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Abstract: Spoofing attacks are threatening the global navigation satellite system (GNSS).
The maximum likelihood estimation (MLE)-based positioning technique is a direct positioning
method originally developed for multipath rejection and weak signal processing. We find this
method also has a potential ability for GNSS anti-spoofing since a spoofing attack that misleads
the positioning and timing result will cause distortion to the MLE cost function. Based on the
method, an estimation-cancellation approach is presented to detect spoofing attacks and recover the
navigation solution. A statistic is derived for spoofing detection with the principle of the generalized
likelihood ratio test (GLRT). Then, the MLE cost function is decomposed to further validate whether
the navigation solution obtained by MLE-based positioning is formed by consistent signals. Both
formulae and simulations are provided to evaluate the anti-spoofing performance. Experiments with
recordings in real GNSS spoofing scenarios are also performed to validate the practicability of the
approach. Results show that the method works even when the code phase differences between the
spoofing and authentic signals are much less than one code chip, which can improve the availability
of GNSS service greatly under spoofing attacks.

Keywords: GNSS; maximum likelihood estimation; spoofing detection; spoofing mitigation;
navigation solution recovery

1. Introduction

The security of global navigation satellite system (GNSS) has caught more and more public
attention because of the ever-increasing reliance on GNSS in our lives. GNSS receivers are vulnerable
to jamming and spoofing attacks because the power of received GNSS signals is very low and the
details of civilian signals are open to the public [1,2].

Spoofing signals can lead to wrong position, velocity and time (PVT) results. A victim receiver
may output results preassigned by a spoofer so that the motion of the vehicle equipped with the
receiver will be misled [3].

Many spoofing tests have been carried out over the last few years. The first GNSS spoofing
experiment was presented by Warner and Johnston using a GS720 satellite simulator [4]. In the
experiment, a spoofer was mounted on a truck, and the counterfeit signals were effective when
the distance between the spoofer and the victim receiver did not exceed 30 feet. A portable Global
Positioning System (GPS) civilian spoofer was developed by researchers at the University of Texas
at Austin [3]. Spoofing threat was assessed with the device, and a successful spoofing experiment
was carried out on a super yacht [5]. The researchers also did a successful spoofing test on phasor
measurement units (PMU), which are employed in time synchronization of the power system [6]. It is
obvious that the GNSS spoofing attack is not far from reality. Hence, efficient spoofing countermeasures
need to be developed.
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Many anti-spoofing techniques have been developed because of the importance of GNSS security.
Some of them require additional hardware or changes to the interface specification. Techniques based
on multiple antennas, absolute power measurements and inertial navigation system (INS) perform
spoofing detection with measurements from additional sensors [7–9]. Cross-correlation techniques
detect spoofing attack by performing cross-correlation of encrypted signals between secure and
defended receivers [10]. Cryptographic methods, such as spread spectrum security code (SSSC) [11]
and navigation message authentication (NMA) [12], attempt to prevent spoofing attacks by signal
encryption or designing new GNSS signals, which are difficult to simulate. However, these methods
are, to some extent, vulnerable to the replay attacks, in which the spoofer estimates, manipulates and
replays the cryptographically-secured GNSS signals in real time [13,14].

The above-mentioned countermeasures require additional hardware, which increases the expense.
Hence, their applications are limited. Other countermeasures are applied in single antenna receivers by
detecting the abnormality and inconsistency of measurements. For example, signal quality monitoring
(SQM) techniques detect the distortion of correlation results in the tracking stage [15]. Receiver
autonomous integrity monitoring (RAIM) checks the consistency between pseudorange measurements
of different satellites [16]. It fails when all channels are taken over by spoofing signals [17]. Moving
antenna techniques detect and identify spoofing signals with the correlation between measurements
of pairwise signals. It is desirable to be implemented in a moving single antenna handset [18–20].
The multiple tracking technique tracks all of the signals that are over the threshold in the acquisition
stage and attempts to distinguish the authentic measurements from spoofing ones and recover the
navigation solution [21]. It only works when the code phase difference between the authentic and
spoofing signals is more than one code chip [22].

Most of the spoofing countermeasures mentioned above process signals separately, which limits
their performance since the associated information between different signals is ignored. The maximum
likelihood estimation (MLE)-based positioning technique is a direct positioning method originally
developed for multipath rejection and weak signal processing [23]. In this paper, a jointly performed
estimation-cancellation approach is proposed for spoofing detection and navigation solution recovery
based on the technique. Firstly, a composite signal is reconstructed based on the estimated PVT
parameters and subtracted from the original signal. Then, a test statistic is calculated with the residual
signal to indicate whether there are evil signals such as spoofing and multipath signals. If evil signals
are detected, a validation procedure is performed by inspecting the consistency of the signals to
determine whether the evil signals are spoofing ones or not. Unlike the RAIM technique, the proposed
method can detect spoofing attacks when all of the channels of the victim receivers are taken over by
the spoofing signals, and it can even work when the code phase differences between the authentic and
spoofing signals are much less than one code chip.

