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Abstract: For improving the tracking accuracy and model switching speed of maneuvering target
tracking in nonlinear systems, a new algorithm named the interacting multiple model fifth-degree
spherical simplex-radial cubature Kalman filter (IMM5thSSRCKF) is proposed in this paper. The new
algorithm is a combination of the interacting multiple model (IMM) filter and the fifth-degree
spherical simplex-radial cubature Kalman filter (5thSSRCKF). The proposed algorithm makes use
of Markov process to describe the switching probability among the models, and uses 5thSSRCKF
to deal with the state estimation of each model. The 5thSSRCKF is an improved filter algorithm,
which utilizes the fifth-degree spherical simplex-radial rule to improve the filtering accuracy. Finally,
the tracking performance of the IMM5thSSRCKF is evaluated by simulation in a typical maneuvering
target tracking scenario. Simulation results show that the proposed algorithm has better tracking
performance and quicker model switching speed when disposing maneuver models compared with
the interacting multiple model unscented Kalman filter (IMMUKF), the interacting multiple model
cubature Kalman filter (IMMCKF) and the interacting multiple model fifth-degree cubature Kalman
filter (IMM5thCKF).

Keywords: maneuvering target tracking; interacting multiple model; fifth-degree spherical simplex-radial
rule; Markov process

1. Introduction

Maneuvering target tracking has been widely used in many applications, such as aircraft
surveillance [1,2], road vehicle navigation [3,4] and radar tracking [5–7]. Because of the complexity of
maneuvering target motion, the single model structure is not appropriate for tracking maneuvering
targets. Therefore, the multiple-model structure is adopted. A number of multiple-model techniques
have been proposed, such as multiple model (MM) methods [8], optimization of the multiple model
neural filter [9], the interacting multiple model (IMM) algorithm [10,11], and other algorithms [12,13].
In these multiple model algorithms, the IMM algorithm proposed by Blom and Bar-Shalom [10,11] is
the most popular algorithm. In the IMM algorithm, the target model is selected among a set of models
via the control of a Markov chain and the final estimate is obtained by a weighted sum of the estimates
from the sub-filters of different models. The conventional IMM algorithm combines multiple models
with a linear filter to estimate the target motion state. Because of its excellent compromise between
complexity and perfor, the IMM [8,14] algorithm has been widely used in the field of maneuvering
target tracking [14–16]. However, in the conventional IMM algorithm, the Kalman filter only obtains
high precision for linear Gaussian systems. However, most modern systems are nonlinear and the
linear IMM algorithm cannot directly deal with nonlinear systems. Thus, the research of nonlinear IMM
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is paid more attention and is a popular topic in maneuvering target tracking field. It is different from
linear IMM theory based on the linear Kalman filter; the performance of nonlinear IMM algorithms
depends on the selected nonlinear filters.

Nowadays, the study of nonlinear filter algorithms has been paid a great deal of attention by
researchers. It is well known that the extended Kalman filter (EKF) [17] is widely used among the
proposed nonlinear filtering algorithms. The basic idea of the EKF is to linearize the measurements
and state models by first-order Taylor series expansion. However, it is difficult to get the Jacobian
matrix of nonlinear function in many practical problems. As a result, the performance of the EKF
may degrade rapidly. To solve this problem, scholars have proposed derivative-free alternatives
such as the unscented Kalman filter (UKF) [18,19], the central difference Kalman filter (CDKF) [20]
and the Gauss-Hermite Kalman filter (GHKF) [21], etc. These algorithms mentioned above use
a set of deterministic sampling points and weights to approximate the Gaussian integrals, which
are more accurate than the EKF. However, the search for more accurate filtering algorithms is
continuing. In recent years, the cubature Kalman filter (CKF) [22,23] has been of increasing interest
for high-dimensional state estimation. This filtering algorithm approximates the weighted Gaussian
integrals according to the Bayesian theory and the third-degree spherical-radial cubature rule.

To further improve the estimation accuracy of CKF, the fifth-degree CKF (5thCKF) is proposed
in [24]. However, the computational cost of the 5thCKF increases rapidly with the increasing of the
state dimension. Recently, Wang et al. [25] have proposed a new class of CKF algorithms based
on the spherical simplex-radial (SSR) rule, which can improve accuracy of the CKF with lower
computational costs in high dimensional nonlinear system. Specially, the fifth-degree spherical
simplex-radial cubature Kalman filter (5thSSRCKF) proposed in [25] has a higher estimation accuracy
than 5thCKF. Therefore, we choose the 5thSSRCKF as the filtering algorithm in the IMM framework,
and propose the interacting multiple model fifth-degree spherical simplex-radial cubature Kalman
filter (IMM5thSSRCKF) algorithm for maneuvering target tracking of nonlinear system. Simulation
results show that the IMM5thSSRCKF exhibits better performance than the interacting multiple model
unscented Kalman filter (IMMUKF), the interacting multiple model cubature Kalman filter (IMMCKF)
and the interacting multiple model fifth-degree cubature Kalman filter (IMM5thCKF) [26] in terms of
accuracy and switching response.

