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Abstract: In the downlink cloud radio access network (C-RAN), fronthaul compression has been
developed to combat the performance bottleneck caused by the capacity-limited fronthaul links.
Nevertheless, the state-of-arts focusing on fronthaul compression for spectral efficiency improvement
become questionable for energy efficiency (EE) maximization, especially for meeting its requirements
of large-scale implementation. Therefore, this paper aims to develop a low-complexity algorithm
with closed-form solution for the EE maximization problem in a downlink C-RAN with limited
fronthaul capacity. To solve such a non-trivial problem, we first derive an optimal solution using
branch-and-bound approach to provide a performance benchmark. Then, by transforming the original
problem into a parametric subtractive form, we propose a low-complexity two-layer decentralized
(TLD) algorithm. Specifically, a bisection search is involved in the outer layer, while in the inner layer
we propose an alternating direction method of multipliers algorithm to find a closed-form solution
in a parallel manner with convergence guaranteed. Simulations results demonstrate that the TLD
algorithm can achieve near optimal solution, and its EE is much higher than the spectral efficiency
maximization one. Furthermore, the optimal and TLD algorithms are also extended to counter the
channel error. The results show that the robust algorithms can provide robust performance in the
case of lacking perfect channel state information.

Keywords: C-RAN; fronthaul compression; energy efficiency; alternating direction method of
multipliers (ADMM); imperfect channel state information (CSI)

1. Introduction

To maintain the requirements of the expected scale of the increasing data traffic and mobile
terminals, the fifth generation (5G) wireless network [1] faces some challenges in terms of system
capacity, energy consumption, and so on. The cloud radio access network (C-RAN) [2,3], which has
emerged as a promising solution in reducing both the capital and operating expenditures, is expected
to be an effective approach to fulfil these requirements. In C-RAN, a central unit (CU) or baseband unit
(BBU) pool connects all the deployed low-power base stations (BSs) using the finite-capacity fronthaul
links that allows joint signal processing and transmission. Despite various attractive advantages
brought by C-RANs [4-6], such as joint beamforming, and centralized encoding and decoding,
the performance bottleneck for large-scale implementation comes with the high capacity requirements
of the fronthaul links. Therefore, in practical C-RAN, the data sharing [7-13] and fronthaul compression
designs [14-22] are recognized as two promising approaches to overcome the significant impact of
the constrained fronthaul on spectral efficiency (SE) and energy efficiency (EE) (bit-per-Joule) [23-25].
The data sharing strategy [8-13] reduces the fronthaul consumption through limiting the data transfer
among BSs (one BS serves a small number of the total MUs). For the latter one, the CU computes the
precoded signals intended to be transmitted to each BS, and then the signals are quantized and sent
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to the BSs through the capacity limited fronthaul links. The compression process is usually modeled
as a test channel [14-22], where the uncompressed and compressed signals respectively represent
the input and output, and the quantization noise are modeled as an independent additive Gaussian
random variable [13,20,21]. The authors in [13] proved that the fronthaul compression achieves a better
performance than the data sharing strategy, so that this paper considers the fronthaul compression.

In general, the fronthaul compression has been extensively studied in both the uplink [16-18]
and downlink C-RANSs [13,19-22]. The majority research of the existing literature on fronthaul
compression in C-RAN is focused on the design of beamforming and quantization noises to maximize
the achievable sum rate from the information-theoretic perspective [11,13,16-21,26]. A joint adaptive
decompression and detection algorithm was proposed in [16] to improve the information-theoretic
capacity for the uplink C-RAN. In [18], the authors developed a distributed compression for the
sum rate maximization (SEmax) problem in the uplink C-RAN accounting for both perfect and
imperfect channel state information (CSI). For the downlink C-RAN, a joint precoding and multivariate
compression scheme has been studied in [19], where an iterative majorization-minimization approach
was proved to achieve a stationary point solution of the SEmax problem. In [13], a comparison between
the data sharing and fronthaul compression strategy was investigated for the power minimization
problem with finite-capacity fronthaul links in downlink C-RAN. Then, a hybrid compression and data
sharing strategy was designed in [11] for optimizing the achievable sum rate. However, maximizing
the EE in accordance with fronthaul compression [22] is technically far more challenging compared to
SRmax, and the closed-form solution remains unexplored.