The outline of the paper is as follows. In Section 2, the GNSS baseband signal model is introduced.
In Section 3, the maximum likelihood estimation for the GNSS PVT solution is reviewed. It is the
foundation of the proposed method in the paper. In Section 4, an estimation-cancellation algorithm
based on MLE is described, and a statistic for evil signal detection is derived based on GLRT.
Furthermore, a metric is proposed for spoofing validation. The theoretical performance of the spoofing
countermeasure is also derived in this section. In Section 5, both numerical and simulation results are
presented to investigate the factors that affect the performance of the proposed method. In Section 6,
the countermeasure is evaluated with the Texas Spoofing Test Battery (TEXBAT), which consists of
recorded data in different real spoofing scenarios and has been widely used for GNSS anti-spoofing
tests in the world. Finally, we conclude our work in Section 7.
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2. Signal Model

The received GNSS signal can be transformed into a complex baseband signal. When no spoofing
signals are present, the baseband signal can be expressed as follows [23,24]:

xn =
M

∑
i=1

aiDi(nTs − τi)ci(nTs − τi)ej(2π finTs+θi) + w(nTs), n = 0, 1, . . . , K− 1. (1)

Here,

• Fs = 1/Ts is the sampling frequency;
• M stands for the number of in-view satellites;
• K stands for the number of samples;
• ai is the amplitude of the i-th satellite signal;
• Di(t) is the navigation data of the i-th signal at time t;
• ci(t) is the pseudorandom code of the i-th signal at time t;
• τi is the propagation delay of the i-th signal;
• fi is the Doppler frequency offset of the i-th signal;
• θi is the carrier phase of the i-th signal;
• w(t) is complex zero-mean additive white Gaussian noise (AWGN) with variance σ2.

Choosing K samples as observation data, Equation (1) can be rewritten as [23]:

x = G(τ, f )a + w. (2)

Here,

• x = [x1, x2, . . . , xK]
T ∈ CK×1 is the measurement vector;

• G(τ, f ) can be expressed as [g1, ..., gM], being gi = [g1,i, ..., gK,i]
T , and gk,i = Di(kTs − τi)ci(kTs −

τi)e
j2π fdi

kTs , k = 1, 2, . . . , K, i = 1, 2, . . . , M;
• τ = [τ1, τ2, . . . , τM], f = [ f1, f2, . . . , fM]. During the observation period, τ and f can be regarded

as constants under static or low dynamic condition;
• a = [a1ejθ1 , a2ejθ2 , . . . , aMejθM ]T ∈ CM×1 represents complex amplitudes of the received signals;
• w = [w(Ts), w(2Ts), . . . , w(KTs)]T ∈ CK×1 is the AWGN vector, and each element has a variance

σ2 during the observation period.

3. Review on MLE-Based Positioning

Unlike a conventional GNSS receiver, which extracts measurements in several parallel tracking
channels independently, the GNSS MLE-based positioning technique provides a way of jointly
processing the signals of all in-view satellites. Taking advantage of the gain from the merging of
signals, the method is robust against multipath and signal fading conditions [23]. In this section, we
will review the MLE-based positioning, which is the foundation of the proposed method in the paper.

3.1. Maximum Likelihood Estimation

The probability density function (pdf) of the measurement vector x can be expressed as
Equation (3) since the noise vector w is zero-mean AWGN with variance σ2.

p(x; τ, f , a, σ2) =
1

(2πσ2)
K
2

exp
[
− ||x−Ga||2

2σ2

]
. (3)
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Denote {τ, f} as r. The maximum likelihood (ML) estimates of the unknown parameters are
given by [25]:

r̂ = arg max
r
{xHG(r)[G(r)HG(r)]−1G(r)Hx} (4)

â = [G(r̂)HG(r̂)]−1G(r̂)Hx. (5)

σ̂2 =
1
K
[x−G(r̂)â]H [x−G(r̂)â]. (6)

J(r; x) = xHG(r)[G(r)HG(r)]−1G(r)Hx (7)

We call J the cost function of MLE in the rest of the paper. The ML estimates of the parameters
can be obtained by maximizing the cost function.

3.2. Position Estimation

The MLE cost function is determined by the synchronization parameters τ and f .
These parameters can be calculated with the user PVT parameters. The elements in τ and f are
given by [26]:

τi =
1
c
‖u(i) − u‖+ tu − t(i) + e(i), (8)

fi = −
fT
c
[(v(i) − v)1(i) + ṫu − ṫ(i)]. (9)

Here,

• c is the speed of light;

• u(i) is the coordinates of the i-th satellite in Earth-centered earth-fixed (ECEF) coordinate system;
• u = [xu, yu, zu]T is the coordinates of the user in ECEF coordinate system;
• tu is the offset of the user clock from system time;

• t(i) is the offset of the i-th satellite clock from system time;

• e(i) denotes ionospheric and tropospheric delays and errors induced by relativistic effects;
these errors can be eliminated by models or differential techniques;

• fT is the frequency of the transmitted satellite signals;

• v(i) is the velocity of the i-th satellite in ECEF coordinate system;
• v = [xv, yv, zv]T is the velocity of the user in ECEF coordinate system;

• 1(i) is the unit vector pointing along the line of sight from the user to the i-th satellite and can be
expressed as Equation (10);

• ṫu is the drift rate of the user clock relative to system time;

• ṫ(i) is the drift rate of the i-th satellite clock relative to system time.

1(i) = − u(i) − u
‖u(i) − u‖

. (10)

It can be seen that τ and f are determined by the user PVT parameters ρ = [u, tu, v, ṫu]. When at
least four satellites are in view, ρ can also be resolved by τ and f . Hence, the ML estimates of the user
PVT parameters can be obtained by maximizing J based on the invariance principle of MLE [23].

4. MLE-Based GNSS Anti-Spoofing Method

Since the MLE cost function is directly connected with the PVT parameters, spoofing signals
that mislead the PVT results will cause distortion to the MLE cost function. Hence, the MLE-based
positioning technique has a potential ability for spoofing detection. In this section, based on the
technique, an estimation-cancellation algorithm is proposed, and a test statistic is derived for the
detection of evil signals. Then, a validation method is proposed based on the decomposition of MLE
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cost function to determine whether the evil signals are spoofing ones or not. Finally, the overall
implementation architecture is provided at the end of the section.

4.1. Model of Spoofing Signal

When there is a spoofing attack, the baseband signal can be expressed as:

x = G(ρa)aa + G(ρs)as + w, (11)

where ρa and aa are the PVT and amplitude parameters of the authentic signals and ρs and as are the
corresponding parameters of the spoofing ones. Since a spoofer aims to mislead the PVT results of
the victim receiver, ρs is different from ρa. Consequently, the authentic and spoofing signals will form
different peaks in the cost function.