The remainder of this paper is organized as follows. The fifth-degree spherical simplex-radial
cubature Kalman filter is briefly reviewed in Section 2. The whole procession of IMM5thSSRCKF
used in target tracking problem is developed in Section 3. Simulation results of a maneuvering
tracking problem and performance comparisons are presented and discussed in Section 4. Finally,
the conclusions are provided in Section 5.

2. Fifth-Degree Simplex-Spherical Cubature Kalman Filter

The nonlinear filtering problem with additive process and measurement noise can be defined as:{
xk = f (xk−1) + wk−1
zk = h(xk) + vk

(1)

where k is a discrete time index, xk ∈ Rn is the state vector at time k, zk ∈ Rm is the measurement vector
at time k; f(·) and h(·) are the system dynamics function and the measurement function; wk−1 ∈ Rn is
the process noise; and vk ∈ Rm is the measurement noise. wk−1 and vk are assumed to be uncorrelated
zero-mean Gaussian white noise with covariance matrix Qk−1 and Rk, respectively. The initial state x0

is assumed to be x̂0 with covariance matrix P0 and is independent of wk−1 and vk.

2.1. Review of the Fifth-Degree Spherical Simplex-Radial Cubature Rule

The 5thSSRCKF algorithm has the same structure as the general Gaussian approximation filters,
such as the CKF, but uses the fifth-degree spherical simplex-radial cubature rule to calculate the
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Gaussian weight integral I(f ) =
r

Rn f (x)N(x; 0, I)dx. By using the spherical simplex-radial cubature
rule, the 5thSSRCKF method can get more accurate estimation than CKF. In the fifth-degree spherical
simplex-radial cubature rule, the following integral is considered [24]:

I(f ) =
w

Rn

f (x) exp(−xTx)dx (2)

where f (·) is arbitrary nonlinear function, and Rn is the integral domain. To calculate the above
integral, let x = rs (sTs = 1, r =

√
xTx). Equation (2) can be transformed into the spherical-radial

coordinate system:

I(f ) =
∞w

0

w

Un

f (rs) rn−1 exp(−r2)dσ(s)dr (3)

where s = [s1, s2, · · · , sn]
T, Un =

{
s ∈ Rn : s2

1 + s2
2 + · · ·+ s2

n = 1
}

is the n-dimensional spherical
surface, and σ(·) is the area element on Un; n denotes the dimension of spherical surface. Then, the
integral (3) can be decomposed into the spherical integral S(r) =

r
Un

f (rs)dσ(s) and the radial integral
I( f ) =

r ∞
0 S(r)rn−1 exp(−r2)dr.

2.1.1. Spherical Simplex Rule

As can be seen from [27], the spherical integral
r

Un
f (rs)dσ(s) can be approximated by the

transformation group of the regular n-simplex. The fifth-degree spherical simplex rule with n2 + 3n+ 2
quadrature points is given by:

S5(r) =
(7−n)n2 An

2(n+1)2(n+2)2

n+1
∑

j=1

[
g(raj) + g(−raj)

]
+ 2(n−1)2 An

2(n+1)2(n+2)2

n(n+1)/2
∑

j=1

[
g(rbj) + g(−rbj)

]
(4)

where the surface area of the unit sphere is An = 2
√

πn/Γn(1/2). The points sets of aj and bj are given
by:

aj = [aj,1, aj,1, · · · , aj,n]
T (5)

{bj} =
{√

n
2(n− 1)

(ai + al) : i < l; i, l = 1, 2, · · · , n + 1
}

(6)

where the vector elements of aj is defined as:

aj,m =


−
√

n+1
n(n−m+2)(n−m+1) , m < j√

(n+1)(n−j+1)
n(n−j+2) , m = j, 1 ≤ m ≤ n, 1 ≤ j ≤ n + 1

0, m > j,

(7)

2.1.2. Radial Rule

The radial integral R =
r ∞

0 S(r)rn−1 exp(−r2)dr can be calculated by the following moment
matching equation:

∞w

0

S(r)rn−1 exp(−r2)dr =
Nr

∑
i=1

ωr,iS(ri) (8)

where S(r) = rl is a monomial in r, with l an even integer. The left-hand side of Equation (8) is
simplified as 1

2 Γ
(

n+l
2

)
with Γ(n) =

r ∞
0 xn−1e−xdx. In order to achieve the fifth-degree algebraic

precision, we make the radial integral R is exact for l = 0, 2, 4. For the fifth-degree radial rule (Nr = 2),
we can obtain the moments’ equations as:
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ωr,1r0

1 + ωr,2r0
2 = 1

2 Γ
( n

2
)

ωr,1r2
1 + ωr,2r0

2 = 1
2 Γ
( n+2

2
)
= n

4 Γ
( n

2
)

ωr,1r4
1 + ωr,2r4

2 = 1
2 Γ
(

n+4
2

)
= 1

2
( n

2 + 1
)( n

2
)
Γ
( n

2
) (9)

By solving Equation (9), the points and weights for the third-degree radial rule are given by:{
r1 = 0, r1 =

