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Abstract: To solve the unavailability of a traditional strapdown inertial navigation system (SINS)
for unmanned underwater vehicles (UUVs) in the polar region, a polar grid navigation algorithm
for UUVs is proposed in this paper. Precise navigation is the basis for UUVs to complete missions.
The rapid convergence of Earth meridians and the serious polar environment make it difficult to
establish the true heading of the UUV at a particular instant. Traditional SINS and traditional
representation of position are not suitable in the polar region. Due to the restrictions of the complex
underwater conditions in the polar region, a SINS based on the grid frame with the assistance of the
OCTANS and the Doppler velocity log (DVL) is chosen for a UUV navigating in the polar region.
Data fusion of the integrated navigation system is realized by a modified fuzzy adaptive Kalman filter
(MFAKF). By neglecting the negative terms, and using T-S fuzzy logic in the adaptive regulation of
the noise covariance, the proposed filter algorithm can improve navigation accuracy. Simulation and
experimental results demonstrate that the polar grid navigation algorithm can effectively navigate a
UUV sailing in the polar region.

Keywords: unmanned underwater vehicle (UUV); grid frame; modified adaptive Kalman filter;
T-S fuzzy logic; the polar region

1. Introduction

Unmanned underwater vehicles (UUVs) have been widely used in underwater resource
exploration, military reconnaissance, marine surveying, and marine mapping [1,2]. Without the
operation of humans, UUVs can carry out the missions autonomously. With the rapid development of
underwater navigation technology, humans can explore polar underwater resources through UUVs.

Precise navigation is the premise and basis for UUV sailing. A large number of navigation
algorithms have been proposed for UUVs. According to the principle, UUV navigation can be divided
into acoustic navigation, visual navigation, inertial navigation, radio navigation, satellite navigation,
and so on. Inertial navigation is the most widely used because of its high autonomy. Filtering methods
are another important factor that affects navigation accuracy. Filters are widely used in data fusion,
such as the Kalman filter (KF), extended Kalman filter (EKF) [3,4], unscented Kalman filter (UKF) [5],
and adaptive Kalman filter (AKF). A number of successful tests have also been conducted on these
navigation strategies, such as the off-line verification of the UKF-based navigation algorithm for the
Typhoon AUV [6]. Cooperative navigation is an effective strategy for efficiently performing tasks while
reducing costs. It is also a significant approach for solving the navigation problem in middle-depth
of underwater conditions [7]. Algorithms proposed to realize the cooperative navigation include
tetrahedral configuration [8], measurement distribution framework [9], and so on. Scholars have done
a great deal of research for UUV navigating in the non-polar region and have made a large number of
encouraging achievements.
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Different from the navigation in the non-polar areas [10], some common navigation methods
cannot be applied in the polar region. There are restrictions from the serious environment and the
complex underwater conditions in the polar region. As radio signals cannot be spread underwater,
Global Positioning System (GPS) is unavailable for UUVs. Meanwhile, the rapid convergence of
Earth meridians makes it difficult to establish the true heading of the UUV in the polar region [11].
Therefore, a strapdown inertial navigation system (SINS), which is highly autonomous and stable,
becomes the first choice for UUV navigating in the polar region [12]. However, there are some
difficulties in the application of the traditional north-oriented SINS algorithm in the polar region,
such as calculation overflow and errors increasing sharply. Due to the rapid convergence of Earth
meridians, small measurement errors would lead to significant calculation errors. To solve these
problems, a transversal SINS algorithm is proposed to replace the traditional SINS algorithm in the
polar region [13]. Although a system reset is used to restrain the error drifts, there are principle errors
in the transversal SINS algorithm. The transversal SINS ignores the ellipse of the Earth.

Therefore, it is important to choose an available form of SINS for UUVs navigating in the polar
region. The polar grid navigation algorithm, which has already helped large aircraft flying though
the polar region [14], is the best choice. Selecting the Greenwich meridian as the reference line, the
polar grid navigation algorithm can solve the problems caused by the meridians’ convergence [15].
The definition of the grid frame has been given in [16,17] briefly. However, the detailed definition
and the derivation of the SINS are not proposed in these papers. The error of approximating a large
circle to a straight line in the grid frame is discussed in [18]. The attitude differential equation based
on the grid frame is derived in [19]. Although some aspects of the navigation algorithm based on the
grid frame are analyzed in the above papers, the complete error model and the filter model are not
established. Additionally, these papers did not combine with the specific objects and some specific
characters were not taken into consideration. Only in [14,20] was the navigation algorithm based
on the grid frame combined with a large aircraft. Different from the flight environment of large
aircraft, which has high speed, high precision, and auxiliary forms of a variety of external information,
the underwater environment of the UUV is more complex with a lack of radio signal, low visibility,
and high requirements of concealment. This navigation algorithm cannot be used on UUVs directly.
Humans can help to make decisions during aircraft flights, while UUVs sail alone without the help of
humans. The underwater environment is more complex than that of air. For example, large aircraft are
affected by wind while UUVs are affected by ocean waves, ocean currents, etc. Therefore, an integrated
navigation algorithm is needed to improve the navigation accuracy. Based on the analysis above, the
polar grid navigation algorithm for UUVs is proposed considering the underwater environment and
the characters of UUV.

In order to improve the navigation accuracy, the OCTANS and the Doppler velocity log (DVL) are
chosen as the assistants for the long-endurance navigation of UUVs in the polar region. Combined
with the SINS, a SINS/OCTANS/DVL integrated navigation system is constituted. Meanwhile, data
fusion of the integrated navigation system is realized by a modified fuzzy adaptive Kalman filter
(MFAKF).

In this paper, a polar grid navigation algorithm for UUVs is proposed. Based on the grid frame,
the SINS is used for navigating the UUV in the polar region. With the assistance of the OCTANS and
DVL, a SINS/OCTANS/DVL integrated navigation system is established. The main contribution of
this paper is the derivation of the complete error model and filter model of the polar grid navigation
based on the characters of the UUV and the proposed modified AKF to improve the navigation
accuracy of the UUV. The following sections are arranged as follows: Error equations and filter models
are deduced in Sections 2 and 3, respectively; In Section 4, a modified fuzzy adaptive Kalman filter
is proposed; The results of simulations and experiments are expressed in Section 5; In Section 6, the
results and error sources are discussed; Finally, the conclusions are drawn in Section 7.
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2. Error Equations of the UUV in Polar Grid Navigation

Frames are important for navigation. The transformation relations among frames can reflect
motions of the UUV. In this paper, i frame, e frame, g frame, G frame, b frame, n frame, o frame, and m
frame represent the inertial frame, Earth-centered Earth-fixed frame, geographic frame, grid frame,
body frame of the UUV, navigation frame, body frame of the OCTANS, and the body frame of DVL,
respectively. The meridians’ convergence in high-latitude areas has no influence on the grid frame.
Therefore, the grid frame (G frame) is chosen as the navigation frame (n frame).

Error equations of the UUV consist of the attitude error equation, velocity error equation, and
position error equation. The main error sources of the SINS are from inertial measurement unit (IMU),
which is composed of gyroscopes and accelerometers. Their influence on navigation can be obtained
from the following error equations. In addition, error models of the OCTANS and DVL are also
established in this section.