In order to view the MLE cost function under a spoofing attack intuitively, it is assumed that
only xu and yu are unknown, and the search space is limited to [xu, yu]. The two-dimensional cost
function J with eight authentic signals and eight spoofing ones is shown in Figure 1. The center of
the search space corresponds to ρa or [δxu, δyu] = [0, 0]. The position offset induced by the spoofing
signals is [δxu, δyu] = [0, 600] m, and the other parameters in ρa and ρs are the same. The C/N0 of
each authentic signal is 45 dB-Hz, and the power of a spoofing signal is 0.8 dB higher than that of
the corresponding authentic one. It can be seen that when [δxu, δyu] = [0, 600] m, the cost function
is maximized, and when [δxu, δyu] = [0, 0], another peak, which is slightly lower than the maximum
value of the cost function, can be found. If the MLE-based positioning is employed, since the power of
the spoofing signals is higher than that of the authentic ones, the peak at ρs will be the highest, and the
ML estimate of ρ will be equal to ρs. That is to say, when the conventional MLE-based positioning
method is used, the spoofing attack can still mislead the PVT result.
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Figure 1. MLE cost function in a scenario with eight authentic signals and eight spoofing ones.

4.2. Estimation-Cancellation Approach

After obtaining the ML estimate of ρ, which is denoted as ρ̂1, the composite signal can be
reconstructed as follows:

x̂ = G(ρ̂1)â1 = G(ρ̂1)[G(ρ̂1)
HG(ρ̂1)]

−1G(ρ̂1)
Hx (12)
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Then, we subtract the reconstructed signal from the original signal. The residual signal plus noise
is given by:

y = x− x̂ (13)

When there is no spoofing signal, ρ̂1 is equal to ρa, and x̂ is the estimation of the sum of the
authentic signals. Thus, y mainly consists of noise. When spoofing signals are present, y will consist
of residual signals and noise because ρs is different from ρa. Based on the above analysis, y can be
expressed as follows:

H0 : y = w

H1 : y = G(ρs)as + G(ρa)aa −G(ρ̂1)â1 + w
(14)

where H0 denotes that spoofing signals are absent and H1 denotes that spoofing signals are
present. A spoofing attack can be detected by detecting signal components in y, and we call it
the estimation-cancellation approach.

The alternative hypothesisH1 consists of three cases, which are illustrated in Figure 2. Figure 2 is
an abstract expression of the PVT domain. Spoofing and authentic signal components form peaks at
different positions of the domain. Figure 1 shows that the spoofing and authentic signal components
are distributed around ρs and ρa, and the corresponding PVT domains are represented with circles
centered at ρs and ρa in Figure 2, respectively. The highest peak of the MLE cost function at ρ̂1 is
superimposed by the signal components in the area emphasized by dashed lines.

Authentic

Spoofing

Authentic

Spoofing

Authentic

Spoofing

(a) (b) (c)

PVT domain


1s  

a

s


1a  

s


1

a

Figure 2. Three different cases when spoofing signals are present. The circles represent the PVT
domains in which spoofing signals or authentic signals are present. The highest peak of the MLE cost
function at ρ̂1 is superimposed by the signal components in the area emphasized by the dashed lines.
(a) ρ̂1 is equal to ρs; (b) ρ̂1 is equal to ρa; (c) ρ̂1 is neither equal to ρs nor to ρa.

Figure 2a represents the first case. The total power of the spoofing signals is higher than that of the
authentic ones. Therefore, the MLE cost function is maximized at ρs and the residual signal y mainly
consists of authentic signals and noise. The spoofing scenario shown in Figure 1 is a good illustration
for this case. It should be noted that when the designated falsified PVT parameter ρs is close to ρa,
parts of authentic signals will also contribute to the peak, which corresponds to the overlapped part of
the circles in Figure 2a.

Figure 2b represents the second case, which is opposite the first case. It happens when the total
power of the spoofing signals is lower than that of the authentic ones. Consequently, the MLE cost
function is maximized at ρa, and the residual signal y mainly consists of spoofing signals and noise.
In this case, the authentic PVT results can be obtained with the MLE-based positioning method directly.

In particular, when ρs is far away from ρa, the two circles representing spoofing and authentic
signal components will be separate in Figure 2a,b.

Figure 2c represents the third case. ρ̂1 is different from both ρs and ρa. Thus, the residual signal
consists of residual authentic signals, spoofing signals and noise.
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We will discuss the three cases respectively in the rest of the subsection. As for the first case,
we will first consider the limiting case in which the two circles in Figure 2a are separate. All of the
authentic signals will be reserved in y, and the hypothesis test in Equation (14) can be rewritten
as follows:

H0 : y = w

H1 : y = G(ρa)aa + w
(15)

Then, we perform the MLE-based positioning again with y. The ML estimates of τa, fa, aa and σ2

under H1 can be obtained with Equations (4)–(6) by replacing x with y, and they are denoted as τ̂2,
f̂2, â2 and σ̂2

2 , respectively. The only unknown parameter underH0 is the variance of noise, which is
denoted as σ2

0 , and its ML estimate is given by:

σ̂0
2 =

1
K

yHy (16)

Then, with the ML estimates mentioned above, the generalized likelihood ratio test (GLRT)
statistic can be derived as:

LG(y) =
max

τ, f ,a,σ2
p1(y; τ, f , a, σ2)

max
σ2

p0(y; σ2)

= (
σ̂2

0
σ̂2

2
)

K
2 =

{ yHy
[y−G(ρ̂2)â2]H [y−G(ρ̂2)â2]

} K
2

(17)

where p0(y; σ2) and p1(y; τ, f , a, σ2) denote the likelihood functions underH0 andH1, respectively.
ρ̂2 is the ML estimate of the PVT result corresponding to the residual signal y. Using the monotonicity
of the function f (x) = a(1− 1/xc), x, a, c > 0, we have:

T(y) = 2K[1− 1

LG(y)
2
K
]

= 2
yHy− [y−G(ρ̂2)â2]

H [y−G(ρ̂2)â2]

yHy/K

=
âH

2 G(ρ̂2)
HG(ρ̂2)â2

σ̂2
0 /2

=
yHG(ρ̂2)[G(ρ̂2)

HG(ρ̂2)]
−1G(ρ̂2)

Hy
σ̂2

0 /2

=

max
ρ2

J(ρ2; y)

σ̂2
0 /2

> γ

(18)

The cost function J(ρ2; y) after estimation-cancellation is shown in Figure 3. All of the simulation
parameters are the same as those in Figure 1. It can be seen that when [δxu, δyu] = [0, 0], the cost
function is maximized. Figure 3 shows that ρa can be obtained by maximizing J(ρ2; y) in the first case.

T(y) follows F and non-central F distributions under H0 and H1, respectively [25]. Since the
estimation are performed with a large number of samples considering the sampling frequency and
processing time, the ML estimate σ̂2

0 is very close to its true value σ2. Therefore, T(y) follows central
χ2 distribution underH0 and non-central χ2 distribution underH1.

T(y) ∼
{

χ2
2M, under H0

χ′22M(λ), under H1
(19)
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The non-central parameter is given by [25]:

λ =
aHG(ρ2)

HG(ρ2)a
σ2/2

(20)
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Figure 3. MLE cost function after estimation-cancellation.

Thus, the false alarm and detection probabilities are given by [27]:

Pf a(γ, M) = exp{−γ

2
}

M−1

∑
i=0

1
i!
(

γ

2
)i (21)

Pd(γ, M) = QM(
√

λ,
√

γ) (22)

where γ is the threshold which can be determined by Pf a. QM(a, b) is the generalized Marcum
Q-function [28].

Further, by using the properties of cross-correlation of different satellites’ pseudorange codes,
we have [29]:

G(ρ̂2)
HG(ρ̂2) ≈ KIM×M (23)

Substituting Equation (23) to Equations (18) and (20), we have:

T(y) =
yHG(ρ̂2)[G(ρ̂2)

HG(ρ̂2)]
−1G(ρ̂2)

Hy
σ̂2

0 /2

≈
1
K yHG(ρ̂2)G(ρ̂2)

Hy
σ̂2

0 /2

=
2

Kσ̂2
0

M

∑
i=1
||gi(ρ̂2)

Hy||2

(24)

λ ≈ K
M

∑
i=1

a2
i

σ2/2
= 2KTs

M

∑
i=1

(C/N0)i (25)

where (C/N0)i denotes the carrier to noise ratio of the i-th satellite in Hz. The equations show that the
test statistic T(y) can be viewed as the noncoherent sum of different signals’ integration results.

The above analysis is based on the assumption that ρs and ρa are separate, and all of the authentic
signals are reserved in the residual signal. However, when the peaks of the MLE cost function formed
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by spoofing and authentic signals are close, parts of the authentic signals will be subtracted in the
cancellation procedure. Consequently, the signal components in Equation (15) under H1 will be
fewer. Thus, the detection performance, which is given by Equation (22), can be viewed as the upper
bound. The detection performance will improve when the distance between ρs and ρa increases, and
it will approach the upper bound after the peaks formed by the spoofing and authentic signals are
separated completely.

The detection performance of the second case is very similar to that of the first one. It can also be
evaluated with Equations (21), (22) and (25). Different from the first case, the (C/N0)i in Equation (25)
represents the carrier to noise ratio of the i-th spoofing signal.

As for the third case, as long as spoofing signals are present and mislead the PVT results of a
receiver (i.e., ρs 6= ρa), y will include residual signal components. Therefore, the test statistic T(y) will
exceed the threshold and can also be used for spoofing detection in this case. However, the method may
fail to detect the spoofing attacks when ρs is very close to ρa. Therefore, it is not fit for the applications
that require high-precision PVT results. It should be noted that there is no exact expression for the
detection performance of the third case. Nevertheless, since most of the spoofing and authentic signals
that are superimposed in the PVT domain are eliminated, Equation (22) can still be viewed as the
upper bound of the detection performance.

4.3. Spoofing Validation and Recovery of Navigation Solution

It should be noted that when there are severe multipath signals, T(y) can also exceed the threshold.
However, the multipath signals are hardly consistent with each other since they are generated by
different reflectors around a receiver. Different from the multipath signals, the spoofing ones may
have the collaboration since they are generated sophisticatedly by a spoofer. Based on the difference,
the following discrimination method is presented to reduce the false alarms induced by multipath
signals and to validate the navigation solution.

After evil signals are detected, we calculate the following statistics.

T1i(x) =
2

Kσ̂2
0
||gi(ρ̂1)

Hx||2 , i = 1, 2, · · · , M

T2i(y) =
2

Kσ̂2
0
||gi(ρ̂2)

Hy||2 , i = 1, 2, · · · , M
(26)

Then, count the statistics T1i(x) and T2i(y) that are over a threshold γ′, respectively. Since the
expressions of T1i(x) and T2i(y) are the same as the noncoherent integration result of a single satellite,
γ′ can be given by [26]:

γ′ = −2ln(Pf a) (27)

Denote the numbers of T1i(x) and T2i(y) that are over γ′ as r1 and r2, respectively. If r1 and r2 are
larger than four simultaneously, two groups of consistent signals are found in x, and the detected evil
signals can be determined as consistent spoofing signals. The tenet of the method is similar to RAIM,
which is based on the self-consistency of pseudorange measurements. In RAIM, the consistency can be
determined when more than four measurements are used [26], and in the proposed validation method,
signals can be judged as self-consistent only if the peak of the MLE cost function is superimposed by
more than four signals.

