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Abstract: Maximum likelihood estimation (MLE) has been researched for some acquisition and
tracking applications of global navigation satellite system (GNSS) receivers and shows high
performance. However, all current methods are derived and operated based on the sampling data,
which results in a large computation burden. This paper proposes a low-complexity MLE carrier
tracking loop for weak GNSS signals which processes the coherent integration results instead of the
sampling data. First, the cost function of the MLE of signal parameters such as signal amplitude,
carrier phase, and Doppler frequency are used to derive a MLE discriminator function. The optimal
value of the cost function is searched by an efficient Levenberg–Marquardt (LM) method iteratively.
Its performance including Cramér–Rao bound (CRB), dynamic characteristics and computation
burden are analyzed by numerical techniques. Second, an adaptive Kalman filter is designed for the
MLE discriminator to obtain smooth estimates of carrier phase and frequency. The performance of
the proposed loop, in terms of sensitivity, accuracy and bit error rate, is compared with conventional
methods by Monte Carlo (MC) simulations both in pedestrian-level and vehicle-level dynamic
circumstances. Finally, an optimal loop which combines the proposed method and conventional
method is designed to achieve the optimal performance both in weak and strong signal circumstances.
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1. Introduction

Global positioning systems (GPS) have been widely used in various fields. Whenever and
wherever four or more satellites are visible, we can use GPS receivers to achieve positioning and
navigation. The receiver can only capture and track the received signal from satellites which have an
intensity above a certain power level. The signal intensity is usually referred to as signal-to-noise ratio
(SNR) or carrier-to-noise spectral density ratio (C/N0). However, it is not always possible to ensure
high C/N0 in some harsh circumstances such as in urban, forest and indoor areas. Since the carrier
tracking loop is always the weakest link in a stand-alone GPS receiver, its threshold characterizes the
unaided GPS receiver performance [1].

For weak signal applications, the two important factors that affect the performance of the receiver
are the signal strength and dynamics of the receiver. The most commonly used loop, the phase-locked
loop (PLL), has low sensitivity [1]. Increasing the integration time is a common solution to improve
the sensitivity of receivers, such as coherent integration, non-coherent integration and differential
integration [2,3]. However, increasing the integration time will reduce the dynamic performance of
the phase-locked loop (PLL). The frequency-locked loop (FLL) is another common loop which has
higher sensitivity and better dynamic performance. However, its accuracy is low. In urban and indoor
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circumstances, the satellite signal is severely attenuated. Received signal intensity is typically 10–30
dB lower than actual received power level in open environments, which brings a serious challenge to
the conventional loops [4].

The maximum likelihood estimation (MLE) approach is known to yield optimal performance
for GNSS signal tracking. Some loops based on MLE have been researched and applied in some
specific signal environments [5–11]. Hurd et al. [5] proposed an approximate maximum likelihood
method to track Doppler frequency and code delay for a high-dynamic receiver. The multipath signal
parameters are estimated by MLE in [6,7]. Iterative and non-iterative MLE for Doppler frequency and
code delay are discussed in [8,9]. Joint maximum likelihood estimation for position is proposed in [10]
and its Cramér–Rao bound (CRB) is derived in [11]. These methods can achieve high performance in
some specific environments. However, all of these methods process the sampling data (intermediate
frequency, IF, raw samples) directly and perform complex processing or iteration operations. This is
because the sampling data has a high data rate from 5 MHz up to 30 MHz. That implies a large
computation burden and means more hardware or software resources are needed, which is undesirable.

This paper proposes a low-complexity MLE carrier estimation method. In contrast to the
existing methods, this method processes the coherent integration results instead of sampling data.
It therefore has a small computation burden because the processed data rate is reduced from 5.714 MHz
(the sampling rate) to 1000 Hz. The main contributions of this paper include two key points which
are included in Sections 3 and 4, respectively. In Section 3, the MLE discriminator is presented under
the assumption that the pseudo random code (PRN) is stripped off. Its cost function with respect to
the carrier phase, frequency and amplitude is given in Section 3.1. An efficient parameter estimation
method by Levenberg–Marquardt (LM) algorithm is described in Section 3.2. Then, the performance
of an MLE discriminator including CRB, dynamic performance and computation cost is analyzed in
Sections 3.3–3.5, respectively. In Section 4, an adaptive Kalman filter (KF) is designed to improve the
performance of the MLE discriminator. The basic equations of KF are given in Section 4.1 including
the observation equation, state transition equation and their covariance matrix. It uses the amplitude
estimate to adjust the observation noise matrix adaptively, so it is an adaptive KF. In Section 4.2, the
block diagram of the proposed loop is given and illustrated in detail. In Section 5, some simulations
are undertaken to demonstrate the performance of the proposed method. The performance of the
LM method and KF is tested in Sections 5.1 and 5.2, respectively. Monte Carlo (MC) simulations
are made to calculate the tracking probability, tracking accuracy and bit error rate. A conventional
FLL-assisted PLL is simulated too in order to make a comparison. Section 5.4 designs an optimal loop
which combines the proposed loop and FLL-assisted PLL to achieve the optimal performance in weak
and strong signal environments.

2. Signal Model

The radio frequency (RF) signal transmitted by satellites is received by the receiver antenna.
Then it is down-converted and digitized into the discrete intermediate frequency (IF) signal. The IF
signal is sent to the baseband processing section to perform acquisition, tracking and demodulation.
The acquisition process estimates coarse code phase and Doppler frequency which are used to initialize
the tracking loop. Based on the acquisition results, the tracking loop can converge to the true values
gradually and output the precise estimates of the code phase and Doppler frequency.