2.1. Grid Frame (G Frame)

In Figure 1, point P represents the position of the UUV. The grid planes are the planes that are
parallel with the Greenwich plane. The grid plane of point P is the grid plane passes through point
P. The grid north axis lies along the intersection of the grid plane and the tangent plane of the earth
passing point P. The grid up axis and the geographic up axis coincide. The grid east axis, grid north
axis, and grid up axis constitute the right-handed frame that is the grid frame. There is an angle σ

between the grid north axis and the geographic north axis.
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Figure 1. Definition of the grid frame. 
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Figure 1. Definition of the grid frame.

As the grid up axis coincides with the geographic up axis, the grid frame can be obtained from
the geographic frame by rotating σ around the up axis [15]. Therefore, the transform relations among
the g frame, G frame, and e frame can be described as:

CG
g =

cos σ − sin σ 0
sin σ cos σ 0

0 0 1

, (1)

Cg
e =

 − sin λ cos λ 0
− sin L cos λ − sin L sin λ cos L
cos L cos λ cos L sin λ sin L

, (2)

CG
e = Cg

eCG
g =

−cσsλ + sσcλsL cσcλ + sσsLsλ −sσcL
−sσsλ− cσsLcλ sσcλ− cσsLsλ cσcL

cLcλ cLsλ sL

, (3)
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The angle σ can be expressed as:

sin σ =
sin λ sin L√

1− cos2 L sin2 λ
, (4)

cos σ =
cos λ√

1− cos2 L sin2 λ
, (5)

The one-order increment of Equation (5) can be written as:

δσ =
sin L

1− cos2 L sin2 λ
δλ +

sin λcosλcosL
1− cos2 L sin2 λ

δL, (6)

By substituting Equations (4) and (5) into Equation (3), CG
e can be rewritten as:

CG
e =


−c2Lsλ cλ√

1−c2Ls2λ

√
1− c2Ls2λ −sλsLcL√

1−c2Ls2λ
−sL√

1−c2Ls2λ
0 cλcL√

1−c2Ls2λ

cLcλ cLsλ sL

, (7)

Due to the rapid convergence of Earth meridians in high-latitude areas, small position errors
will lead a large divergence in longitude. Thus, latitude and longitude are not suitable to describe
the position of the UUV in high-latitude areas. In this paper, the coordinate in e frame Re(x, y, z) is
chosen to express the position of the UUV. Latitude and longitude of the position can be obtained from
Re(x, y, z): 

x = RNh cos L cos λ

y = RNh cos L sin λ

z = [RN(1− e2) + h] sin L
, (8)

x2 + y2 = (RNh cos L)2, (9)

Then,

cos L =

√
x2 + y2

RNh
, (10)

sin L = ±
√

1− x2 + y2

R2
Nh

, (11)

sin λ =
y

RNh cos L
=

y√
x2 + y2

, (12)

cos λ =
x

RNh cos L
=

x√
x2 + y2

, (13)

The longitude λ can be calculated from Equations (12) and (13) directly, while the calculation of
latitude L needs the approximate solution [21].

Ignoring the ellipse of the earth, the radius of the earth is approximate to RMh ≈ RNh ≈ Reh.
x = Reh cos L cos λ

y = Reh cos L sin λ

z = Reh sin L
, (14)

The one-order increment of Equation (14) can be described as:
δx = −RehsLcλδL− RehcLsλδλ + cLcλδh
δy = −RehsLsλδL + RehcLcλδλ + cLsλδh

δz = RehcLδL + sLδh
, (15)
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δRe =

δx
δy
δz

 =

−Reh sin L cos λ −Reh cos L sin λ cos L cos λ

−Reh sin L sin λ Reh cos Lcλ cos L sin λ

Reh cos L 0 sin L


δL

δλ

δh

, (16)

Thus,

δP =

δL
δλ

δh

 =
1

Reh

 − sin Lcλ − sin L sin λ cos L
− sin λ

cos L
cos λ
cos L 0

Reh cos L cos λ Reh cos L sin λ Reh sin L

δRe, (17)

2.2. Attitude Error Equation

Due to the restriction of the computer and algorithm, there are errors between the ideal G frame
and the actual G frame. The actual G frame in practical application of the SINS is defined as the G’
frame. The attitude differential equation of the UUV in ideal conditions can be expressed as:

.
C

G
b = CG

b

[
ωb

ib×
]
−
[
ωG

iG×
]
CG

b , (18)

where
[
ωG

iG×
]

is the anti-symmetric matrix of ωG
iG, which can be expressed as:[

ωG
iG×

]
=
[
ωG

ie×
]
+
[
ωG

eG×
]
, (19)

ωG
ie = CG

g ω
g
ie =

cos σ − sin σ 0
sin σ cos σ 0

0 0 1


 0

ωie cos L
ωie sin L

 =

−ωie cos L sin σ

ωie cos L cos σ

ωie sin L

, (20)

ωG
eG =

ωG
eGx

ωG
eGy

ωG
eGz

 =


1

τf G
− 1

RyG
1

RxG
− 1

τf G
KG
τf G

− KG
RyG


[

vGE

vGN

]
, (21)

where 1
RxG

= sin2 σ
RMh

+ cos2 σ
RNh

and 1
RyG

= cos2 σ
RMh

+ sin2 σ
RNh

are the equivalent curvature; 1
τf G

=(
1

RMh
− 1

RNh

)
sin σ cos σ is the twist rate of the ellipsoid at point P, and KG = sin λ cos L√

1−cos2 L sin2 λ
=

sin λ sin L cos L
sin L
√

1−cos2 L sin2 λ
= cos L

sin L sin σ = cot L sin σ. Ignoring the ellipse of the Earth and the influence

of distortion, ωG
eG can be simplified as:

ωG
eG =

 0 − 1
Reh

1
Reh

0

0 − KG
Reh

[vGE

vGN

]
=

 − vGN
RehvGE

Reh

− vGN
Reh

cot Lsσ

, (22)

Due to the errors in practical application, the attitude differential equation of UUV can be
written as:

.
C

G′

b = CG′
b

[
ω̂b

ib×
]
−
[
ω̂G

iG×
]
CG′

b , (23)

where:
ω̂b

ib = ωb
ib + δωb

ib, (24)

ω̂G
iG = ω̂G

ie + ω̂G
eG, (25)

ω̂G
ie = ωG

ie + δωG
ie , (26)

ω̂G
eG = ωG

eG + δωG
eG, (27)
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where δωb
ib, δωG

ie , and δωG
eG are the errors of ωb

ib, ωG
ie , and ωG

eG, respectively. δωG
ie and δωG

eG can be
defined as:

δωG
ie = ω̂G

ie −ωG
ie = ωie

− cos L cos σ

− cos L sin σ

0

δσ + ωie

 sin L sin σ

− sin L cos σ

cos L

δL, (28)

δωG
eG = ω̂G

eG −ωG
eG =

 0 0
vGN
R2

eh
0 0 − vGE

R2
eh

vGN sin σ

Reh sin2 L
0

vGN cot L sin σ

R2
eh

[δL
δλ

δh

]
+

[
0 − 1

Reh
0

1
Reh

0 0

0 − cot Lsσ
Reh

0

][
δvGE
δvGN
δvGU

]
+

[
0
0

− vGN cot L cos σ
Reh

]
δσ, (29)

The velocity error can be described as δVG = [δvGE δvGN δvGU ]
T. Then, based on Equation