It should be noted that if the multipath signals form consistent measurements, they cannot
be distinguished from the spoofing signals. However, in this case, the multipath signals are very
similar to the spoofing ones and may mislead the PVT results in the same way as the spoofing ones.
Consequently, they can also be categorized as spoofing signals. The spoofing validation probability
can be expressed as:

PV = PV1 · PV2

PVk = p( rk > 4 ), k = 1, 2
(28)
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where p(E) denotes the probability of event E.
Particularly, when all of the signals’ C/N0 are the same, PVk has the following simplified form:

PVk =
M

∑
n=5

(M
n )Pn

dk(1− Pdk)
M−n = 1− B(4; M, Pdk) (29)

where B(k; N, p) denotes the cumulative binomial distribution function and Pdk denotes the detection
probability of the single signal in the k-th MLE positioning module, which can be calculated with
Equations (22) and (25) by setting M to one.

In order to see when a spoofing detection or a spoofing validation can be performed successfully,
we further classify the cases in Figure 2 into nine different scenarios based on the numbers of spoofing
and authentic signals in x and y. Since a peak of the MLE cost function is formed by consistent signals,
spoofing signals with inconsistent measurements will not contribute to the peak at ρs, and their effects
will be eliminated by the MLE-based method directly. Therefore, only consistent spoofing signals are
considered. The classifications are given in Table 1. spf and auth denote the numbers of the spoofing
and authentic signals, respectively.

Table 1. Detailed classification based on the numbers of spoofing and authentic signals in x and y.

No. Case x
ρ̂1

y
ρ̂2

r Detection Validation
spf auth spf auth r1 r2

1
Case 1

>4 >4 =ρs =0 >4 =ρa >4 >4
√ √

2 >4 >4 =ρs =0 ≤4 nd 1 >4 ≤4
√

×
3 >4 ≤4 =ρs =0 ≤4 nd >4 ≤4

√
×

4
Case 2

>4 >4 =ρa >4 =0 =ρs >4 >4
√ √

5 >4 >4 =ρa ≤4 =0 nd >4 ≤4
√

×
6 ≤4 >4 =ρa ≤4 =0 nd >4 ≤4

√
×

7
Case 3

>4 ≤4 6=ρs 6=0 ≤4 nd ≤4 nd
√

×
8 ≤4 >4 6=ρa ≤4 6=0 nd ≤4 nd

√
×

9 ≤4 ≤4 nd ≤4 ≤4 nd ≤4 ≤4
√ 2 ×

1 nd means “cannot be determined”; 2 when the total number of signals is 4, no signal component will be
reserved in y, and the detection will fail.

Case 1 consists of Scenarios 1, 2 and 3. In these scenarios, consistent spoofing signals are more
than four, and the total power of them is higher than that of the authentic ones. Therefore, ρ̂1 equals
ρs, and only authentic signals are reserved in y.

In Scenario 1, ρs and ρa are separate. Therefore, the number of authentic signals is more than four
in y, and both r1 and r2 are larger than four. Consequently, both spoofing detection and validation
are successful.

In Scenario 2, ρs and ρa are close. Therefore, parts of the authentic signals are eliminated in the
cancellation procedure, and the residual authentic signals are fewer than four. Consequently, r2 is
no more than four, and the spoofing validation fails. However, when the PVT bias induced by the
spoofing signals becomes larger (i.e., ρs is farther from ρa), the peaks of the MLE cost function formed
by the spoofing and authentic signals will separate, and this scenario will turn into Scenario 1.

In Scenario 3, the number of the authentic signals is fewer than four due to the blockage in different
traffic conditions. Consequently, r2 is no more than four, and the spoofing validation also fails.

Case 2 consists of Scenarios 4, 5 and 6. In these scenarios, authentic signals are more than four,
and the total power of them is higher than that of the spoofing ones. Therefore, ρ̂1 equals ρa, and only
spoofing signals are reserved in y.

Scenarios 4, 5 and 6 are symmetric to Scenarios 1, 2 and 3, respectively. The detection and
validation results are the same as those in Case 1.
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Case 3 consists of Scenarios 7, 8 and 9. In these scenarios, the peak at ρ̂1 is formed by parts of
spoofing signals and parts of authentic ones. Since at most four authentic and spoofing signals can be
superimposed in the search domain, r1 is no more than four, and the spoofing validation fails.

Even though only Scenarios 1 and 4 can be validated successfully. The validation is very
meaningful since these two scenarios include the intermediate and sophisticated spoofing attacks
mentioned in [3], which are very covert since they mislead the PVT results while maintaining the
tracking state of a GNSS receiver.

In such spoofing attacks, the spoofer can extract the ephemeris and estimate the position and
motion of a victim receiver in real time, based on which spoofing signals, which are consistent with
the observed constellation, can be generated.

At the initial stage of the spoofing attacks, spoofing signals try to align their code phases to those
of the corresponding authentic ones; consequently, ρs ≈ ρa. Then, the spoofing signals increase their
powers and take control of the delay lock loops of the victim receiver. Finally, they drag the code
phases away from the true values, and ρs will not be approximately equal to ρa any longer.

When the code phases of the spoofing and authentic signals are perfectly aligned, the proposed
method cannot detect the attack. However, since the aim of a spoofing attack is to mislead the PVT
results, the bias between ρs and ρa will not maintain as zero, and it will increase gradually. Afterwards,
the spoofing attack can be detected, and the navigation solution can be recovered.

The spoofing detection, validation and navigation recovery of such spoofing attacks in real tests
will be provided in Section 6.