This paper investigates the EEmax problem in downlink C-RANs with the consideration of
the fronthaul compression. This optimization problem is formulated as a non-convex fractional
programming problem with respective to the beamforming and quantization noises under a limited
power budget and capacity-finite fronthaul links, which is NP-hard and is difficult to solve. To deal
with the fraction objective function of the original problem, some work has been done to firstly
transform the fractional objective function into an equivalent subtractive-form optimization problem
via exploiting the fractional programming [27-30]. Although the power allocation schemes for
orthogonal frequency division multiple access (OFDMA) system [28,29] were obtained using the
dual decomposition approach, such approaches cannot be applied to solve our problem due to
the joint consideration of fronthaul compression and beamforming in our problem. Moreover,
the Lagrangian based decomposition algorithm [30] for the multicell system is still not applicable for
decentralized implementation because the considered problem is more complex and the beamformings
among BSs are coupled. The first-order Taylor expansion is adopted to linearize the non-convex
data rate and fronthaul capacity constraint [20], however, the optimal solution cannot be obtained.
By exploiting the relationship between the achievable data rate and the mean square error (MSE)
in [31], Ref. [11,12] compared the sum rate performance of the data sharing and compression
strategies, but they are limited to the SRmax problem. The authors in [22] considered a joint
design of beamforming, multivariate compression and BS-MU link selection to maximize the EE.
By using the epigraph form of the original EEmax problem, the authors [22] proposed a difference
of convex (DC) function based algorithm. However, the optimal solution of [22] is still unknown,
and the computational complexity is typically high since a series of semi-definite programming
(SDP) or second-order cone programming (SOCP) problems are solved. More importantly, since the
beamforming and quantization noises are computed centrally at the CU, the algorithms proposed
in the literature [11-13,19,20,22] can be computation intensive for large-scale C-RANs. Therefore,
in this paper, we first propose an optimal algorithm for the EEmax problem to provide a performance
benchmark, and then develop a low-complexity decentralized algorithm with closed-form solution.
For practical usage in downlink C-RANSs, the impact of CSI errors on the EE performance is further
investigated. This paper not only offers an optimal solution for the EEmax problem with limited
fronthaul capacity, but also lays a sound foundation for decentralized implementation with closed-form
solutions in this field. Thus, the methods derived in this paper are significant in advancing this field.



Sensors 2017, 17, 1498 30f 22

The main contributions of this paper are summarized as follows.

Firstly, we formulate the EEmax problem of joint beamforming and quantization noises design
under a limited power budget and capacity-limited fronthaul links as a non-convex fractional
programming problem. We first derive an optimal solution method based on branch-and-bound (BnB)
technique [32,33] to solve the EEmax problem globally. Specifically, the BnB algorithm computes
the upper and lower bounds, and deletes the regions that do not contain the optimal solution.
The algorithm terminates when the difference between the upper and lower bounds is smaller than
a predefined accuracy.

Secondly, to reduce the computational complexity of the optimal algorithm and facilitate
decentralized implementation, we propose to transform the problem into a parametric subtractive form,
and further proposed a two-layer decentralized (TLD) algorithm to solve the equivalent subtractive
problem. Specifically, an one-dimension search approach is used to find the EE in the outer layer,
and a decentralized algorithm based on alternating direction method of multipliers (ADMM) is
proposed to solve a subproblem in the inner layer. The proposed algorithm achieves closed-form
solution in parallel manner with convergence guaranteed.

Thirdly, considering the imperfection of the obtained CSI in practical C-RANs, the robust
optimal and TLD algorithms for the considered EEmax problem are also proposed to characterize
the performance degradation of the CSI errors. In particular, the robust optimal can also achieve
a performance benchmark, and the robust TLD algorithm also has closed-form solution in a parallel manner.