(6), δωG
ie and δωG

eG can be rewritten as:

δωG
ie = CωiepδP, (30)

δωG
eG = CωeGpδP + CωeGvδVG, (31)

where:

Cωiep = ωie

sin L sin σ− cot L cos L cos2 σ sin σ − cot L cos σ sin2 σ
s2λ

0

− sin L cos σ − cot LcL sin2 σ cos σ − cot L sin3 σ
sin2 λ

0
cL 0 0

, (32)

CωeGp =


0 0 vGN

R2
eh

0 0 − vGE
R2

eh
vGNsσ

Reh(1−c2Lc2σ)
− vGNcLcσ

Reh(1−c2Ls2λ)
vGN cot Lsσ

R2
eh

, (33)

CωeGv =

 0 − 1
Reh

0
1

Reh
0 0

0 − cot L sin σ
Reh

0

, (34)

By substituting Equation (17) into Equations (30)–(31) and neglecting the small high-order terms,
δωG

ie and δωG
eG can be rewritten as:

δωG
ie = CωieRδRe, (35)

δωG
eG = CωeGRδRe + CωeGvδVG, (36)

where:

CωieR =
ωie

Reh(1− c2Ls2λ)
3
2
·

2c2LsLsλcλ −sL
[
c2λ + s2λ ·

(
s2L− c2L

)]
s2LcLsλ

s2L 0 −sLcLcλ

−sLcLcλ −sLcLsλ c2L

, (37)

CωeGR =
1

R2
eh
·


vGNcLcλ vGNcLsλ vGNsL
−vGEcLcλ −vGEcLsλ −vGEsL
2vGN c2Lsλcλ

(1−c2Ls2λ)
3
2
−vGN

√
1− c2Ls2λ 2vGN sLcLsλ

(1−c2Ls2λ)
3
2

, (38)

where s(·) and c(·) represent sin(·) and cos(·), respectively.
The attitude error matrix can be defined as:

∆C = CG′
b − CG

b , (39)

∆C =
(

I − CG
G′

)
CG′

b , (40)
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By substituting Equation (23) into Equation (40), the derivative of ∆C can be expressed as:

∆
.
C = CG′

b

[
ω̂b

ib×
]
−
[
ω̂G

iG×
]
CG′

b − CG
G′C

G′
b

[
ω̂b

ib×
]
+ CG

G′

[
ω̂G

iG×
]
CG′

b −
.
C

G
G′C

G′
b , (41)

By substituting Equations (18) and (23), ∆
.
C can be rewritten as:

∆
.
C = CG′

b

[
ω̂b

ib×
]
−
[
ω̂G

iG×
]
CG′

b − CG
G′C

G′
b

[
ωb

ib×
]
+
[
ωG

iG×
]
CG

G′C
G′
b , (42)

Combined Equation (41) and (42):

CG
G′C

G′
b

[
δωb

ib×
]
+
[
ωG

iG×
]
CG

G′C
G′
b − CG

G′

[
ω̂G

iG×
]
CG′

b +
.
C

G
G′C

G′
b = 0, (43)

Based on the similar transformation theory of matrix, Equation (43) can be simplified as:

δωG′
ib + ωG′

iG − ω̂G
iG + ωG′

GG′ = 0, (44)

Thus,
ωG′

GG′ =
(

I − CG′
G

)
ωG

iG + δωG
iG − CG′

b δωb
ib, (45)

The misalignment angle of the UUV between the G frame and G′ frame is φG =
[
φG

x φG
y φG

z

]T
.

Thus, ωG′
GG′ can be rewritten as:

ωG′
GG′ =

cφG
y 0 −sφG

y cφG
x

0 1 sφG
x

sφG
y 0 c]φG

y cφG
x




.
φ

G
x

.
φ

G
y

.
φ

G
z

 = Cω

.
φ

G
, (46)

where:

Cω =

cos φG
y 0 − sin φG

y cos φG
x

0 1 sin φG
x

sin φG
y 0 cos φG

y cos φG
x

, (47)

Thus, based on Equation (45), φG can be obtained as:

.
φ

G
= Cω

−1ωG′
GG′ = Cω

−1
((

φG×
)

ωG
iG + δωG

iG − CG′
b δωb

ib

)
, (48)

Considering:
δωb

ib = εb, (49)

δωG
iG = δωG

ie + δωG
eG = (CωieR + CωeGR)δRe + CωeGvδVG, (50)

where εb is the gyro drift that consists of the gyro constant drifts εb
c and the gyro random drifts εb

w, and
εb

w can be set as zero-mean Gaussian white noise.
Therefore, the attitude error equation of UUV in G frame can be rewritten as:

.
φ

G
= Cω

−1(−(ωG
iG×)φ

G + (CωieR + CωeGR)δRe + CωeGvδVG − CG′
b εb), (51)

2.3. Velocity Error Equation

The velocity differential equation of the UUV in ideal conditions can be described as:

.
V

G
= CG

b fb −
(

2ωG
ie + ωG

eG

)
× VG + gG, (52)
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where fb is the special force measured by the SINS.
Due to the errors from the IMU, the velocity differential equation of UUV in practical application

can be expressed as:
.
V̂

G
= ĈG

b f̂b −
(

2ω̂G
ie + ω̂G

eG

)
× V̂G

+ ĝG, (53)

and:
δVG = V̂G − VG, (54)

ĈG
b = CG′

G CG
b =

(
I −φG×

)
CG

b , (55)

∇b = f̂b − fb, (56)

δωG
ie = ω̂G

ie −ωG
ie , (57)

δωG
eG = ω̂G

eG −ωG
eG, (58)

δgG = ĝG − gG, (59)

where δVG, ∇b, δωG
ie , δωG

eG, and δgG are the errors of VG, fb, ωG
ie , ωG

eG, and gG, respectively. ∇b is the
accelerometer bias which consists of the accelerometer constant bias∇b

c and the accelerometer random
bias ∇b

w., and ∇b
w can be set as zero-mean Gaussian white noise [22].

Substituting Equations (54)–(59) into Equation (53), then subtracting Equation (52) from Equation
(53) and ignoring the second-order small terms, the velocity error equation can be described as:

δ
.
V

G
= −

(
φG×

)
CG

b fb + CG
b ∇

b −
(

2ωG
ie + ωG

eG

)
× δVG −

(
2δωG

ie + δωG
eG

)
× VG, (60)

Considering Equations (35) and (36), the velocity error equation of the UUV in the G frame can be
rewritten as:

δ
.
V
G = f

G ×φG +
[

V
G × CωeGv −

(
2ωG

ie + ωG
eG

)
×
]
· δV

G +
[

V
G × (2CωieR + CωeGR)

]
δR

e + C
G
b ∇

b, (61)

2.4. Position Error Equation

Since latitude and longitude are unsuitable for describing the position of the UUV in high-latitude
areas, the coordinate in the e frame Re(x, y, z) is chosen to describe the position. The position differential
equation of the UUV in ideal conditions can be written as:

.
R

e
= Ce

GVG, (62)

Similar to the velocity differential equation, the position differential equation of UUV in actual
condition can be described as: .

