρ0A0 = 1.

Moreover, a/l for the maximal sensitivity shifts to the fixed end as the resonance order increases as
shown in Figure 6. It is found that the data curve can be fitted well by an exponent decaying function
as follows

Sm,max = y0 + Ae(−x/c) (10)

where y0 = 0.05842, A = 21.72383, c = 1.62126 × 10−4; x represents a/l.
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Figure 6. The maximal sensitivity as a function of mass load distribution (a/l).

The behavior of sensitivity of the cantilever with mass load in six different density ratios
(i.e., ρmAm/ρ0A0 = 0.5, 0.6, 0.7, 0.8, 0.9, 1) for the first four order resonances are shown in Figure 7(a1,d1).
It can be seen that the sensitivity is linearly proportional to load mass for the same mass distribution
a/l under the same order resonance but the slopes are different as the value of a/l changes as shown in
Figure 7(a2,d2). It is worth noting that the behavior of the slopes as a function of a/l is very similar with
that of the sensitivity in the same order resonance as shown in Figure 5 but the corresponding peaks and
valleys are not in the same positions except for the first order resonance. In other words, the maximal
sensitivity does not increase the fastest as the mass load increases for high order resonances. On the
other hand, the sensitivity increases the slowest as the mass load increases when a/l closes to zero.
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resonances. On the other hand, the sensitivity increases the slowest as the mass load increases when 
a/l closes to zero. 
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5. Conclusions 

The analytical expression for a resonant-mode based bi-layered cantilever with distributed load 
mass is derived and the mode of vibration, nodal point, resonant frequency, as well as sensitivity can 
be determined with given mass distribution conditions. Based on the theoretical results, several 
conclusions are made as follows: 

1. Asymmetric mass load distribution causes the nodal points as well as the sensitive regions to 
shift but the shift value is not related to the degree of symmetry of mass load distribution. 

2. There are n − 1 local maximal and n-1 local minimal values for the sensitivity changing as mass 
load length when the cantilever vibrates in the nth-order resonance and the maximal sensitivity 
is found at the first local maximal value. 

3. The behavior of mass load length as a function of the maximal sensitivity follows the rule of an 
exponent decaying function. 

4. Sensitivity linearly increases as the load mass increases for the same mass load distribution and 
behavior of the slopes as a function of mass load length is very similar to that of the sensitivity in 
the same order resonance but the peak and valley positions are different. 
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Figure 7. Sensitivity of the cantilever as a function of load mass under (a1) first-order resonance,
(b1) second-order resonance, (c1) third-order resonance, and (d1) fourth-order resonance. All the data
points are fitted by linear functions and the slopes of the linear fittings as a function of a/l are shown in
Figure 7(a2,b2,c2,d2).

5. Conclusions

The analytical expression for a resonant-mode based bi-layered cantilever with distributed load
mass is derived and the mode of vibration, nodal point, resonant frequency, as well as sensitivity
can be determined with given mass distribution conditions. Based on the theoretical results, several
conclusions are made as follows:

1. Asymmetric mass load distribution causes the nodal points as well as the sensitive regions to
shift but the shift value is not related to the degree of symmetry of mass load distribution.

2. There are n − 1 local maximal and n − 1 local minimal values for the sensitivity changing as mass
load length when the cantilever vibrates in the nth-order resonance and the maximal sensitivity
is found at the first local maximal value.

3. The behavior of mass load length as a function of the maximal sensitivity follows the rule of
an exponent decaying function.

4. Sensitivity linearly increases as the load mass increases for the same mass load distribution and
behavior of the slopes as a function of mass load length is very similar to that of the sensitivity in
the same order resonance but the peak and valley positions are different.
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