The IF signal can be expressed as data bits D modulated by pseudo-random code (PRN) C and
carrier. With the sampling interval of ts, the discrete IF signal can be written as,

rIF[i] = a(its − τ) · D(its − τ) · C(its − τ) cos(2π( f IF + fd)its + ϕ0) + w(its − τ) (1)

where i is the index of sampling points, a is the IF signal amplitude, τ is the code propagation delay, fIF
and fd denote the intermediate frequency and Doppler frequency, respectively, ϕ0 is the initial carrier
phase, and w is the noise term which is the white Gaussian noise.
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For the general in-phase and quadrature (I/Q) processing method, IF signal performs frequency
mixing with two local carriers which have a phase difference of 90 degrees, i.e., the sine and cosine
carrier. Figure 1 shows the block diagram of the carrier tracking loop. After frequency mixing, code
stripping is performed by multiplication with the local code. Then, coherent integration is performed
to get a sequence of integration results. The integration process is operated under the assumption
that the carrier is tracked accurately. Therefore, the carrier phase over the short integration time
can be considered constant. Data bits must be removed if the integration time is more than the data
length (20 ms for GPS L1C/A signal). In the following derivation, the integration time is no more
than 20 ms, and PRN is assumed to be stripped off by the conventional delay-locked loop (DLL)
completely. This assumption is reasonable because the proposed loop can replace the conventional PLL
or FLL absolutely which will be explained in Section 4.2. The signal parameters of interest (i.e., signal
amplitude, Doppler frequency and carrier phase) change slowly enough that they may reasonably be
treated as unknown constants over the integration time. Then, the integration results of two channels
can be written as a complex form [12],

r[n] = A[n] · D[n] · sinc( f T) exp(j(2π f nT + ϕ)) + wci[n] (2)

where n is the index of the integration results, T is the coherent integration time, A, f and ϕ are the
amplitude, frequency and phase residual, respectively, and wci is the complex noise term which is
the accumulation of w in Equation (1). Because w is white Gauss noise, wci is white Gauss noise too.
In general, the noise in the I and Q channels is independent and has the same power. Therefore, the
real part and imaginary part of wci are irrelevant and have the same variance σ2.

In the tracking process, f and T are small and sinc(fT) is approximately equal to 1 (for T = 1 ms
and f = 10 Hz, sinc(fT) = 0.9998). Then Equation (2) can be rewritten as Equation (3).

r[n] ≈ A[n] · D[n] · exp(j(2π f nT + ϕ)) + wci[n] (3)

The integration results in Equation (3) are sent to the frequency discriminator and loop filter to
get the frequency or phase residual estimate. The estimated residual is used to adjust the frequency
and phase of the carrier numerically-controlled oscillator (NCO).
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Figure 1. Block diagram of the conventional carrier tracking loop. NCO: numerically-controlled 
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ambiguity of π between different data bit periods. The method to estimate data bit reversals will be 
discussed in Section 4.2 and is not considered in this section. Therefore, there are three unknown 
parameters A, f and φ in (3). To estimate them by MLE, the cost function must be derived first.  
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Figure 1. Block diagram of the conventional carrier tracking loop. NCO: numerically-controlled
oscillator; IF: intermediate frequency.

3. MLE Discriminator

3.1. Cost Function of MLE

Data bits in (3) may lead to 180-degree carrier-phase reversals. Therefore, there is a phase
ambiguity of π between different data bit periods. The method to estimate data bit reversals will be
discussed in Section 4.2 and is not considered in this section. Therefore, there are three unknown
parameters A, f and ϕ in (3). To estimate them by MLE, the cost function must be derived first.
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Under the assumption of white Gaussian noise, the joint probability density function of N
consecutive integration results can be expressed as (4) [13].

p(VN |A, f , ϕ) =
1

(2πσ2)N exp
(
− 1

2σ2

(
VN − V̂N

)
W
(
VN − V̂N

)H
)

(4)

where VN = [r[0], r[1], ..., r[N − 1]] represents N coherent integration results, V̂N is the estimate of VN
in the absence of noise, W is a diagonal matrix and denotes the weighting factor of r[n], (*)H denotes
the transpose and conjugate operation.

The estimates of the signal parameters A, f and ϕ are obtained by maximizing (4) which can
achieve a minimum variance unbiased estimate with the Cramer–Rao lower bound (CRLB) [14]. Setting
all the diagonal elements of W to 1, the log-likelihood cost function for various signal parameters is:

Λ(θ|rN) = − 1
2σ2

(
VN − V̂N

)(
VN − V̂N

)H − N ln
(
2πσ2)

= − 1
2σ2

∣∣VN − V̂N
∣∣2 − N ln

(
2πσ2)

= − 1
2σ2

N−1
∑

n=0
(R(rn)− A cos(α))2 − 1

2σ2

N−1
∑

n=0
(I(rn)− A sin(α))2 − N ln

(
2πσ2)

= − 1
2σ2

N−1
∑

n=0

{
|rn|2 + A2 − 2A[R(rn) · cos(α) + I(rn) · sin(α)]

}
− N ln

(
2πσ2)

(5)

where α = 2π f nT + ϕ, rn = r[n] is used to simplify the expression, θ = [ A f ϕ ]
T

represents the
signal parameter vector, R(*) and I(*) denote the real and imaginary part, respectively.