Finally, we validate the effectiveness of the proposed algorithms through extensive simulations.
The results demonstrate that both the optimal and TLD algorithms are convergent, and the TLD
algorithm can achieve near optimal solution which is much higher than the SEmax one. Numerical
analysis also show that the EE performance is susceptible to the channel errors, and a smaller channel
error reaches a higher EE.

The remainder of the paper is organized as follows. In Section 2, the system model and problem
formulation are presented. Section 3 describes the proposed optimal algorithm with perfect CSL.
Section 4 presents TLD algorithm with perfect CSI. For imperfect CSI case, the robust optimal and
TLD algorithms are also presented in Section 5. The simulation results are given in Section 6. Finally,
we conclude this paper in Section 7.

Notations: We use C to denote the set of complex numbers, and CMxN 4 denote the set of all
M x N matrices with complex entries. We use boldface capital and lower case letters are respectively
used to denote matrices and vectors. (X)~!, X! and Tr(X) represent the matrix inverse, Hermitian
transport and the trace, respectively. |x| represents the Euclidean norm. E[] is the expectation operator,
and diag(xy,---,x1) represents a diagonal matrix with diagonal elements given by {xq,---,x}.
For a complex number x, |x| is the mode of x. “s.t.”stands for “subject to”.

2. System Model and Problem Formulation

2.1. System Model

We consider a downlink C-RAN with L single-antenna BSs and K single-antenna MUs. The CU
connects all the BSs via fronthaul links, and each link is finitely constrained by C;,/ =1, - - -, L. Assume
that the CU has access the global CSI. The data symbol for each MU (denoted by s for the k-th MU)
is distributed as complex Gaussian with zero mean and unit variance. Denote by x; = Z,Ile WISk
the beamformed complex signal at the CU for BS I, where wy; is the beamforming from BS I to MU k.
To reduce the capacity requirements on the fronthaul network, the signals are compressed before
being forwarded to the corresponding BSs via the finite-capacity fronthaul links. According to [18,20],
the compression procedure is modeled as a test channel and the procedure can be expressed as
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% = x;1 + ¢, VI, where ¢; is the quantization noise, and x; and £, are the input and out of the test
channel, respectively. The received signal at MU k is given by

L
ykzzhgjl_Fnk/k:l/"'/K/ (1)
I=1

where Iy € C is the channel from BS | to MU k, ny, is the additive Gaussian noise at MU k, with zero
mean and ¢ variance.

When employing the single wuser detection at each MU, the received
signal-to-interference-plus-noise-ratio (SINR) at MU k is

| w2
H 2 2 H,’
Yizk [ wil? + 02 + [hQhy'|

SINR; = ()

where hy = [h]},- -+ bl 1T and wy = [wyy, - -+, w7 are the aggregated channel and beamforming
from all BSs to MU k, respectively, and

qui - qiL
qr1 -+ 4qLL
is the covariance matrice of e = [e, - ,eL]T, ie, Q = eel It is noted that

multivariate compression is also possible and has been studied in [20], where e[e]H # 0,

vi=1,---,L, ele]H = 0when I # j. In this paper, we consider point to point fronthaul compression,
andletq; =qy,1=1,---,L.

Considering an ideal vector quantizer, the quantization noise level 4; and the fronthaul capacity
C; for the I-th fronthaul link satisfy the following constraint [12,15]

K 2
log, (1+ Zk1q| Wy |
I

) < GVl 4)
The transmission power consumed at BS ] is constrained by E[|%|?] < PM®, where P/ is the
maximum transmit power of BS /. The transmit power of BS /, denoted by p;, consists of quantization
noise q; and data transmission power (denoted by pf), ie, p; = pf +q; = Zﬁ:l lwy|? + q;. Ttis

obviously that
pr < PV )

The network power of C-RAN consists of the BS transmit power and relative fronthaul network
power. In this paper, we adopt the power consumption model of C-RAN as [4]