4.4. Implementation Architecture

The implementation architecture of the proposed method is shown in Figure 4. An anti-spoofing
module can be embedded into a conventional receiver. It consists of two MLE position modules, one
signal reconstruction module and one spoofing validation module. The first MLE position module is
used to obtain the refined PVT result ρ̂1 and the corresponding amplitude estimation â1. After that,
the reconstructed signal x̂ is subtracted from the original baseband signal x, and the residual signal
y is obtained. Then, y is input to the second MLE position module. When the test statistic is over
the threshold, evil signals are detected. Then, x, y, ρ̂1 and ρ̂2 are input to the spoofing validation
module. If both r1 and r2 are larger than four, two groups of consistent signals are detected. Thus, the
evil signals in x are validated to be spoofing ones, and one of ρ̂1 and ρ̂2 corresponds to the authentic
navigation solution.
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Figure 4. Implementation architecture.
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5. Simulation Results

In the previous section, the MLE-based anti-spoofing countermeasure is presented, and the
theoretical performance is derived. In this section, theoretical and simulation detection probabilities
and the receiver operating characteristic (ROC) curves are provided to validate the analytical results.
Spoofing validation probabilities are also evaluated.

GPS L1 C/A signals are employed in the simulations. The common simulation parameters are
given as follows. The coherent integration time is 1 ms; the signals are sampled at a rate of 5 MHz;
and the false alarm probability is set to 10−6.

In Figure 5, detection probabilities for different numbers of satellites and a fixed false alarm
probability are compared. For simplicity and clarity, all of the C/N0 of the authentic signals are equal,
and those of the spoofing signals are set to 50 dB-Hz. The code phase differences between authentic,
and spoofing signals for different PRNs are all set to 600 m. Thus, the correlation peaks of authentic
and spoofing signals are separate. Theoretical results are shown with different types of lines (‘T’).
Estimation-cancellation results are shown with black markers (‘EC’). Corresponding noncoherent
integration results of M satellites are also provided for comparison, shown with blue markers (‘NC’).
Figure 5 demonstrates that the noncoherent integration results are almost the same as the theoretical
results, but the estimation-cancellation results are slightly lower than the theoretical curves due to the
small power loss of the authentic signals in the cancellation procedure. It also shows that the detection
performance is better when more signals are processed simultaneously.
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Figure 5. Detection probabilities versus C/N0 for different numbers of satellites and a fixed false
alarm probability Pf a = 10−6. C/N0 of all of the spoofing signals are 50 dB-Hz. ‘T’ represents the
theoretical results. ‘NC’ represents corresponding noncoherent integration results. ‘EC’ represents the
estimation-cancellation results.

Figure 6 shows the ROC curves for different numbers of satellites. All of the C/N0 of the authentic
signals are set to 31 dB-Hz, and the C/N0 of the spoofing signals and the code phase differences
are the same as those in Figure 5. Similar to Figure 5, the noncoherent integration results match the
theoretical results well, and the detection probabilities of the estimation-cancellation algorithm are
slightly lower than the theoretical results. Figures 5 and 6 demonstrate that the detection performance
can be evaluated with Equations (21) and (22) when the code phases of spoofing and authentic signals
are separate.
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Figure 6. ROC curves for different numbers of satellites. C/N0 of all of the authentic signals are 31 dB-Hz,
and those of the spoofing signals are 50 dB-Hz. ‘T’ represents the theoretical results. ‘NC’ represents
corresponding noncoherent integration results. ‘EC’ represents the estimation-cancellation results.

Figure 7 shows the spoofing validation probabilities for different numbers of satellites.
The simulation parameters are the same as those in Figure 5. Since the C/N0 of the spoofing signals are
very high, PV1 = 1 and PV = PV2. Results show that the probability of spoofing validation is higher
when more signals are processed.
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Figure 7. Spoofing validation probabilities versus C/N0 for different numbers of satellites and
PFA = 10−6.

Then, we consider the situation when the peaks of the MLE cost function formed by spoofing
and authentic signals are overlapped. Figure 8 shows the detection probabilities versus code
phase difference between spoofing and authentic signals for different numbers of satellites when
C/N0 = 45 dB-Hz. The detection probability is zero when the code phases of the spoofing and authentic
signals are aligned, and it increases as the code phase difference increases. When only one signal is
processed, the detection probability is one only when the code phase difference is larger than 250 m,
and when 12 signals are processed simultaneously, the detection probability is one as long as the code
phase difference is larger than 60 m. Figure 8 demonstrates that not only more numbers of satellites,
but also larger code phase differences can improve the detection performance. This improvement
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comes from the integration of multiple signals. The ROC curves determined by Equations (21) and (22)
can be viewed as the upper bound of the detection performance. This bound can be nearly reached
when the correlation peaks of spoofing and authentic signals are separated completely.
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Figure 8. Detection probabilities versus code phase difference between spoofing and authentic
signals for different numbers of satellites. C/N0 of authentic and spoofing signals are 45 dB-Hz and
50 dB-Hz, respectively.

6. Performance Evaluation with TEXBAT

The Texas Spoofing Test Battery (TEXBAT) is a set of digital recordings of GPS L1 C/A spoofing
tests. It is provided by the Radio Navigation Laboratory (RNL) at the University of Texas at Austin for
evaluating civil GPS spoofing countermeasures [30].

The TEXBAT consists of eight data recordings representing different types of GNSS spoofing
attacks at the time of writing. In the paper, Datasets 2 to 7 (ds2 to ds7) are employed to evaluate
the proposed anti-spoofing method. They represent “static overpowered time push”, “static
matched-power time push”, “static matched-power position push”, “dynamic overpowered time
push”, “dynamic matched-power time push” and “seamless static matched-power time push”,
respectively. The lengths of ds2 to ds6 are 400 s, and the length of ds7 is 465 s.

Ds1 is a “static switch” spoofing attack, which removes all of the authentic signals when spoofing
signals appear. It cannot be detected by the MLE-based method since authentic and spoofing signals
do not exist simultaneously. ds8 represents a security code estimation and replay (SCER) attack, which
is identical to ds7, except that the spoofer guesses and generates the navigation data bits in real time.
Since our method does not employ the security codes to detect a spoofing attack, ds8 is also not
considered in the paper.