The MLE of the signal parameters can be obtained by maximizing the log-likelihood cost function
in (5), based on the observation vector rN satisfying:

∂Λ(θ|rN)

∂θ
= 0 (6)

The partial derivative for A in (6) is easy to calculate.

∂Λ
∂A

= − 1
σ2

N−1

∑
n=0
{A− [R(rn) · cos(α) + I(rn) · sin(α)]} (7)

Then, A can be estimated by setting the partial derivative (7) to zero.

A =
1
N

N−1

∑
n=0

[R(rn) · cos(α) + I(rn) · sin(α)] (8)

In (5), the term |rn|2 on the right-hand side can be treated as a constant (no information pertains to
the signal parameters). The component A2 contains only the parameter A. Thus, the partial derivatives
of Λ for f and ϕ depend only on the third component in which A can be regarded as a constant
coefficient. Taking no account of A and ignoring irrelevant terms, the new cost function for f and ϕ can
be written as:

L =
N−1

∑
n=0

[R(rn) · cos(α) + I(rn) · sin(α)] (9)

Therefore, the MLE is converted to a two-dimensional optimization problem to search f and ϕ

which maximize L. Figure 2 shows the normalized cost function in (9) with respect to the frequency
and phase errors. The integration time is 1 ms and N is 20. It can be seen that the cost function reaches
the maximum value when the Doppler frequency and phase errors are zero. It is a periodic function
of the phase and has symbol flipping when the phase changes π. This is easy to demonstrate by (9).
Therefore, the frequency and phase can be obtained by searching the maximum or minimum points of
the cost function.



Sensors 2017, 17, 1468 5 of 18Sensors 2017, 17, 1468 5 of 18 

 

Frequency error/(Hz)

P
ha

se
 e

rr
or

/(r
ad

)

 

 

-50 -30 -10 10 30 50

-4

-3

-2

-1

0

1

2

3

4

-0.6

-0.2

0.2

0.6

1

maximum

minimum

minimum

 
Figure 2. Normalized maximum likelihood estimation (MLE) cost function as a function of the 
frequency and phase errors. 
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problem. A simple method, known as the grid search method, is to search the two-dimensional space 
step by step. This method is easy to implement and the search scope can be adjusted arbitrarily. 
However, its precision is limited by the resolution. Improving the resolution will increase the 
computation burden significantly.  

Another method is the gradient-based method which searches the extreme point along the 
gradient direction. The Levenberg–Marquardt algorithm, also known as the damped least-squares 
(DLS) method, is one of the most effective optimization methods to solve non-linear least squares 
problems [14]. It can be seen as an improved Gauss–Newton (GN) algorithm and converges to the 
optimal value iteratively. It has high efficiency and is not limited by the resolution. Its core formula 
to search the maximum can be expressed as: 

1
1

ˆ ˆ ( )  ,     0,1, 2...i i i iH d G i  
      (10) 

where i represents the iteration index, and ̂  is the 2-by-1 MLE state vector (f and φ). d is a 2-by-2 
diagonal matrix which has two functions, ensuring that Hi+d is a positive definite matrix and 
adjusting the convergence rate. Gi and Hi are the 2-by-1 gradient vector and the 2-by-2 pseudo-
Hessian matrix respectively, defined as follows: 

î
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3.2. Parameters Estimation by LM Algorithm

Searching the extreme value of the cost function in (9) is a two-dimensional optimization problem.
A simple method, known as the grid search method, is to search the two-dimensional space step by
step. This method is easy to implement and the search scope can be adjusted arbitrarily. However,
its precision is limited by the resolution. Improving the resolution will increase the computation
burden significantly.

Another method is the gradient-based method which searches the extreme point along the
gradient direction. The Levenberg–Marquardt algorithm, also known as the damped least-squares
(DLS) method, is one of the most effective optimization methods to solve non-linear least squares
problems [14]. It can be seen as an improved Gauss–Newton (GN) algorithm and converges to the
optimal value iteratively. It has high efficiency and is not limited by the resolution. Its core formula to
search the maximum can be expressed as:

θ̂i+1 = θ̂i + (Hi + d)−1Gi, i = 0, 1, 2... (10)

where i represents the iteration index, and θ̂ is the 2-by-1 MLE state vector (f and ϕ). d is a 2-by-2
diagonal matrix which has two functions, ensuring that Hi+d is a positive definite matrix and adjusting
the convergence rate. Gi and Hi are the 2-by-1 gradient vector and the 2-by-2 pseudo-Hessian matrix
respectively, defined as follows:

Gi =

[
∂L
∂θ

]
θ=θ̂i

(11)

Hi =

[
∂2L
∂θ2

]
θ=θ̂i

(12)

where,

∂L
∂θ

=
[

∂L
∂ f

∂L
∂ϕ

]T
and

∂2L
∂θ2 =

 ∂2L
∂ f 2

∂2L
∂ f ∂ϕ

∂2L
∂ϕ∂ f

∂2L
∂ϕ2

 (13)
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Detailed expressions of the terms in (13) are provided as follows:

∂L
∂ f = 2πT

N−1
∑

n=0
n(−R(rn) · sin(α) + I(rn) · cos(α))

∂L
∂ϕ =

N−1
∑

n=0
(−R(rn) · sin(α) + I(rn) · cos(α))