R̂
e
= Ĉe

GV̂G, (63)

and:
δRe = R̂e −Re, (64)

δVG = V̂G − VG, (65)

Ĉe
G = Ce

G′′ = Ce
GCG

G′′ , (66)

Due to the position deviation, the actual position of the UUV and the calculated position in the
G frame do not coincide. There are slight errors δL, δλ, and δσ between them. The G frame can be
obtained by the following three-time rotations from the G′′ frame:

OxG′′ yG′′ zG′′
around xg axis
→
δL

Ox′G′′ y
′
G′′ z

′
G′′

around ze axis→
−δλ

Ox′′G′′ y
′′
G′′ z

′′
G′′

around ẑG axis→
δσ

OxGyGzG, (67)
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The position deviation can be expressed as:

δβ = δLxg − δλze + δσẑG, (68)

Ignoring the second-order small terms and combining Equation (6), Equation (68) is transformed
into the matrix form based on G frame.

δβG =

 − cos σ − cos L sin σ 0
− sin σ cos L cos σ 0

− cos L cos σ sin σ
sin L

cos σ sin σ
sin λ cos λ + sin L 0

δP, (69)

δβG = CβRδRe, (70)

where,

CβR =
1

Reh


sL√

1−c2Ls2λ
0 −cλcL√

1−c2Ls2λ
sλcλc2L√
1−c2Ls2λ

√
1− c2Ls2λ −sλsLcL√

1−c2Ls2λ
cLsLsλ

1−c2Ls2λ
0 − c2Lsλcλ

1−c2Ls2λ

, (71)

Thus:
Ĉe

G = Ce
GCG

G′ = Ce
G

(
I + δβG×

)
, (72)

Substituting Equations (64)–(66) and Equation (72) into Equation (63), then subtracting
Equation (62) from Equation (63), the position error equation of the UUV in the grid frame can
be obtained as:

δ
.

R
e
= Ce

GδVG − Ce
G

(
VG×

)
CβRδRe, (73)

2.5. Error Model of OCTANS

The OCTANS is an all-in-one gyrocompass and motion sensor for diverse challenging applications.
OCTANS consists of three fiber-optic gyroscopes and three quartz accelerometers. The OCTANS
measures the attitude of UUV quickly and accurately. The errors of the OCTANS are caused by the
inertially-sensitive elements, including gyroscope drifts and accelerometer bias. The accelerometer
bias has little effect on the measurement results comparing with the gyroscope drifts. Therefore, the
accelerometer bias can be ignored. The gyro drifts consist of gyro constant drifts and gyro random
drifts. Therefore, the error model of OCTANS can be built as follows:

εo
o = εo

wo + εo
co, (74)

where εo
co and εo

wo are the gyro constant drifts and gyro random drifts of the OCTANS in the o frame,
respectively. εo

wo can be set as zero-mean Gaussian white noise and εo
co can be expressed as:

.
ε

o
co = 0, (75)

The error model of the OCTANS expressed in the G frame can be rewritten as:

εG
o = CG

b Cb
oεo

o = CG
b Cb

o(ε
o
wo + εo

co), (76)

where Cb
o is the direction cosine matrix from the o frame to the b frame. The installation error angles of

the OCTANS are small enough to be ignored. Then, Cb
o is approximate to Cb

o = I. Equation (76) can be
rewritten as:

εG
o = CG

b Iεo
o = CG

b I(εo
wo + εo

co) = εG
wo + εG

co, (77)
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Considering εo
co can be updated by Equation (75), the attitude of the UUV measured by the

OCTANS in the G frame can be obtained as:

Λ̂G
o = ΛG

o + εG
wo = Λ̃G

o − εG
co, (78)

where Λ = [ϕ θ ψ]T represents the attitude of the UUV; ϕ, θ, and ψ represent the roll angle, pitch
angle, and yaw angle of the UUV, respectively; Λ̂G

o is the attitude measured by the OCTANS after
partial error compensation in G frame; Λ̃G

o is the attitude measured by the OCTANS before partial
error compensation in the G frame; ΛG

o is the ideal attitude measured by the OCTANS in the G frame,
and εG

wo is zero-mean Gaussian white noise.

2.6. Error Model of DVL

The DVL measures the velocity of the carrier by emitting ultrasonic waves to the seafloor. It is
based on the Doppler effect. According to the principle of the DVL, it can provide the velocity of
the UUV related to the seafloor. The accuracy of the DVL is affected by many error sources, such as
installation errors, scale factor errors, frequency measurement errors, etc. [23]. To simplify the analysis,
the errors of the DVL are considered to be composed of the scale factor errors, the random velocity
errors, and the white noise. The output of the DVL in the body frame of the DVL (m frame), which can
be expressed as:

V̂m
d = (1 + δKd)V

m
d + δVm

d + vm
d , (79)

where V̂m
d is the actual output velocity; Vm

d is the ideal velocity; δKd is the scale factor error of the DVL;
δVm

d is the random velocity error; and vm
d is zero-mean Gaussian white noise.

The scale factor error δKd is assumed as the random constant and a one-order Markov process
can describe the random velocity error δVm

d :{
δ

.
Kd = 0

δ
.
V

m
d = −δVm

d /τv + wv
, (80)

where τv is the correlation time of Markov process of δVm
d and wv is the white noise.

The output of the DVL projected in the G frame can be expressed as:

V̂G
d = CG

b Cb
mV̂m

d , (81)

where Cb
m is the direction cosine matrix from the m frame to the b frame. The installation error angles

are small enough to be neglected. Therefore, Cb
m is approximate to Cb

m = I.
As δKd and δVm

d can be updated by Equation (80), the velocity of the UUV measured by the DVL
in the G frame can be obtained as:

V̂G
d = VG

d + vG
d = CG

b Cb
mVm

d = CG
b

[(
V̂m

d − δVm
d

)
/(1 + δKd)

]
, (82)

where V̂G
d is the velocity measured by the DVL after partial error compensation in the G frame; VG

d is
the ideal velocity of the UUV in the G frame and vG

d is zero-mean Gaussian white noise.

3. Filter Models of the UUV in Polar Grid Navigation

3.1. Dynamic Model

Based on the analysis of Section 2, the attitude errors φG, the velocity errors δVG, the position
errors δRe, the gyro drifts εb

c , and the accelerometer bias ∇b
c are chosen as the states to be estimated

of the SINS. The gyro constant drift of the OCTANS εo
co is chosen as the state to be estimated of the

OCTANS. The scale factor error of the DVL δKd and the random velocity error of the DVL δVm
d are
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chosen as the states to be estimated of the DVL. The states of dynamic model based on G frame can be
defined as:

X =
[
XT

SINS XT
OCTANS XT

DVL

]T
, XSINS =

[(
φG
)T (

δVG
)T

(δRe)T
(

εb
c

)T (
∇b

c

)T
]T

XOCTANS =
[
(εo

co)
T
]T

, XDVL =
[
(δKd)

T (δVm
d )

T
]T

Based on the attitude error equation (Equation (51)), the velocity error equation (Equation (61)),
the position error equation (Equation (73)), the error model of OCTANS (Equation (75)), the error
model of DVL (Equation (80)), and assuming that εb

r and ∇b
r are both zero-mean Gaussian white noise,

the differential equations of the states can be described as:

.
φ

G
= Cω

−1[−(ωG
iG×)φ

G + (CωieR + CωeGR)δRe +CωeGvδVG − CG′
b εb

]
δ

.
V

G
= fG ×φG +

[
VG × CωeGv −

(
2ωG

ie + ωG
eG
)
×
]
· δVG +

[
VG × (2CωieR + CωeGR)

]
δRe + CG

b ∇
b

δ
.