L
1
Pt =Y —pi+ P, (6)
1=1 m

where P¢ = Zlel Py is the total relative fronthaul link power consumption [4], Pf > 0 is the relative
fronthaul link power consumption when switch off both the fronthaul link and the corresponding
BSs. 11 (177 > 1) is the drain efficiency of power amplifier of BS I. In this paper, we assume that all the
BSs have the same drain efficiencies, i.e., 7 = #;, VI. Since we do not consider the BS switch on/off
scheme in this paper, P is a nonnegative constant and we call it by static power for brevity for the rest
of the paper. We point out that based on the results obtained by the proposed algorithms in this paper,
it is easily extended to add BSs selection (determine the BSs to be switch off or not) into consideration
through ordering the BSs in accordance with the bisection search [4] to further improve EE. However,
this is outside the scope of this paper.
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2.2. Problem Formulation

To balance the sum rate and total power consumption, the EEmax problem is optimized in
this paper. This problem over the beamforming in the presence of fronthaul compression can be
formulated as

K
R
Py: max szlék (7a)
WA Yoy b+ P
K
st Y |wgl* +q < PV (7b)
k=1
. 2
Br ) lwil* < q1,V1, (7c)
k=1
where w = [wy,---,wg] and q = [q1,---,qk] are the collection of beamforming vectors and

quantization noises, respectively. Ry = log, (1 + SINRy) is the achievable data rate of MU k. (7b) is
the BS transmit power constraint, and (7c) is the reformulation of the fronthaul capacity constraint (4)
and §; = chlil. Due to the non-convex Ry and the fractional objective function in (7a), Py is a NP-hard
problem, and it is challenging to find its global optimum. In the following, we first present an optimal
approach and then propose a TLD framework solution.

3. Optimal Algorithm with Perfect CSI

In this section, we will propose a global optimal algorithm, which based on Branch-and-Bound
method [32], to solve problem Py. The essential idea of the proposed algorithm is based on the
following equivalent transformation

K
Ppimax  f(t) =tk )k (8a)
Wit k=1
s.t. SINRj > 2 —1,Vk (8b)
1
> tki1 (8¢)
% ZIL:1(Z£:1 lwi >+ q1) + Pe
(7b), (7c),

where t = [t;,--- ,tg,1)" are the introduced variables, (8b) is the transformation of log, (14 SINRy) > f;.
The equivalence between problems Py and P, is that the constraints (8b) and (8c) hold with equality
at optimum.

Although P; is more tractable compared to Py, it is still hard to solve due to the coupled variables
of wy and t. It is observed that if one increase each t; in the feasible set of Py, a better objective value
can be obtained. This motivates us to use the monotonic optimization in [32], i.e., the optimal BnB
algorithm, to solve problem P;.

BnB Algorithm

To solve P;, we first denote the feasible set for variables t by &, i.e., & = {t|constraints of Py }.
Denote t = [t1, - ,tgyq]T and t = [Fy,- -+, k1] by the aggregated lower and upper bound of f.
The interval t < t < tindicates that each element of t is bounded by its lower and upper bounds.
The objective function f(t) in P; is monotonically increasing in the interval t < t < t. In particular, t; is
upper bounded by ignoring the interferences, i.e., t; < log(1 + % Y1 PM|hy|?) =, and the lower
bound of tisty =0 <ty fork = 1,- -, K. Similarly, we can corI{strain tk41 by txi1 < txg1 < Fxqa,
where fx 1 =1/P.and tg 1 = . It is obvious that the feasible set t in = must be contained

by ® = [t .

-1
i PM/y+P,
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For a given t € ®, problem P; reduces to the feasibility problem given by

Pz : find Wi, , WK, (] (9)

s.t. (7b),(7c), (8b), (8c).

Obviously, when t = [0,0,- - -, W]T, problem P; is infeasible. That is because the sum
rate should not equal to zero with me;xirlnum transmit power. In this paper, we will customize the
BnB algorithm to solve problem P; globally. The BnB algorithm divides the box ® into smaller ones,
and cuts off boxes that do not contain an optimal solution. The algorithm will converge to the global
optimal solution after finite iterations.