∂L
∂ f 2 = −4π2T2

N−1
∑

n=0
n2(R(rn) · cos(α) + I(rn) · sin(α))

∂L
∂ϕ2 = −

N−1
∑

n=0
(R(rn) · cos(α) + I(rn) · sin(α))

∂L
∂ f ∂ϕ = ∂L

∂ϕ∂ f = −2πT
N−1
∑

n=0
n(R(rn) · cos(α) + I(rn) · sin(α))

(14)

The detailed realization of the LM algorithm is shown in Figure 3. First, the initial values for θ̂0

and d are specified in Step 1. In the tracking process, the phase and frequency are assumed to track
accurately. Therefore, θ̂0 = [0 0]T . d is initialized as an experience value. Step 2 calculates gradient
matrix G and Hessian matrix H by (11) and (12). Step 3 ensures that H+d is positive definite. If H+d is
negative definite, d must be increased. This step is the main difference between the LM algorithm and
GN algorithm. It ensures the inverse matrix of H+d is always present and the iteration process can
continue. Step 4 updates the parameters matrix by (10). Based on this, the cost function values at θ̂i
and θ̂i+1 are calculated and compared in Step 5. In order to ensure efficient iteration, L

(
θ̂i+1

)
must

be larger than L
(
θ̂i
)

(searching the maximum value). Otherwise, d must be increased again. Step 6
adjusts the convergence rate by increasing or decreasing d. When θ̂ is away from the extreme point
(gradient values are large), d is decreased to achieve fast convergence. When θ̂ is close to the extreme
point (gradient values are small), d is increased to achieve slow convergence. The inequality G < 0.25
denotes every element in G is less than 0.25, the same as below. Step 7 ends the iteration process when
gradient is smaller than the threshold Γ or the iteration number exceeds the threshold M.
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3.3. Cramér–Rao Bound (CRB)

The CRB expresses a lower bound on the variance of estimators of a deterministic parameter.
The derivation method of CRB is mature and can be found in [13]. Based on the work in [13], the
discrete form of the CRB of the proposed maximum likelihood (ML) discriminator is derived in this
section. The multiple-parameter CRB for any unbiased estimate of a generic, real-valued parameter
vector θ means the covariance matrix of the estimates C(θ) is bounded as

C(θ̂) > J−1(θ) (15)

where J(θ) is commonly referred to as the Fisher information matrix (FIM), whose inverse is the CRB
matrix. With Λ(θ) being the log-likelihood function, the FIM elements are defined by:

[J(θ)]u,v = −E
{

∂2Λ(θ)

∂θu∂θv

}
(16)

where u, v denotes the index of the parameters.
The second-order partial derivative in (16) can be calculated as,

∂2Λ
∂ f 2 = − 4

σ2 Aπ2T2
N−1
∑

n=0
n2(R(r) · cos(α) + I(r) · sin(α))

∂2Λ
∂ϕ2 = − A

σ2

N−1
∑

n=0
(R(r) · cos(α) + I(r) · sin(α))

∂2Λ
∂ f ∂ϕ = ∂2Λ

∂ϕ∂ f = − 2πTA
σ2

N−1
∑

n=0
n(R(r) · cos(α) + I(r) · sin(α))

(17)

Substituting (17) to (16), the FIM can be obtained.

J(θ) =
A2

σ2

[
N πTN(N − 1)

πTN(N − 1) 2π2T2(N − 1)N(2N − 1)/3

]
(18)

Then CRB of f and ϕ can be expressed as,{
CR f = 1/[J(θ)]1,1 = 3σ2/2A2π2T2(N − 1)N(2N − 1)
CRϕ = 1/[J(θ)]2,2 = σ2/A2N

(19)

Similarly, the CRB of A is derived separately as,

CRA = −
/

E
{

∂2Λ(θ)

∂A2

}
= σ2/N (20)

Equations (19) and (20) determine the lower bound on the variance of f, ϕ and A. As explained in
Section 2, A2 and 2σ2 can be seen as the signal power and noise power of r[n], respectively. A2/2σ2

denotes the SNR of r[n] which is proportional to the integration time T when the RF signal power and
sampling rate are fixed. Therefore, the CRB of f and ϕ can be seen as a constant multiplied by the term
1/T3(N − 1)N(2N − 1) and 1/TN, respectively. It is obvious that increasing N and T will reduce the
CRB of f and ϕ. In addition, increasing N and reducing T will reduce the CRB of f too when NT (the
discriminator update time) is fixed. For example, the strategy N = 20, T = 1 ms can get lower CRB of f
than the strategy N = 10, T = 2 ms. Given the C/N0 of IF signal, SNR of r[n] expressed in the form of dB
can be calculated as:

SNR = CN0 − 10 log10(BW) + 10 log10( fsT) (21)
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where CN0 is the C/N0 of IF signal expressed in the form of dB, and BW is the noise bandwidth of the
receiver. The second term on the right side converts SNR to C/N0 and the third term on the right side
denotes the coherent integration gain.

Figure 4 shows the CRB of f and ϕ with respect to C/N0 of IF signal. It can be seen that the CRB
increases exponentially with the C/N0 decreases. Strategy 1 can obtain lower CRB of f than strategy 2.
However, for the CRB of ϕ, there is no difference.
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3.4. Dynamic Characteristics

The LM method is easy to converge to local optimal values if the initial point is not correct.
This means the initial point must be in a pull-in range, i.e., the main peak of the cost function, in each
update. The dynamic tolerance of the LM algorithm means the frequency change does not exceed half
the width of the main peak during the update interval.