R
e

= Ce
GδVG − Ce

G
(
VG×

)
CϕRδRe

.
ε

b
= 0

.
∇

b
= 0

.
ε

o
co = 0

δ
.

Kd = 0

δ
.
V

m
d = −δVm

d /τv + wv

, (83)

For simplification of illustration, the dynamic model of the UUV shown in Equation (83) is
defined as Model 1. The typical dynamic model of the SINS shown in [24] is defined as Model 2. The
dynamic model of the SINS shown in [13] is defined as Model 3. Model 1 and Model 3 are designed for
navigation in the polar region, and Model 2 is designed for navigation in non-polar regions. Models
1, 2, and 3 are all based on the principle of traditional SINS. The main difference among Models 1, 2,
and 3 is that the G frame is chosen as the navigation frame in Model 1, the g frame is chosen as the
navigation frame in Model 2, and the transversal g frame is chosen as the navigation frame in Model 3.
Therefore, the meridians’ convergence in high-latitude areas has no impact on Model 1 and 3, while it
has an impact on Model 2. The dynamic model of Model 2 can be described as:

.
φ

g
= φg ×ω

g
ig + δω

g
ig − Cg

b εb

δ
.
V

g
= −φg × fb + δVg ×

(
2ω

g
ie + ω

g
eg

)
+ Vg ×

(
2δω

g
ie + δω

g
eg

)
+ Cg

b∇
b

δ
.
L =

δVg
N

RM+h − δh Vg
N

(RM+h)2

δ
.
λ =

δVg
E

RN+h sec L + δL δVg
E

RN+h tan L sec L− δh Vg
E sec L

(RN+h)2

δ
.
h = δVg

U
.
ε

b
= 0

.
∇

b
= 0

.
ε

o
co = 0

δ
.

Kd = 0

δ
.
V

m
d = −δVm

d /τv + wv

, (84)

According to Equation (83), the dynamic models of the UUV based on the G frame can be
expressed in vector form as:

.
X = AX + BW, (85)
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where A is the system matrix; B is the control matrix; W is the system noise that can be regarded as
independent Gaussian white noise Wk ∼ N(0, Qk); and Q is measurement noise covariance matrix.

A =

 ASINS
15×15 015×3 015×6

03×15 AOCTANS
3×3 03×6

06×15 06×3 ADVL
6×6

, ASINS
15×15 =


A1 A2 A3 A4 03×3

A5 A6 A7 03×3 A8

03×3 A9 A10 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

, AOCTANS
3×3 = [03×3], ADVL

6×6 =

[
03×3 03×3

03×3 A11

]

B =


B1 03×3 03×3

03×3 B2 03×3

015×3 015×3 015×3

03×3 03×3 I3×3


T

, W =

[(
εb

r

)T (
∇G

r

)T
(wv)

T
]T

where, A1 = Cω
−1 (−(ωG

iG×)), A2 = Cω
−1CωeGv, A3 = Cω

−1(CωieR + CωeGR), A4 = −Cω
−1CG′

b ,

A5 =
(

fG×
)

, A6 =
[
VG × CωeGv −

(
2ωG

ie + ωG
eG
)
×
]
, A7 = VG × (2CωieR + CωeGR), A8 = CG

b , A9 =

Ce
G, A10 = −Ce

G
(
VG×

)
CβR, A11 = −1/τv · I3×3, B1 = Cω

−1CG′
b , B2 = CG

b .

3.2. Observation Model

Due to the restriction of the complex underwater environment in the polar region and combining
the characters of the UUV, OCTANS and DVL are chosen as the assistants to improve navigation
accuracy of the UUV in the polar region. Thus, attitude and velocity errors are chosen as the states to be
observed, which can be obtained from the OCTANS and DVL, respectively. Therefore, the observations
of UUV are defined as:

Z =
[ (

φG)T (
δVG)T

]T

Based on the analysis in Section 2, the attitude error and the velocity error can be expressed as:

Z =

[
Λ̂G

o −ΛG

V̂G
d − VG

]
=

[
φG + εG

wo
δVG + vG

d

]
, (86)

where ΛG and VG are the attitude and velocity of UUV calculated by the SINS, respectively.
The observation model of UUV based on the G frame can be expressed in vector form as:

.
Z = HX + V, (87)

where H is the observation matrix; V =
[ (

εG
wo
)T (

vG
d
)T
]T

is the measurement noise vector that is
independent Gaussian white noise Vk ∼ N(0, Rk); and R is the measurement noise covariance:

H =

[
I3×3 03×3 03×3 03×3 03×3 03×3 03×3 03×3

03×3 I3×3 03×3 03×3 03×3 03×3 03×3 03×3

]T

4. Filter Algorithm of the UUV in Polar Grid Navigation

The filter algorithm will affect the navigation accuracy. In this section, a modified fuzzy adaptive
Kalman filter is proposed to realize the data fusion and to improve the accuracy of the system.

4.1. Modified Adaptive Kalman Filter

Based on the Equations (85) and (87), the discrete expression of the filter models are as follows:{
Xk = Φk,k−1Xk−1 + Γk,k−1Wk−1

Zk = HkXk + Vk
, (88)
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where, Φk,k−1, Γk,k−1 and Hk are the discrete expression of A, B and H, respectively.
The traditional adaptive Kalman filter (AKF) for a discrete system of the UUV can be described

as [25]:
Xk,k−1 = Φk,k−1X̂k−1 + q̂k, (89)

Pk,k−1 = Φk,k−1Pk−1ΦT
k,k−1 + Γk,k−1Q̂k−1ΓT

k,k−1, (90)

vk = Zk −HkXk/k−1 − r̂k, (91)

Kk = Pk,k−1HT
k [HkPk/k−1HT

k + R̂k]
−1

, (92)

X̂k = X̂k/k−1 + Kkvk, (93)

Pk = (I −KkHk)Pk/k−1, (94)

where q̂k and Q̂k are the mean and the covariance of the system noise W, respectively. r̂k and R̂k are the
mean and the covariance of the measurement noise V, respectively. The recursive estimate formulas
can be written as:

q̂k+1 = (1− dk)q̂k + dk(Xk+1 −Xk+1,k), (95)

Q̂k+1 = (1− dk)Q̂k + dk[Kk+1vk+1(Kk+1vk+1)
T + Pk+1 −Φk+1,kPkX̂kΦT

k+1,k], (96)

r̂k+1 = (1− dk)r̂k + dk(Zk+1 −Hk+1,kXk+1,k), (97)

R̂k+1 = (1− dk)R̂k + dk[vk+1vT
k+1 −Hk+1Pk+1,kHT

k+1], (98)

where dk = (1− b)/(1− bk), 0 < b < 1 is the forgetting factor.
In order to simplify the system and keep positive definiteness of Q̂k and R̂k, Equations (96) and

(98) are modified as:

Q̂k+1 = (1− dk)Q̂k + dk[Kk+1vk+1(Kk+1vk+1)
T + Pk+1], (99)

R̂k+1 = (1− dk)R̂k + dk[vk+1vT
k+1], (100)

where, Q and R are the covariance of the system noise and the measurement noise, respectively.