Since P; is non-convex due to the SINR constraint, in the following, we first recast them as convex

ones. Let 4, = 2 — 1, (8b) is equivalently rewritten as [7,33]

1/2
*hkwk > (Z Ihi'w;|? +o® + Zm\hkﬂ ) (10a)
Tk i#k
m(hkwk) =0,Vk e K. (10b)

In the above formulation, we note that (10a) is a second-order cone (SOC) constraint. The constraint (10b)
is without loss of generality due to the fact that a phase rotation of the beamformers does not effect the
objective of the problem [25,33].

Moreover, (8c) is easily rewritten as

1¢ ) 1
=) ( Z w|* + 1) < — -~ P (11)
Ti=1 k t+

Then, problem P, becomes a SOCP feasibility problem which can solved efficiently. In the
proposed BnB algorithm, the bounding function can be formally expressed as

f(tmax)/ tmin €l
D) = 12
Pup(P) { 0, otherwise, (12)
f (tmin)r tmin Spe)
P) = 13
P1(®P) { 0, otherwise, (13)

where ¢up(P) and ¢ (P) are the upper and lower bound respectively, ® is defined as
® 2 {thrmin < tr < timax Vk} where t min and f; max denote the end points of the kth edge of
D, ti min = [tl,minr Tty tK+l,min]T and tomax = [tl,maxr Tty tK+1,max]T-

We denote by V; the collection of all created boxes at iteration i. Then, the work flow of the BnB
algorithm to obtain the global optimal solution is presented in Algorithm 1.
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Algorithm 1 Proposed Optimal Algorithm.

0: Initialization: given tolerance T > 0. Seti =1, By = {®}, U; = ¢up(P), L1 = ¢ppp (D).

1: Check the feasibility problem P, with given t. If it is infeasible, exit; Otherwise go to step 2.

2: repeat

3:  Set ®; = ® where P satisfies U; = ¢pyp (D).

4:  Branch ®; into two smaller boxes ®; and ®;; using the bisection subdivision along the longest
edge of ®;.

5. Let By = (Bi\{®:}) U{P;, D1}

6:  Update ;11 = maxeep,,, {¢n(P)}-

7 Delete boxes that do not contain an optimal solution, V1 = V;\\{®¢|Li11 > ¢up (D)} where
D € Byt

8: Update U1 = maxgev,,, {Puw(P)}.

9: Seti=i+1.

10: Until U; 1 — L1 < 7.

Remark 1 (H). According to [34], the convergence of Algorithm 1 is guaranteed due to the monotonic property
of f(t). The main step of Algorithm 1 is to delete the boxes that do not contain the optimal solution. This step is
referred to as pruning, and a smaller box that contains the optimal solution is obtained. Therefore, step 7 confirms
the convergence of Algorithm 1. The corresponding optimal EE is f(t)* = Uy, the optimal achieved data rate is
t*,Vk € K, and the network power consumption is 1/ty_ 1. This algorithm gives an optimal solution to problem
Py (equivalently to problem Py) when the tolerance T is small enough. Algorithm 1 provides a performance
benchmark for any other suboptimal algorithms. However, the computational complexity of Algorithm 1 is very
high in general. Therefore, an improved box reduction approach approach was proposed in [33,34] to reduce the
searching time, but we use the basic BnB approach in this paper for simplicity.

4. Decentralized Algorithm with Perfect CSI

In this section, we first transform the original problem into an equivalent subtractive-form using
the Dinkelbach’s method. By exploiting the equivalence between the achievable data rate and its
MSE, an ADMM algorithm is proposed to solve a QCQP subproblem with closed-form solution in
a parallel manner.