Ignoring the noise term in (9), it can be simplified as:

Ls =
N−1
∑

n=0

(
cos(2π f nT + ϕ0) · cos(2π( f + ∆ f )nT + ϕ0 + ∆ϕ)

+ sin(2π f nT + ϕ0) · sin(2π( f + ∆ f )nT + ϕ0 + ∆ϕ)

)
=

N−1
∑

n=0
cos(2π∆ f nT + ∆ϕ)

(22)

where ∆ f and ∆ϕ are the frequency and phase error, respectively.
The cost function in (22) is the accumulation of the cosine function whose phase is from ∆ϕ to

2π∆ f (N − 1)T + ∆ϕ. It is obvious that Ls reaches the minimum when 2π∆ f (N − 1)T + ∆ϕ is equal
to 3π/2 or −3π/2. Therefore, the main peak of L is in the range of

[
−3π/2−∆ϕ

2πNT , 3π/2−∆ϕ
2πNT

]
which is

inversely proportional to the discriminator update time and related to the phase error.
Figure 5 shows the one-dimensional cost function in (22) with respect to the frequency error

with various phase errors. The parameters are the same as those in Figure 3. It can be seen that
the position of the extreme point (the red spot) changes with the phase error changing. When the
phase error is more than π/2 or less than −π/2, the main peak becomes a negative peak. To avoid
converging to local optimal values, the initial point of LM algorithm must be in the range of the
main peak. Assuming the phase is tracked precisely (∆ϕ ≈ 0), the pull-in range of LM algorithm
is [−3/4NT, 3/4NT]. This means the tolerable Doppler rate is 3/4(NT)2 Hz/s which is inversely
proportional to the square of the discriminator update time. Therefore, increasing the discriminator
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update time will lead to reduction in dynamic tolerance. However, to improve the sensitivity of
the receiver, increasing the update time is necessary. It is a compromise between dynamic tolerance
and sensitivity.
Sensors 2017, 17, 1468 9 of 18 
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hardware circuit. However, the subsequent LM algorithm needs to be processed by the software. 
Compared with the existing methods [5–11], the proposed ML discriminator processes the coherent 
integration results instead of the sampling data. After the coherent integration process, the data rate 
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rate of 5.714 MHz and the integration time of 1 ms, the amount of data is reduced by 5714 times. 
Therefore, the proposed method has a great improvement in efficiency compared with the existing 
MLE-based methods.  
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When the discriminator update time is more than 20 ms, the integration results must be squared to
remove the data bits. This will lead to two effects on the performance of the loop. Firstly, the Doppler
frequency and phase residuals are doubled, resulting in halved dynamic tolerance. Secondly, the noise
term is squared too, resulting in SNR loss (square loss) [15].

The SNR gain and dynamic tolerance should be considered simultaneously to choose the optimal
discriminator update time. It is not difficult to find that (9) is equivalent to the coherent integration
(NT ≤ 20 ms) or non-coherent integration (NT > 20 ms) when the Doppler frequency and phase
residual are zero. The SNR gain at the maximum point of L is equal to coherent or non-coherent
integration gain, which have been derived in [16].

Table 1 shows the dynamic tolerance and SNR gain of the proposed algorithm with respect to
the different discriminator update time. The C/N0 of the received signal is 30 dB-Hz. It can be seen
that the dynamic tolerance decreases rapidly with NT increasing. The SNR gain reaches to 76.1 dB
when the discriminator update time is 20 ms. However, it drops to 72.9 dB when the discriminator
update time increases from 20 ms to 40 ms because of the square loss. Until the discriminator update
time reaches 100 ms, the SNR gain goes back to 76.9 dB with a low dynamic tolerance of 7.1 m/s2.
So considering both the dynamic performance and SNR gain, 20 ms is chosen as the discriminator
update time.

Table 1. Dynamic tolerance and signal-to-noise ratio (SNR) gain of the proposed algorithm.

Discriminator Update Time (ms) 20 40 60 80 100 200

Dynamic Tolerance (m/s2) 357 44.6 19.8 11.1 7.1 1.8
SNR Gain (dB) 76.1 72.9 74.7 75.9 76.9 79.9

3.5. Computation Cost

In Figure 1, the basic frequency mixing and integration process can be implemented easily in
the hardware circuit. However, the subsequent LM algorithm needs to be processed by the software.
Compared with the existing methods [5–11], the proposed ML discriminator processes the coherent
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integration results instead of the sampling data. After the coherent integration process, the data rate is
reduced from 1/ts to 1/T. Therefore, the amount of data is reduced by T/ts times. For the sampling
rate of 5.714 MHz and the integration time of 1 ms, the amount of data is reduced by 5714 times.
Therefore, the proposed method has a great improvement in efficiency compared with the existing
MLE-based methods.

In the LM algorithm, the main computation is the gradient and Hessian matrices, i.e., (14).
Removing repeated calculation, and with the n2 term stored in advance, the actual calculation cost in
an iteration is N sine and cosine, 6N multiplication and addition. Considering the maximum number
of iterations is M, the total computation cost in an observation interval is about MN sine and cosine,
6MN multiplication and addition operation. Therefore, for M = 6, N = 20 and T = 1 ms, the processing
requirements are 120 sine and cosine, 840 multiplication and addition operation of 20 ms, which are
easy to implement.