4.2. Fuzzy Inference System (FIS)

The system noise and the measurement noise are assumed to be zero-mean white noise in the
conventional AKF, and their covariances are Q and R, respectively. In general, there is no prior
information of R changing in different situations [26]. The covariance changes with varied underwater
environment and influence the characters of the filter. The smaller R value is the higher weight that
the recent measurement is given, and the faster the filter response to the observed values [26,27].

The covariance can be modified by a fuzzy inference system (FIS). The adaptive Kalman filter will
achieve the optimal state though the covariance modified by FIS. Therefore, in order to improve the
performance of the filter, R̂k should be adjusted by FIS:

R̂ = TR̂k, (101)

where T is the output of the FIS and:

Vk = Zk −HkXk/k−1, (102)

where, Vk is defined as residual error which reflects the dependence degree of the measurement value
to the system model. The residual errors are the differences between the measurements and the
predictions of the filter, which can be seen as zero-mean white noise, in general [26]. If the residual
errors are not zero-mean white noise, the filter will converge to a large bound, or even diverge.
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Therefore, the residual errors are used to adjust the filter. The theoretical value of the residual error
covariance matrix Mv, which has association with Q and R, can be described as [28]:

Mv = Hk

(
ΦPk−1ΦT + Qk−1

)
HT

k + Rk−1, (103)

The actual mean value and covariance matrix of the residual error with j statistical numbers in a
period of time can be defined as:

v =
1
n

t

∑
j=t−n

vj, (104)

M̂v =
1
n

t

∑
j=t−n+1

vjvT
j , (105)

where v is the first element in Vk to simplify the analysis.
If M̂v is much larger than Mv and v is detached from zero, the filter would be unstable. Thus, v

and M̂v are chosen as the inputs of FIS.
The FIS used in this paper is a double-input-single-output FIS, which is based on T-S fuzzy logic.

The first elements in the mean v and covariance M̂v of the residual error are the inputs of the FIS. The
output of FIS is T which is used to adjust R̂k. The triangle membership function is used to blur the
inputs. A membership function of inputs can be expressed as Figure 2.
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A total of nine fuzzy rules are used to describe the relationship between the inputs and the output.
These fuzzy rules can be shown as Figure 3.
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4.3. Modified FUZZY ADAPTIVE KALMAN Filter

Based on the analysis above, the whole modified fuzzy adaptive KF is shown as follows:

Xk/k−1 = Φk,k−1X̂k−1, (106)
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Pk/k−1 = Φk,k−1Pk−1ΦT
k,k−1 + Qk−1, (107)

vk = Zk −HkXk/k−1, (108)

Rk+1 = (1− dk)Rk + dk[vk+1vT
k+1], (109)

Kk = Pk,k−1HT
k [HkPk/k−1HT

k + TkR̂k]
−1

, (110)

X̂k = X̂k/k−1 + Kkvk, (111)

Pk = (I−KkHk)Pk/k−1, (112)

Q̂k+1 = (1− dk)Q̂k + dk[Kk+1vk+1(Kk+1vk+1)
T + Pk+1], (113)

In order to describe MFAKF clearly, a flowchart shown in Figure 4 is used to express the process
of MFAKF, as shown below.
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5. Simulations and Experimental Results

Simulations and experiments are conducted not only to verify the effectiveness of the polar grid
navigation for the UUV, but also to verify the accuracy improvement of MFAKF compared with AKF.
For a simplification of illustration, the SINS/OCTANS/DVL integrated navigation system is labelled
as SODINS.

5.1. Simulation Results and Analysis

To verify the effectiveness of the proposed algorithm, simulations are realized in the following
conditions: Simulation time is 12 h and the filtering period is 0.1 s. The initial position of UUV,
including latitude L and longitude λ, are set as 80◦ and 126◦, respectively.

Sine functions are used to describe the attitudes of the UUV, which include pitch angle, roll angle,
and yaw angle. The amplitude of pitch angle, roll angle, and yaw angle are 4◦, 5◦ and 3◦, respectively.
The period of these angles is 3 s 5 s, and 7 s, respectively. The initial phase of these angles is 0◦, 0◦ and
0◦, respectively. The actual misalignment angles are 0◦, 0◦ and 0◦, respectively.

The gyro drifts and the accelerometer bias are the two main error sources of SINS [29]. The gyro
bias is composed of the gyro constant drifts and the gyro random drifts, which are set as 0.03

◦
/h and
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(
0.001

◦
/h
)2, respectively. The accelerometer bias is composed of the accelerometer constant bias and

the accelerometer random bias, which are set as 1× 10−6g0 and
(
1× 10−7g0

)2, respectively.
The initial conditions of the OCTANS and DVL are set as follows: The gyro constant drifts of

OCTANS are set as 0.01◦/h and the random drifts are set as
(
0.0005

◦
/h
)2. The velocity random drifts

of DVL are set as δVm
dx = δVm

dy = δVm
dz = 0.005 m/s, the correlation time of δVm

d is set as τv = 5 min

and the scale factor error is set as δKd = 10−4. To simplify the simulation and for the purpose of this
paper, the constant errors of the OCTANS and DVL are assumed to be well compensated, the random
errors are assumed well modeled, and white noises are used to describe the measurement noises of the
OCTANS and DVL.

The initial state estimation covariance P0, system noise covariance Q, and measurement noise
covariance R are set shown below.

P0 = diag



(0.01π/180 rad)2, (0.01π/180 rad)2, (0.01π/180 rad)2, (0.1 m/s)2, (0.1 m/s)2,
(0.1 m/s)2, (1 m)2, (1 m)2, (1 m)2, (0.03π/180/3600 rad/s)2, (0.03π/180/3600 rad/s)2,

(0.03π/180/3600 rad/s)2,
(

1× 10−6g m/s2
)2

,
(

1× 10−6g m/s2
)2

,
(

1× 10−6g m/s2
)2

,

(0.01π/180/3600 rad/s)2, (0.01π/180/3600 rad/s)2, (0.01π/180/3600 rad/s)2,(
10−4)2,

(
10−4)2,

(
10−4)2, (0.005 m/s)2, (0.005 m/s)2, (0.005 m/s)2



Q = diag



(
5× 10−4π/180/3600 rad/s

)2,
(
5× 10−4π/180/3600 rad/s

)2,(
5× 10−4π/180/3600 rad/s

)2,
(

5× 10−6gm/s2
)2

,
(

5× 10−6gm/s2
)2

,(
5× 10−6g m/s2

)2
,
(

0.002 m/s2
)2

,
(

0.002 m/s2
)2

,
(

0.002 m/s2
)2


R = diag


(0.01π/180 rad)2, (0.01π/180 rad)2, (0.01π/180 rad)2,

(0.01 m/s)2, (0.01 m/s)2, (0.01 m/s)2


To verify the effective of the polar grid navigation, Model 2 and Model 3 are chosen as the

comparative models. They all based on traditional SINS. However, different frames are chosen as the
navigation frames in these models. Different from Model 2, the traditional g frame is chosen as the
navigation frame, the G frame is chosen as the navigation frame in Model 1, and transversal g frame is
chosen as the navigation frame in Model 3. The computational time and the memory consumption of
the proposed polar grid navigation algorithm are 12327.269780 s and 2164 MB (54%), respectively. The
simulation results can be expressed as shown below.