4.1. Equivalent Optimization Problem
It is noted that Py is a nonlinear fractional programming problem and can be transformed using

the Dinkelbach’s method [27]. Defining the optimal EE of problem Py by a°Pt, we have

a®Pt — R*/PPY — max R/ Py, 14
tot { }
W,

/!

where P:;l?t is the optimal total power consumption, RP! is the optimum of R, and R = 25:1 R;pt is
the sum rate.
According to [29], the optimal EE a°P! can be achieved if and only if

K
t
r&aqx Z Ry — a®PtPyy; = ROPt — aOPtP;}? =0, (15)
k=1

where (w,q) € Dand D = {(w, q)|(7b), (7c)} is the feasible region of problem a°P*.
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Thus, based on the theoretical results in [25,30,33], problem P is transformed as the following
parametric programming problem

K
P;: G(a) =max Z Ry — aPso; (16)
a3

st. (7b),(7c),

It is noted that if problem P3 is optimally solved with G(«) = 0, problem Pj can be solved
optimally. However, if problem P3 cannot be optimally solved, we can still solve problem Py through
solving a sequence of problem P3. Unfortunately, the optimal solution of problem Py is not guaranteed
in this case. We will provide detailed analysis in the next subsection.

The function of G(«) is a monotonically decreasing function over a. Therefore, a bisection method,
which is demonstrated in Algorithm 2, should perform well enough to find « [25,30].

Algorithm 2 Outer Layer Algorithm.

1: Initialize the minimum and maximum « as amin and amax respectively, and a small threshold

value €.

2: repeat

3:  Seta = (@max + &min)/2, solve problem P3 with «.

4: TIf G(a) >0, amin = a. Otherwise, amax = «.

5: Until |&max — &min| < € or the maximum iteration number is reached.

It is important to initialize « in reducing the search time of Algorithm 2. Here, we initialize the
interval amin < & < amax that a is bounded by its lower and upper bounds. Intuitively, « is lower
bounded by amin = 0 when the the sum rate equals to zero. For amay, it is upper bounded by ignoring
the interference and using maximum transmit power in Ry, and ignoring the transmit power and the
quantization noises in Py;. Specifically, Ry < log,(1 + % ZlL:l leax|hk|2) = Rimax, and Py min = P°.
Therefore, #max = Rk,max/ b t,min/ and o = [amin/ amax} = [0/ 2521 Rk,max/ p C]'

4.2. Decentralized Algorithm for Subproblem P3

The key step for finding the quantized noises and the beamformings in Algorithm 1 lies in solving
the subproblem P3. The main difficulty arises from the non-convex Ry in the objective function (16a).
Fortunately, by extending the equivalence between the SRmax problem and MMSE problem [31,35],
Ry in problem P3 can be reformulated into a tractable form.

1
Ry = max —(Inpy — prex), (17)
{ok i} 1r12( 3 P )

where p; € R is a scalar variable associated with MU k, ¢; € R is the MSE for MU k, given by
ex =E [|ulljyk - sk|2}
2 (v 2 s 2
= |l Ihyewi|> + 0% + Y gyl
j=1 1=1

— 2Re{uthfw,} +1. (18)

The proof of the equality in (17) is based on the first-order optimality condition [31], which is
omitted here for brevity. Then, problem P53 can be recast as
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K
Py : minmin 2 pxex — Inp) + aPro (19)

st. (7b),(7¢),

where u = [uy,--- ,ug]and p = [p1,- -+, ur].

It is worth noting that problem P is not jointly convex in {w, u, q, p}, but it is convex with respect
to {w, q} or {u,p} by given {u,p} or {w, q}, respectively. Thus, with fixed {wy} and {g;}, the optimal
weight py is o = 1/¢; where ¢} is the optimal MSE for MU k. Then, the optimal receive beamforming
coefficient {1} under fixed {wy}, {g;} and {px} is a MMSE receiver [31]

-1
K L
ue = Y w2+ 02+ Zﬁlz|hkl|2> hi'wy. (20)
= i3

With fixed {u} and {px}, the optimal {wy} and {g;} can be obtained by solving the following
quadratic constraint quadratic programming (QCQP) problem.