4. Adaptive Kalman Filter

4.1. Basic Equations of KF

After frequency and phase residual estimation by the MLE discriminator, a KF can be used to get
fair estimates. KF is an optimal estimator by using the state space concept and system error model.
The detailed process of KF has been documented clearly in [17]. Here, only the state transition equation
and observation equation of KF is given.

The state vector is defined as xk =
[

ϕk wk
.

wk

]T
. k is the index of the update period of

the filter. wk = 2π fk is the angular frequency and
.

wk is the angular frequency rate. Authors of [18]
have derived a state transition function whose state vector includes the code phase. Because the
code tracking loop is not considered in this paper, the state transition function of the proposed KF is
reproduced from [18] and modified by ignoring the code phase term. Its discrete form is expressed as:

xk+1 =

 1 ∆t ∆t2

2
0 1 ∆t
0 0 1

xk +

 wr f 0 0
0 wr f 0
0 0

wr f
c


 wb

wd
wa

 (23)

where ∆t = NT is the update interval of KF which is equal to the discriminator update time. The second
term on the right side is the process noise term and has a covariance matrix Q. wr f is the angular
frequency of the RF signal. wb and wd is the carrier phase noise and carrier frequency noise due to the
local oscillator, respectively. wa is the carrier frequency rate noise. Q is given by (24).

Q = F · E[Wr f ·Wr f
T ] · FT

=
(wr f

c

)2
qa


∆t5

20
∆t4

8
∆t3

6
∆t4

8
∆t3

3
∆t2

2
∆t3

6
∆t2

2 ∆t

+ wr f
2qd

 ∆t3

3
∆t2

2 0
∆t2

2 ∆t 0
0 0 ∆t

+ wr f
2qb

 ∆t 0 0
0 0 0
0 0 0

 (24)

where F and Wrf are the state transition matrix and observation noise matrix in (23) respectively, and
qb, qd and qa are the power spectral density of wb, wd and wa, respectively. Given h-parameters of the
local oscillator, qb and qd can be calculated by:{

qb = h0
2

qd = 2π2h−2
(25)

where h0, h−2 is the h-parameters of oscillator. For a voltage-controlled temperature-compensated
oscillator (VCTCXO), h0 = 1× 10−21 and h−2 = 1× 10−20 is given in [18].
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The MLE discriminator can output frequency and phase estimates. Choosing them as observations,
the observation equation is written as,[

ϕ̂

f̂

]
=

[
1 0 0
0 1 0

]
xk + vk (26)

where vk is the observation noise which has the covariance matrix Rk.
It is obvious that Rk is the variance matrix of phase and frequency estimation errors. It can be

derived as the inverse matrix of FIM [13].

Rk = J−1(θ) = σ2

A2
3

2π2T2(N−1)N(2N−1)−3π2T2(N−1)2 N
∗[

2π2T2(N − 1)(2N − 1)/3 −πT(N − 1)
−πT(N − 1) 1

]
(27)

In (27), the term on the right side can be considered as σ2/A2 multiplied by a constant matrix
when T and N is fixed. A can be estimated by (8). σ2 is estimated by,

σ2 = (rN − r̂N)(rN − r̂N)
H/2N (28)

As explained above, A2/2σ2 is the SNR of integration result signal. Therefore, Rk is adjusted
adaptively by SNR estimation in each update. Meanwhile, C/N0 of the received signal can be estimated
by (29).

C/N0 = 10 log10

(
A2/2σ2

)
− 10 log10( fsT) + 10 log10(BW) (29)

4.2. ML-KF Loop

The KF needs to predict the information at the next moment using the estimated phase and
frequency. However, data bit reversals will lead to 180-degree phase ambiguity. KF will output
an incorrect result in this case. Therefore, data bits must be stripped off or estimated if KF is used.
As illustrated above, the cost function value will change its symbol if the data reversal happens.
This can be used to judge the data reversals. In the update epoch k, the cost function value at the initial
point (L(θ0)) is calculated first. If L(θ0) > 0, the data bit is the same as the last bit and the phase does
not need to be corrected. On the contrary, if L(θ0) < 0, the data reversal happens and the phase needs
to be corrected by adding π. In this way, the data bits can be estimated.

The block diagram of the ML-KF loop is shown in Figure 6. The integration results are sent to the
MLE estimator. The frequency and phase is estimated first by LM iteration processing. Then, Â and σ2

are estimated by (8) and (28), respectively. They are used to update the observation noise covariance
matrix Rk and estimate C/N0 by (27) and (29), respectively. f̂ is corrected by adding π if L(θ0) < 0.
All these information is set to KF to get fair estimates of phase and frequency. Finally, the output of KF
is used to adjust the frequency and phase of the carrier NCO.