The Doppler measurements from a conventional receiver are employed in the experiment;
therefore, the velocity does not need to be searched, and the search space is {x, y, z, tu}. The center
of the search space is set to the user position and clock offset results obtained from the conventional
receiver. The search range of each dimension and the search step length of the two MLE position
modules in Figure 4 are given in Table 2. Shorter search step improves the accuracy of the recovered
PVT results. However, it also leads to a higher computational burden. Consequently, a trade-off needs
to be made in practical applications.

Table 2. Search range and step of the MLE-based positioning modules.

Num Range (m) Step (m)

1 −50 ∼ 50 2
2 −750 ∼ 750 50



Sensors 2017, 17, 1532 15 of 21

Table 3 shows the spoofing detection and validation performance in Scenarios 2 to 7 of TEXBAT.
M denotes the number of the processed signals. Here, the detection performance is measured by
the spoofing detection percentage (SDPi), which is defined as the ratio between the data length of
successful detections when i signals are processed (Li) and the data length under spoofing attack
(LS). The validation performance is measured by the spoofing validation percentage (SVP), which is
defined as the ratio between the data length of successful validations (LV) and LS. The improvement
of multi-signal processing is also given in Table 3, which is defined as Imp = SDPM − SDP1.

Table 3. Spoofing detection and validation performance in different spoofing scenarios of TEXBAT.

M SDP1 (%) SDPM (%) Imp(%) SVP(%)

ds2 7 79.7 97.3 17.6 82.5
ds3 6 77.3 84.9 7.6 77.3
ds4 8 64.9 78.7 13.8 61.2
ds5 6 69.4 93.5 24.1 49.0
ds6 6 46.4 81.8 35.4 71.5
ds7 7 74.7 82.0 7.3 72.2

The anti-spoofing module is called every second. Therefore, 400 T(y) are calculated in each
dataset of ds2 to ds6, and 465 T(y) are calculated in ds7. LS is about 290 in each dataset of ds2 to ds6
and 315 in ds7.

Table 3 demonstrates that in all of the scenarios, spoofing attacks can be detected. The detection
performance is better when more signals are processed in each scenario. Table 3 also shows that the
spoofing detection percentages are lower in ds4 and ds6, which mislead the positioning results of
the victim receiver. The reason is that the code phase differences induced by the spoofing signals are
smaller in these two scenarios. In addition, two groups of consistent signals are found in all of the
scenarios. Thus, the detected evil signals can be judged as spoofing ones.

In particular, in order to view the performance of the proposed method intuitively, detailed
spoofing detection, validation and recovered PVT results of ds2 (Static Over-Powered Time Push) and
ds6 (Dynamic Matched-Power Position Push) are provided. Detection results of SQM and RAIM of the
two scenarios are also provided for comparison. These two scenarios are chosen because they include
different motion states of victim receivers and different power levels of spoofing signals. In addition,
the spoofing attacks in the two scenarios falsify the positioning and timing results, respectively.

6.1. Scenario 2 of TEXBAT

Detection results of SQM and RAIM in Scenario 2 are shown in Figure 9. Figure 9a shows the
ratio metric, which is one of the most widely-used metrics in the SQM technique. It is defined as
(IE + IL)/(2IP), where IE, IL and IP are the early, late and prompt taps on the in-phase component,
respectively [15]. Here, the correlator spacing is set to 0.25 code chip; therefore, the ratio metrics should
be about 0.75 when the spoofing signal is absent. It can be seen that the ratio metrics in Scenario 2 are
constant throughout the experiment and fail to detect the spoofing attack. This is because the power of
the spoofing signal is much higher, and no obvious disruptions occur in the drag-off process.

Figure 9b shows the sum of the squares of the range residual error (SSE), which is a statistic
in RAIM technology. It is employed to evaluate the consistency of the pseudorange measurements
of different signals when more than four satellites are observed at the same time [16]. When the
measurements are inconsistent, the range residual error will be large, and the SSE will be over a
pre-assigned threshold, implying that the PVT results are unreliable [16]. Figure 9b shows that the
SSEs are all beneath the threshold and fail to detect the spoofing attack. This is because that all of
the tracking channels are taken over by the spoofing signals, and the code phases of these signals are
manipulated sophisticatedly to generate consistent pseudorange measurements.
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Figure 9. (a) Ratio metric of signal quality monitoring (SQM) in Scenario 2; (b) SSE of RAIM in
Scenario 2; the red dashed line denotes the threshold.

Figure 10a shows the test statistics T(y) in Scenario 2. They are smaller than the threshold in
the first 110 s when no spoofing signals are present. At about 110 s, spoofing signals are added, and
the statistics are over the threshold because the code phases of the spoofing signals are not perfectly
aligned with those of the authentic ones. The statistics increase when the code phase differences
between authentic and spoofing signals are larger, indicating that the spoofing signals are more likely
to be detected, which is consistent with the results in Figure 8. They stop increasing after the correlation
peaks of the authentic and spoofing signals are completely separate (after about 210 s).

Figure 10b shows the detection results of Scenario 2. Results larger than 0.5 mean that evil signals
are detected. The red circles correspond to the results when seven signals are processed together,
and the blue points correspond to the results when only one signal is processed. Figure 10b shows that
the detection performance is better when more signals are processed simultaneously.
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Figure 10. (a) Test statistics and threshold in Scenario 2; (b) Detection results in Scenario 2; results larger
than 0.5 mean that there are evil signals. The red circles correspond to the results when seven signals
are processed together, and the blue points correspond to the results when one signal is processed.
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Figure 11a shows r2 in Scenario 2. r1 is omitted since it is larger than four throughout the
experiment. r2 is larger than four after 150 s, indicating that consistent signals are detected in the
residual signal y. Thus, the evil signals can be judged as spoofing ones, and one of ρ̂1 and ρ̂2

corresponds to the authentic result. Here, since the total power of the spoofing signals is higher,
the spoofing signals will be constructed and canceled in the estimation-cancellation procedure.
Consequently, ρ̂2 corresponds to the authentic PVT results.