The coordinate in e frame Re(x, y, z) describes the position in Model 1. Latitude and longitude
describe the position in Model 2. Considering the different expressions of position in Model 1 and
Model 2, Figure 5c,d are used to express the position errors, respectively. As shown in Figure 5,
compared with Model 2, Model 1 and Model 3 exhibit more accurate performances, and Model 1 is
superior to Model 3 in accuracy. Therefore, Model 1 can be effectively used in the polar region.
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Figure 5. Simulation results: (a) attitude errors of the unmanned underwater vehicles (UUV);  
(b) velocity errors of the UUV; (c) position errors of Model 1; (d) position errors of Model 2. 

In order to facilitate comparative analysis, the filter model and the simulation condition are the 
same for MFAKF and AKF. The estimation errors of SODINS based on MFAKF and KF can be 
expressed as shown below. 

As shown in Figure 6, the estimation errors of MFAKF is smaller than that of the KF. MFAKF 
shows better performance than AKF. The RMS estimation errors of SODINS based on MFAKF and 
KF are shown in Table 1, respectively. 

Figure 5. Simulation results: (a) attitude errors of the unmanned underwater vehicles (UUV); (b)
velocity errors of the UUV; (c) position errors of Model 1; (d) position errors of Model 2.

In order to facilitate comparative analysis, the filter model and the simulation condition are
the same for MFAKF and AKF. The estimation errors of SODINS based on MFAKF and KF can be
expressed as shown below.

As shown in Figure 6, the estimation errors of MFAKF is smaller than that of the KF. MFAKF
shows better performance than AKF. The RMS estimation errors of SODINS based on MFAKF and KF
are shown in Table 1, respectively.
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Figure 6. Simulation results of SODINS based on MFAKF and AKF: (a) estimation errors of attitude; 
(b) estimation errors of velocity; and (c) estimation errors of position. 

From Table 1, the RMS estimation errors of attitude, velocity, and position based on MFAKF 
are less than 9.0768’, 0.0256 m/s, and 556.3639 m, respectively. The RMS estimation errors of attitude, 
velocity, and position based on AKF are less than 14.3786’, 0.0912 m/s, and 573.4550 m, respectively. 
The results indicate that MFAKF is superior to AKF in the estimation of navigation errors. 

Table 1. RMS errors of SODINS in the simulation. 

Parameters MFAKF AKF
φx /(′) 0.0872 0.6117 
φy /(′) 0.1429 0.2655 
φz /(′) 9.0768 14.3786 

xv /(m/s) 0.0256 0.0912 

yv /(m/s) 0.0182 0.0464 

xr /(m) 28.2271 37.9480 

yr /(m) 22.7024 100.8459 

zr /(m) 556.3639 573.4550 

Figure 6. Simulation results of SODINS based on MFAKF and AKF: (a) estimation errors of attitude;
(b) estimation errors of velocity; and (c) estimation errors of position.

From Table 1, the RMS estimation errors of attitude, velocity, and position based on MFAKF are
less than 9.0768’, 0.0256 m/s, and 556.3639 m, respectively. The RMS estimation errors of attitude,
velocity, and position based on AKF are less than 14.3786’, 0.0912 m/s, and 573.4550 m, respectively.
The results indicate that MFAKF is superior to AKF in the estimation of navigation errors.

Table 1. RMS errors of SODINS in the simulation.

Parameters MFAKF AKF

φx/(′) 0.0872 0.6117
φy/(′) 0.1429 0.2655
φz/(′) 9.0768 14.3786

vx/(m/s) 0.0256 0.0912
vy/(m/s) 0.0182 0.0464

rx/(m) 28.2271 37.9480
ry/(m) 22.7024 100.8459
rz/(m) 556.3639 573.4550
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5.2. Experimental Results and Analysis

With the restriction of the geography, experimental results can be obtained from the semi-physical
simulation. The experiment was conducted in non-polar areas, and the measured data is supplied by
the IMU. The experimental data in the polar region is composed of the practical measured data and

the simulated data. The experimental data includes the angular velocity ω̂b
ib and special force f̂b

in the
polar region. The angular velocity in the polar region ω̂b

ib is composed of the true angular velocity ωb
ib

and the accelerometer bias δωb
ib. Similarly, the special force f̂b

is composed of the true special force fb

and the gyro drifts δfb. {
ω̂b

ib = ωb
ib + δωb

ib

f̂b
= fb + δfb , (114)

The true values of the angular velocity and the special force can be supplied by the simulation.
Meanwhile, gyro drifts and accelerometer bias can be extracted from the practical measured data.
Therefore, the practical measured data and the simulated data constitute the experimental IMU data in
the polar region. The practical measured data is provided by IMU in the UUV as shown in Figure 7.
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Figure 7. Unmanned underwater vehicle (UUV).

This UUV is built by our laboratory. One main rear propeller and three thrusters (including one
lateral thruster and two vertical thrusters), one rudder, and one elevator realize the motion control
cooperatively. The mission control is realized by the mission control computer. The sensors that we are
most concerned with in this paper include the inertial measurement unit (IMU), doppler velocity log
(DVL), OCTANS, depth sensor, Global Positioning System (GPS), underwater camera, and sonar. In
these sensors, IMU, OCTANS, and DVL play a major role in this paper, while the other sensors are not
covered in this paper. The experiment was carried out in a rectangular pool located at the non-polar
region (N45◦46′ E126◦40′). The UUV is ordered to finish the uniform liner motion with a velocity of 1
kn. According to the data collected from the experiment, the gyro drifts and the accelerometer bias can
be calculated.

The gyro drifts and the accelerometer bias can be extracted from the practical measured
data. The gyro constant drifts are 0.03

◦
/h; the gyro random drifts are

(
4.094× 10−6 rad/s

)2,(
4.308× 10−6 rad/s

)2 and
(
2.386× 10−6 rad/s

)2, respectively; the accelerometer constant bias is

1 × 10−6g0; and the accelerometer random biases are
(

0.00156 m/s2
)2

,
(

0.001747 m/s2
)2

and(
0.0004063 m/s2

)2
, respectively.

The semi-physical simulation was conducted in non-polar areas to overcome the restriction of the
geography. Similar with the true values of the angular velocity and the special force of UUV which
are supplied by simulation, the signal of the OCTANS and DVL are also provided by the simulation.
Based on the characters of the OCTANS and DVL, the relevant parameters of them are set as follows:
The OCTANS gyro constant drifts and the gyro random drifts are set as 0.01

◦
/h and

(
0.0005

◦
/h
)2,

respectively. The DVL random velocity drifts, the correlation time of δVm
d , and the scale factor error

are set as δVm
dx = δVm

dy = δVm
dz = 0.005m/s, τv = 5 min and δKd = 10−4, respectively. To simplify

the experiment and for the purpose of this paper, the constant errors of the OCTANS and DVL are



Sensors 2017, 17, 1599 20 of 24

assumed to be well compensated, the random errors are assumed to be well modeled, and white
noise is used to describe the measurement noises of the OCTANS and DVL. Relevant parameters in
experiment are the same with those in simulation. In experiment, errors and estimation errors of UUV
are also expressed to verify the effectively of the polar grid navigation algorithm.

As shown in Figure 8, Model 1 is superior to Model 2 and Model 3 in accuracy. The experimental
results demonstrate that Model 1 and Model 3 can overcome the problems in Model 2 and Model 1 has
better performance than Model 3.