In terms of the structure of the receiver, the ML-KF loop can be used to replace the traditional
PLL or FLL absolutely. This is because they use the same input (the correlation outputs of the prompt
branch) and output the same results (Doppler frequency and phase residuals) to adjust the carrier
NCO. Therefore, a standard DLL architecture is compatible with the proposed method. Actually, they
can be seen as two independent loops. Therefore, the perfect wipe off of the PRN can be assumed to
avoid the influence of irrelevant factors.
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5. Simulation Results

5.1. Simulation Results of MLE Discriminator

To test the validity of the proposed MLE discriminator, the convergence curves of phase and
frequency are shown in Figure 7a. The simulation parameters are listed in Table 2. The true frequency
and phase error are 7 Hz and 1 rad, respectively, expressed in coordinates as (7, 1). It can be seen
that the iteration process ends after eight iterations, which means the gradient matrix G reaches the
threshold. The frequency and phase converge to (6.9, 1.1) finally. The LM algorithm shows high
efficiency and accuracy in this process.
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Figure 7. Convergence performance of the LM algorithm. (a) Frequency and phase convergence curves
of a single example; (b) Root-mean-square error (RMSE) of frequency and phase with respect to the
iteration number.

Table 2. Simulation parameters.

Parameter Value

Carrier-to-noise ratio C/N0 28 dB-Hz
Sampling rate fs 5.714 MHz

Integration time T 1 ms
Observation point number N 20
Iteration number threshold M 20

Gradient threshold Γ 0.01
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Figure 7b shows the root-mean-square error (RMSE) of the frequency and phase with respect to
the number of iteration. The initial frequency residual is random from −10 to 10 Hz and the initial
phase residual is random from −1 to 1 rad. In total, 50,000 MC simulations are made to calculate the
RMSE. It can be seen that the accuracy of the frequency and phase have the same trend because they
are estimated simultaneously. When the iteration number exceeds six, the RMSE of the frequency and
phase is almost unchanged. So considering both the computation burden and tracking accuracy, the
number of iteration is set to six in the following simulations.

5.2. Simulation Results of ML-KF Loop

To demonstrate the effectiveness of the proposed adaptive KF, two simulations in two dynamic
scenarios, pedestrian-level and vehicle-level, are made. The pedestrian-level velocity is expressed as
3sin(0.6t) m/s with a velocity, acceleration and acceleration rate that can reach a of maximum 3 m/s,
1.8 m/s2 and 1.08 m/s3, respectively. The vehicle-level velocity is expressed as 30sin(0.3t), with a
velocity, acceleration and acceleration rate that can reach the maximum 30 m/s, 9 m/s2 and 2.7 m/s3,
respectively. Considering the maximum acceleration (9 m/s2), the Doppler change over the integration
time is only 0.047 Hz. Similarly, the phase change caused by the Doppler change over the integration
time is only 0.0003 rad. Therefore, the assumption of constant Doppler frequency and phase over the
integration time is still valid. C/N0 is 25 dB-Hz. In the ML-KF loop, qa is set to 1.8 and 9 in these two
dynamic scenarios, respectively, which are equal to the maximum acceleration. The other parameters
are the same as those in Table 1. The proposed MLE carrier tracking loop with and without KF is
abbreviated as ML-KF and ML loop, respectively.

Figure 8a,b shows the frequency tracking errors of these two loops in pedestrian and vehicle level
scenarios, respectively. It can be seen that the errors of the ML-KF loop are smaller than that of the ML
loop in two dynamic scenarios. The tracking accuracy is improved significantly by KF. For the ML-KF
loop, the bit error rate is 0.001 and 0.002, respectively in pedestrian- and vehicle-level scenarios. For the
ML loop, the bit error rate is 0.013 and 0.006 respectively in pedestrian and vehicle level scenarios.
This means the bit error rate is reduced by filtering too. Therefore, the proposed KF can improve the
tracking accuracy and reduce the bit error rate.
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Figure 8. Tracking results of the ML (maximum likelihood) and ML-KF loops in different dynamic
circumstances. (a) Frequency tracking results of pedestrian-level velocity; (b) Frequency tracking
results of vehicle-level velocity.
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5.3. Monte Carlo Simulations for Sensitivity and Accuracy

To provide intuitive quantification analysis, MC simulations are performed in terms of the
sensitivity, accuracy and bit error rate of the proposed loop. A classic two-order FLL-assisted
three-order PLL (FPLL) is also simulated to make a comparison [19]. This loop integrates both
the FLL and the PLL characteristics. It is designed to satisfy the need for both the dynamic robustness
of FLL plus the accuracy performance of the PLL. The discriminator algorithms of two-order FLL
and three-order PLL are shown in Table 3. In order to keep consistent with the proposed loops, the
integration time of PLL is set to 20 ms. Because the discriminator of FLL uses two integration results
in an update, its integration time is set to 10 ms. The bandwidth of FLL and PLL is 4 Hz and 18 Hz,
respectively, which is the optimal choice for low and high dynamics [19]. The simulation time is 10 s
and 200 MC simulations are made. The other parameters are the same as those in Table 1.

Table 3. Discriminator algorithms of two-order frequency-locked loop (FLL) and three-order
phase-locked loop (PLL).

Discriminator Algorithm

Two-order FLL

ATAN2(cross,dot)
2πT

where ATAN2(∗) denotes four-quadrant arctangent,
dot = R(rn−1)R(rn) + I(rn−1)I(rn),

cross = R(rn−1)I(rn)− R(rn)I(rn−1)

Three-order PLL
ATAN

(
I(rn)
Q(rn)

)
where ATAN(∗) denotes the two-quadrant arctangent.

The tracking performance of the proposed loop and FPLL in pedestrian-level dynamic
circumstances is shown in Figure 9. The tracking probability is the ratio of successful tracking
to Monte Carlo simulations. A successful tracking means that 1-sigma frequency error is less than
5 Hz and the maximum frequency error is less than 20 Hz during 10 s. The sensitivity is defined as the
C/N0 where the tracking probability reaches 50%.