Figure 11b shows the biases of the user clock offsets in Scenario 2. The spoofed, unspoofed and
recovered PVT results are indicated by blue, green and red traces, respectively. The recovered results
are only shown when r2 is larger than four. Since the spoofing signals only falsify the timing results,
only the biases of the user clock offsets are shown. Figure 11b shows that the red trace (recovered
result) is close to the green trace (unspoofed response) after the time error induced by spoofing signals
is more than 0.2 µs (about 1/5 C/A code chip length), which demonstrates that the proposed method
can recover the navigation solution even when the code phase differences between the spoofing and
authentic signals are much smaller than one code chip.
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Figure 11. (a) r2 in Scenario 2; results larger than four indicate that consistent signals are detected in
the residual signal and the spoofing attack is validated; (b) Biases of the user clock offsets from the
clock offset in Epoch 0: δtu = tu(t)− tu(0). The green trace shows the receiver’s unspoofed response;
the blue trace shows the receiver’s spoofed response; and the red dots show the recovered results.

6.2. Scenario 6 of TEXBAT

Detection results of SQM and RAIM in Scenario 6 are shown in Figure 12. Different from
Scenario 2, the ratio metrics and SSEs occasionally exceed the threshold. The abnormalities before
110 s are probably caused by the dynamics of the receiver. There are abnormalities between 150 and
250 s since the spoofing signals try to mislead the code phases and cause disruptions in the tracking
loops of the receiver. After drag-off, both the metrics are normal again, but the receiver is completely
spoofed and can only output falsified PVT results. Figure 12 demonstrates that the SQM and RAIM
techniques cannot deal with the spoofing attack in Scenario 6.

Figure 13a shows the test statistics in Scenario 6. They are smaller than the threshold in the first
110 s when no spoofing signals are present. From 110 s to 150 s, spoofing signals are added, but their
code phases are aligned with those of the authentic ones, and their powers are only slightly higher
than those of the authentic ones. Consequently, the spoofing and authentic signals will be canceled
simultaneously, and the signal component in the residual signal y is very weak. Hence, the test
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statistics do not increase obviously. After 150 s, the test statistics increase because the code phase
differences between the authentic and spoofing signals increase. Similar to Figure 10a, the statistics
stop increasing after the peaks of the authentic and spoofing signals are completely separated.

Figure 13b shows the detection results of Scenario 6. It can be seen that when only one signal is
processed, the detection probability in a dynamic receiver is much lower than that in a static receiver
due to the motion of the receiver and the changing environment. However, the detection performance
is still very good when all of the signals are processed together, since it takes advantage of the diversity
gain of multiple signals.
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Figure 12. (a) Ratio metric of SQM in Scenario 2; (b) SSE of RAIM in Scenario 2; the red dashed line
denotes the threshold.
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Figure 13. (a) Test statistics and threshold in Scenario 6; (b) Detection results in Scenario 6; results larger
than 0.5 mean that there are evil signals. The red circles correspond to the results when seven signals
are processed together, and the blue points correspond to the results when one signal is processed.
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Figure 14a shows r2 in Scenario 6. It is larger than four after 180 s, indicating successful
spoofing validations.

Figure 14b shows the biases of user position results in Scenario 6. Since the spoofing signals in
this scenario only falsify the position results in the z-coordinate, only the biases in this dimension
are shown. Figure 14b shows that the recovered position results are also very close to the receiver’s
unspoofed response.
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Figure 14. (a) r2 in Scenario 6; results larger than four indicate that consistent signals are detected in the
residual signals and the spoofing attack is validated; (b) Biases of user position in the z-coordinate from
the position in Epoch 0: δzu = zu(t)− zu(0). The green trace shows the receiver’s unspoofed response;
the blue trace shows the receiver’s spoofed response; and the red dots show the recovered results.

7. Conclusions

In this paper, we develop an estimation-cancellation approach for GNSS spoofing detection and
navigation solution recovery based on the MLE-based positioning technique. The proposed method
distinguishes the spoofing signals from the authentic ones based on the fact that the spoofing and
authentic signals form peaks at different positions of the MLE cost function. After canceling the
composite signal constructed with the ML estimates of the PVT parameters, another peak can still
be detected in the MLE cost function of the residual signal if evil signals such as spoofing signals are
present. In order to analyze the theoretical performance and set the threshold appropriately, a test
statistic is derived based on the GLRT. Furthermore, once evil signals are detected, spoofing validation
can be performed by decomposing the cost function and inspecting the consistency of the signals. We
also present theoretical and simulation results to investigate the anti-spoofing performance. Finally, we
evaluate the proposed countermeasure with the TEXBAT GPS spoofing datasets. Results show that the
method can detect and recover navigation solution even when the code phase differences between
authentic and spoofing signal are much less than one code chip, which greatly improves the availability
of GNSS service under spoofing attacks.
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Abbreviations

The following abbreviations are used in this manuscript:

GNSS Global navigation satellite system
MLE Maximum likelihood estimation
GLRT Generalized likelihood ratio test
PVT Position, velocity, and time
GPS Global Positioning System
PMU Phasor measurement units
INS Inertial navigation system
SSSC Spread spectrum security code
NMA Navigation message authentication
SQM Signal quality monitoring
RAIM Receiver autonomous integrity monitoring
TEXBAT Texas Spoofing Test Battery
AWGN Additive white Gaussian noise
ECEF Earth-centered Earth-fixed
ROC Receiver operating characteristic
SCER Security code estimation and replay
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