Sensors 2017, 17, 1599  21 of 25 

 

simplify the experiment and for the purpose of this paper, the constant errors of the OCTANS and 
DVL are assumed to be well compensated, the random errors are assumed to be well modeled, and 
white noise is used to describe the measurement noises of the OCTANS and DVL. Relevant 
parameters in experiment are the same with those in simulation. In experiment, errors and 
estimation errors of UUV are also expressed to verify the effectively of the polar grid navigation 
algorithm. 

As shown in Figure 8, Model 1 is superior to Model 2 and Model 3 in accuracy. The 
experimental results demonstrate that Model 1 and Model 3 can overcome the problems in Model 2 
and Model 1 has better performance than Model 3. 

0 2 4 6 8 10 12
-20

0

20

40

δφ
x/(
′)

0 2 4 6 8 10 12
-5

0

5

10

15

δφ
y/(
′)

0 2 4 6 8 10 12
-100

-50

0

50

δφ
z/(
′)

time (h)

 

 

Model 1 Model 2 Model 3

(a) 

0 2 4 6 8 10 12
-1

-0.5

0

0.5

δv
x(

m
/s

)

 

 

0 2 4 6 8 10 12
-1.5

-1

-0.5

0

0.5

1
δv

y(
m

/s
)

time (h)

 

 

Model 1 Model 2 Model 3

(b) 

0 2 4 6 8 10 12
-10000

-5000

0

5000

x(
m

)

 

 

0 2 4 6 8 10 12
-400

-200

0

200

y(
m

)

0 2 4 6 8 10 12
-1

0

1
x 10

4

z(
m

)

time(h)

 

 

Model 1 Model 3

 
(c) 

0 2 4 6 8 10 12
-5

0

5
x 10

4

la
tit

ud
e(

m
)

0 2 4 6 8 10 12
-1

0

1
x 10

6

lo
ng

itu
de

(m
)

0 2 4 6 8 10 12
-10

-5

0

5
x 10

5

po
st

io
n(

m
)

time(h)

 

 

Model 2

(d) 

Figure 8. Experimental results: (a) attitude errors of the UUV; (b) velocity errors of the UUV; (c) 
position errors of Model 1; and (d) position errors of Model 2. 
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estimation errors of SODINS based on MFAKF and KF are shown in Table 2, respectively. 

Figure 8. Experimental results: (a) attitude errors of the UUV; (b) velocity errors of the UUV; (c)
position errors of Model 1; and (d) position errors of Model 2.

The comparative analysis between MFAKF and AKF in experiment can be expressed as follows.
As shown in Figure 9, MFAKF exhibits better navigation accuracy than AKF. The RMS estimation

errors of SODINS based on MFAKF and KF are shown in Table 2, respectively.
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Figure 9. Experimental results of SODINS based on MFAKF and AKF: (a) estimation errors of 
attitude; (b) estimation errors of velocity; and (c) estimation errors of position. 
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Figure 9. Experimental results of SODINS based on MFAKF and AKF: (a) estimation errors of attitude;
(b) estimation errors of velocity; and (c) estimation errors of position.

From Table 2, RMS estimation errors of the attitude, velocity and position based on MFAKF are
less than 11.0893’, 0.0376 m/s and 551.6560 m, respectively. The RMS estimation errors of attitude,
velocity, and position based on AKF are less than 15.1294’, 0.0909 m/s and 556.5706 m, respectively.
Therefore, the navigation accuracy of SODINS based on MFAKF is better than that based on AKF.

Table 2. RMS errors of SODINS in the experiment.

Parameters MFAKF AKF

φx/(′) 0.0571 0.0896
φy/(′) 0.1257 0.1601
φz/(′) 11.0893 15.1294

vx/(m/s) 0.0376 0.0909
vy/(m/s) 0.0241 0.0462

rx/(m) 21.3962 36.3067
ry/(m) 33.5115 103.3216
rz/(m) 551.6560 566.5706
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6. Discussion

Simulation and experiment results demonstrate that the proposed polar grid navigation can be
effectively used on a UUV in the polar region. The comparison between MFAKF and AKF show that the
proposed filter algorithm is superior to AKF. To facilitate comparative discussions, the dynamic model
of a UUV and the simulation conditions are the same for both MFAKF and AKF. The comparisons
among Model 1, Model 2, and Model 3 demonstrate the effectiveness of the polar grid navigation,
which can be expressed as shown below. Additionally, compared with the traditional AKF, the
advantages of MFAKF are also concluded as follows:

1. SINS is widely used in UUV navigation because of its high autonomy. Model 2 is the typical
SINS model for UUVs. It is a general model of SINS and can achieve a navigation accuracy that
meets the requirements of UUVs in non-polar regions. While in the polar region, due to the
rapid convergence of Earth meridians, there exist calculation overflows and sharply increasing
errors in Model 2, in which the geographic frame is chosen as the navigation frame. This is
because the error of the upside component of the command angular velocity is related to the
tangent value of latitude in traditional SINS. In the polar region, the latitude tends to 90◦ and
the error tends to infinity. Therefore, the geographic frame is not suitable to be chosen as the
navigation frame in the polar region. To overcome the problems in the traditional SINS (Model 2)
in the polar region, the transversal SINS (Model 3) and polar grid SINS (Model 1) are proposed.
The transversal geographic frame and grid frame are chosen as the navigation frame to modify
the unsuitability of the traditional SINS, respectively. Although the transversal SINS (Model
3) can realize navigation in the polar region, there are principle errors in the transversal SINS
algorithm. The transversal SINS ignores the ellipse of the Earth. Model 1, based on the grid frame,
is proposed to overcome the influence caused by the meridians’ convergence in high latitude
areas. In the grid frame, the grid planes are parallel with the Greenwich plane. The polar region
is the normal region in the polar grid navigation algorithm. There is no impact on the polar
grid navigation. Simulation and experiment results also demonstrate that Model 1 is superior
to Model 2 and Model 3 in accuracy. The polar grid navigation of UUVs proposed in this paper
(Model 1) is suitable for UUV navigating in the polar region.

2. Ignoring the negative terms can not only simplify the filter but can also keep the positive
definiteness of the filter. T-S fuzzy logic regulates the residual error close to zero. The covariance
is also regulated by FIS to adjust the changing of the environment. The adaptive Kalman filter
will achieve the optimal state though the covariance modified by FIS. MFAKF can adjust the
changing of the environment. Therefore, MFAKF is superior to AKF in estimating the states
of filter.

Based on the analysis above, Model 1 and MFAKF have the better performance than Model 2, 3,
and AKF in the polar region. Therefore, the proposed polar grid navigation for UUV can be used in
the polar region effectively.

7. Conclusions

A polar grid navigation algorithm for UUV is proposed to overcome the unavailability of
traditional UUV navigation in polar regions. Considering the complex polar underwater environment
and the motion characteristics of UUVs, SINS based on the grid frame with the assistance of OCTANS
and DVL is chosen for UUV polar navigation. A modified fuzzy adaptive Kalman filter is used to
improve the navigation accuracy. Simulation and experiment results have proven that the proposed
polar grid navigation of a UUV can be effectively used in the polar region, and the proposed modified
fuzzy adaptive Kalman filter can achieve better accuracy than AKF.
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