It can be seen from Figure 9a that the sensitivity of the ML-KF and ML loop is approximately
19.5 dB-Hz, which is 3 dB-Hz lower than FPLL (22.5 dB-Hz). Therefore, the proposed MLE-based
loops have lower C/N0 tracking threshold than the conventional FPLL. The frequency errors are
shown in Figure 9b. The ML-KF loop shows the highest accuracy when C/N0 is below 32 dB-Hz.
In contrast, the accuracy of the ML loop is much lower due to the lack of filtering. FPLL shows high
accuracy when the C/N0 is above 30 dB-Hz. However, its performance decreases rapidly with C/N0

decreases. Figure 9c shows the bit error rate. It can be seen that the ML-KF loop has an approximately
8% error rate reduction compared with conventional FPLL. In summary, the ML-KF loop shows the
optimal performance in sensitivity, precision and bit error rate in the weak signal and pedestrian-level
dynamic circumstance.
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Figure 9. Performance comparison in pedestrian-level dynamic circumstances. (a) Tracking probability;
(b) Frequency error; (c) Bit error rate. FPLL: two-order FLL-assisted three-order PLL.

Figure 10 is similar to Figure 9 and shows the tracking performance comparison in the weak
signal and vehicle-level dynamic circumstance. It can be seen from Figure 10a that the sensitivity of
the ML-KF and ML loop reduces by 2.5 dB and 1 dB, respectively. The ML loop reaches to the lowest
C/N0 tracking threshold. In contrast, the sensitivity of the conventional FPLL seems almost unchanged
because two-order FLL can provide dynamic assistant for PLL. The frequency errors and bit error rate
of all the three loops have a growing trend compared with Figure 9. However, the ML-KF loop still
can provide the highest tracking accuracy and the lowest bit error rate. Therefore, the ML-KF loop still
has better performance than the conventional FPLL in terms of sensitivity, accuracy and bit error rate.

In summary, the proposed ML-KF loop can reach the better performance than the conventional
FPLL in terms of sensitivity, accuracy and bit error rate in weak signal and low dynamic circumstances.
It is suitable for some land applications such as indoor pedestrian navigation and vehicle navigation.
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Figure 10. Performance comparison in vehicle-level dynamic circumstances. (a) Tracking probability;
(b) Frequency error; (c) Bit error rate.

5.4. Optimal Loop Design

As analyzed above, the ML-KF loop seems to have no advantage over the FPLL when the C/N0 is
above 30 dB-Hz. To reduce the computation burden and achieve the optimal performance, a switchable
loop is designed to switch between the ML-KF loop and FPLL. When the C/N0 is above 30 dB-Hz,
the loop works in FPLL. When the C/N0 is below 30 dB-Hz, the loop switches to the ML-KF loop.
The C/N0 of FPLL is estimated by a conventional power ratio method (PRM) [20].

Figure 11 shows the performance comparison between the optimal loop and FPLL. The C/N0 of
ML-KF loop is calculated by (8) and (29) and outputs at a rate of 50 Hz. To improve the estimation
accuracy, estimation values are averaged in groups of 20. Therefore, the actual output rate of C/N0

is 2.5 Hz. The receiver moves at the vehicle-level velocity. The initial C/N0 is 45 dB-Hz. It drops to
22.5 dB-Hz form 10 s to 20 s. Then, it rises to 45 dB-Hz again from 30 s to 40 s. The frequency errors of
the optimal loop and single FPLL are compared. It can be seen from Figure 11 that the FPLL outputs
big errors when C/N0 is low. However, the optimal loop switches to ML-KF loop at 16.2 s and switches
to FPLL at 33.2 s. Therefore, it can maintain high accuracy during the whole process. It can be seen
from the estimated C/N0 curve that the proposed C/N0 estimation method is also effective.
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Figure 11. Performance comparison between the optimal loop and FPLL. 

6. Conclusions 

A low-complexity MLE-based carrier tracking loop is presented in this paper. It is designed to 
work in some low dynamic and weak signal circumstances such as indoor pedestrian and urban 
vehicle navigation. Compared with the conventional MLE-based methods, this method is operated 
based on the coherent integration results instead of the sampling data, which reduces the 
computation burden significantly. The MLE discriminator is designed and its performance is 
improved by an adaptive KF. Compared with the conventional two-order FLL assisted three-order 
PLL, its sensitivity has an improvement of 3 dB and 1 dB in pedestrian-level and vehicle-level 
dynamic circumstances, respectively. It also shows higher accuracy and lower bit error rate than the 
conventional loop. It is suitable for indoor pedestrian and urban vehicle navigation. 
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6. Conclusions

A low-complexity MLE-based carrier tracking loop is presented in this paper. It is designed
to work in some low dynamic and weak signal circumstances such as indoor pedestrian and urban
vehicle navigation. Compared with the conventional MLE-based methods, this method is operated
based on the coherent integration results instead of the sampling data, which reduces the computation
burden significantly. The MLE discriminator is designed and its performance is improved by an
adaptive KF. Compared with the conventional two-order FLL assisted three-order PLL, its sensitivity
has an improvement of 3 dB and 1 dB in pedestrian-level and vehicle-level dynamic circumstances,
respectively. It also shows higher accuracy and lower bit error rate than the conventional loop. It is
suitable for indoor pedestrian and urban vehicle navigation.
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