. K L a L
Ps:min f(wy)+ ZPk|“k|2241|hkl|2+T ZPZ (21)
WA k=1 i=1 M=

st. (7b),(7¢),

where f(wy) = Zle (w,lj Awy — Re{b{j wk}> is a quadratic objective function, and by = 2p;uhy and
A= Z]K:1 p;jlu; |2h]-h]H ,and 77 = n7In2. It is observed that this problem is a convex optimization problem
with respect to w and q, which can be solved centrally by standard mathematical tools, i.e., CVX [36].
It is noted that by simply replacing the constraints of the SINR and the maximum transmit power
per BS as in [20], such an alternative optimization can also be adopted to solve Py with multivariate
compression. That because the replacement does not affect the convexity of the subproblems. However,
such an interior-point method solves P5 with high computational complexity and it does not reveal
the structure of the solution. Meanwhile, it is implementation intensive for large-scale C-RANs due
to the centralized computation of the beamformings and quantization noises at the CU. Unlike the
beamforming design problem in multicell system [30], the beamformings are coupled among BSs in
our problem, making the Lagrangian based decomposition algorithm invalid in solving Ps. Towards
this end, we propose a novel approach using ADMM method to solve P5 with closed-form solution
optimally in a parallel manner.

In particular, in Ps, the two constraints (7b) and (7c), respectively, provide an upper and lower
bound on q. Then, the constraint f;p! < P/ — pf should be satisfied. By rearranging this constraint,
we have

(14 B)pi < PP,V (22)

Since the objective function of P5 is monotonically decreasing over q, we can replace the inequality
constraint (7c) with equality, i.e., g, = B Z,Ile |wy|2. We denote a new beamforming vector for BS
as W) = [wy, -+ ,wk]T, and then we have q; = B;|W;|?. As a result, problem Ps is equivalent to the
following problem in only a single set of variables w.
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L
Pg:min  f(wi)+ ) |y |? (23a)
i=1

st (14 B))|w[* < PPV, (23b)

where p; = Y5y pilug*Bilha > + 5 (1 + By).

The objective function in (23a) contains two parts, and they are functions of different variables,
i.e., wi and Wy, rather than the same variable. Therefore, problem Py is not a standard group lest
absolute shrinkage and selection operator (LASSO) problem [37]. Hence, the existing algorithms for
the group LASSO problems are not directly applicable. This fact motivates us to find new algorithm
to solve problem Py. Fortunately, it is observed that problem P4 has a special structure that can be
solved by developing the famous ADMM algorithm. To account for the difference between wy and
W; in problem Pg, we first introduce a copy Z; for w;, and define z = [ZlT PREE Z{]T Problem Pg can be

equivalently expressed as

L

P7:min f(we)+ )z (24a)
, =1

st (14 B1)|Z)* < PP,V (24b)

z; = wy, VL. (24¢)

The partial augmented Lagrangian function of problem Py is

L
L(w,zy) = f(wg) + z; |z

L c L
+ Y Re (yf@ —w)) + 5 )l — Wi, 25)
=1 I=1

wherey =[], ,§F]T with§, = [§},,- -+, §;]7 is the vector of Lagrangian dual variables for the
equality constraint (24c), and ¢ > 0 is some constant.

The idea of the ADMM is to update the local variables when fixing the other variables. Specifically,
the variables updating procedure of the ADMM algorithm is detailed as follows.

By fixing w(™) and y(") at the (m)-th iteration, z"+1) at the (m -+ 1)-th iteration is updated by
solving the following convex problem

min L(w'™,z,y™) st (24b). (26)

We show that problem (26) can be solved in a parallel manner. Specifically, we first decompose
problem (26) into L subproblems

. . ~H/~ ~ C . -
rrgnyl|zl|2 4 Re (ylH(zl — wl(m))> + §|z[ — wl(m) > st (24b), (27)

that can be solved independently at the CU.
The Karush-Kuhn-Tucker (KKT) conditions of problem (27) are
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(2u; 4267 +c)zf —cs; =0, (28)
1+ Bz > < P, 67 >0, (29)
(+Boiz P - pr=) 7 = 0, (30)
where 6} is the optimal Lagrangian multiplier associated with the power constraint, Z; is the optimum
of Z;, and s; is defined as s; = Vvl(m) — yl(’”).
If 6f = 0, we have Z} = 2;’1 - under the condition of (1+ B;)|zf[*> < P™ (equivalent to
sl < (i @u/c+1). I8 > 0, (1+ Bl = PP Then, 7 = |/1hy when |s| >
%(2;{1/ ¢+ 1). Specially, when |s;| = 0, Z; = 0. Therefore, zl(mH) = 7 is updated as
0, s/ =0
Pmax
zl(mH) — %, Isi] <4/ g (2m/c+ 1) 31)
Pmax Pmax
\ TrEe st >/ i (2 /e +1).
To update w("*1) with fixed {y]({m) , z,(cmﬂ)}, the following problem is solved
min  L(w,z"H),y(m), (32)
w
Due to the relationship between wy = [wyy, - -+, wi]T and W; = [wyy, - -, wi]T, VI, k, we have

Yh Wy — Zl(mH) - )”'l(m)/c|2 =YK |wp— z]((mﬂ) - y,((m>/c|2. Problem (32) is equivalent to
K
. c
min f(wi) +5 3 [we — 2" — " /P (33)
k=1

Then, problem (33) can be decomposed into the following K subproblems, and can be solved in
a parallel manner with each MU.

rr‘binw,{{Awk — Re{blw;} + %|wk - z,(cmﬂ) - y]((m)/c|2. (34)
k

By differentiating (34) with respect to {wy} and set to zero, we obtain the optimal {wj} with
closed-form expression in the (m + 1)-th iteration, given by

w,EmH) =w; = (2A; + D)1 (2by + cz,({mﬂ) + y,((m)). (35)

Using the relationship between wy and Wy, Wl(mﬂ) is obtained. Then, with obtained WZ(MH) and
il(mH), the multipliers y("*1) are updated

D) glm) | pglntt) _ gmet)y, (36)

Therefore, the decentralized algorithm for solving P3 is summarized in Algorithm 3. The convergence
of Algorithm 3 is guaranteed by Theorem 1.
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Algorithm 3 Decentralized Algorithm for Subproblem Ps3.

1: Initialization: choose initial value for w(®) and q(o), set iteration index n = 0, and choose the initial

value for z(0) and y(©).
2: Repeat
3: Update {u} by (20), and obtain {u(™}.
Calculate {e; } according to (18) with {w("),q(™}.
Update {po;} with px = 1/, and obtain p(").
Let iteration index m = 0 and w(™) = w("),
while € spym > 1072 do
Update z("+1) by (31);
Update w("+1) by (35);
10: Update the multipliers y"*+1) by (36).
11: m=m+1.
12:  end while
13: n=n+1
14:  Update w(®) = wlm+1),
15:  Update {q™} by q; = B X _| |wy|?, VI with w(™).

16: Until convergence or the maximum iteration number is reached.

Theorem 1. Algorithm 3 generates a sequence {w™),q")} that converge to a stationary point of problem P;.

Proof. The proof is based on the convergence of the alternative optimization method and ADMM
algorithm. With initialized {w(©),z(®),y(®}, the inner loop of Algorithm 3 from steps 7 to 12 converges
to an optimal solution of P5 due to the convergence of ADMM algorithm, and the proof can be found
in [38]. On the other hand, the outer loop of Algorithm 3 converges to a stationary point of subproblem
P3 due to the convergence property of block coordinate decent algorithm [31,35]. According to [25,30],
for an arbitrary «, the objective (16a) in problem P3 is shown to be non-decreasing during each iteration
of the outer loop of Algorithm 3. Therefore, Algorithm 3 is guaranteed to converge to a stationary
point of problem P3, and the proof is completed. [J

Denote by a°P! the actually optimal solution of problem Py, and a* the obtaine