√
n/2 + 1

ωr,1 = 1
n+2 Γ(n/2), ωr,2 = nΓ(n/2)

2(n+2)
(10)

2.1.3. Fifth-Degree Spherical Simplex-Radial Rule

By using Equations (3), (4) and (10), the fifth-degree spherical simplex-cubature rule can be
formulated as:

r
Rn g(x)N(x; x̂, Px)dx = 2

n+2 g(x̂)+{
(7−n)n2

2(n+1)2(n+2)2

n+1
∑

i=1

[
g(
√
(n + 2)Pxai + x̂) + g(−

√
(n + 2)Pxai + x̂)

]
+

2(n−1)2

2(n+1)2(n+2)2

n(n+1)/2
∑

i=1

[
g(
√
(n + 2)Pxbi + x̂) + g(−

√
(n + 2)Pxbi + x̂)

]} (11)

The steps of 5thSSRCKF algorithm for the nonlinear system can be found in [22,25].

3. IMM5thSSRCKF Algorithm

The IMM algorithm obtains the output state estimate as a weighted sum of the estimates from
a number of filters. In the application of IMM algorithm, the filtering precision depends on the
selected sub-filter. Considering that 5thSSRCKF has high estimation precision, 5thSSRCKF is selected
as sub-filter in the filtering part of the IMM framework. Therefore, the proposed IMM5thSSRCKF
algorithm is the combination of IMM algorithm and 5thSSRCKF algorithm. In the IMM5thSSRCKF
algorithm, the state estimation at time k is computed under each possible current model using r
filters, with each filter using a different combination of the previous model-conditioned estimates.
The structure diagram of IMM5thSSRCKF is shown in Figure 1.Sensors 2017, 17, 1374  5 of 13 
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Figure 1. Structure of interacting multiple model fifth-degree spherical simplex-radial cubature 
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where r denotes the number of interacting models, and |ˆ i
k k− −x 1 1  and |

i
k k− −P 1 1  are the prior state 

estimate and corresponding state error covariance of model i  in the previous step, respectively. 
The mixing probability |

|
i j
k kμ − −1 1  at time k −1  can be given by: 

| ,
i

ij ki j
k

j

r
i

j ij k
i

p
C

C p

μ
μ

μ

−
−

−
=

=

=

1
1

1
1  

(13) 

where ,, ,j ri = 1 , i
kμ −1  represents the model probability of the mode i at time k−1, and ijp  is the 

probability of a transition from model i to model j . 

Step 2. Model Conditional Filtering 

Using the initial mixing state |
j

k k− −x0
1 1  and the covariance |

j
k k− −P0

1 1  of the interacting step as the 

input of each filter at time k −1 . Then, the new state |
ˆ j

k kx  of model j and covariance |
j

k kP  of model 
j  can be updated by Equations (14)–(20). 

Figure 1. Structure of interacting multiple model fifth-degree spherical simplex-radial cubature Kalman
filter (IMM5thSSRCKF).
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In the IMM5thSSRCKF algorithm, the 5thSSRCKF employs the fifth-degree spherical simplex-radial
cubature rule to generate the cubature points, which can further estimate the mean and covariance of
the system state. The IMM5thSSRCKF algorithm includes four fundamental steps: model interaction,
model conditional filtering, model probability updating, and output integration. The detailed steps of
the IMM5thSSRCKF algorithm are provided as follows.

Step 1. Model Interaction

The initial condition for each model j can be obtained from the state estimate x̂j
k−1|k−1 and

covariance Pj
k−1|k−1 at time k − 1. The mixed initial state of model j at time k − 1 x̂0j

k−1|k−1 and its

corresponding covariance P0j
k−1|k−1 are computed according to:

x̂0j
k−1|k−1 =

r
∑

i=0
µ

i|j
k−1|k−1 x̂i

k−1|k−1

P0j
k−1|k−1 =

r
∑

i=0
µ

i|j
k−1|k−1{P

i
k−1|k−1 +

[
x̂i

k−1|k−1 − x̂0j
k−1|k−1

][
x̂i

k−1|k−1 − x̂0j
k−1|k−1

]T
}

(12)

where r denotes the number of interacting models, and x̂i
k−1|k−1 and Pi

k−1|k−1 are the prior state
estimate and corresponding state error covariance of model i in the previous step, respectively.

The mixing probability µ
i|j
k−1|k−1 at time k− 1 can be given by:

µ
i|j
k−1 =

pijµ
i
k−1

Cj
,

Cj =
r
∑

i=1
pijµ

i
k−1

(13)

where i, j = 1, · · · , r, µi
k−1 represents the model probability of the mode i at time k−1, and pij is the

probability of a transition from model i to model j.

Step 2. Model Conditional Filtering

Using the initial mixing state x0j
k−1|k−1 and the covariance P0j

k−1|k−1 of the interacting step as the

input of each filter at time k− 1. Then, the new state x̂j
k|k of model j and covariance Pj

k|k of model j can
be updated by Equations (14)–(20).

A. Time Update

The evaluation of cubature points in the mechanism of state one-step prediction and the
propagated cubature points in the mechanism of state one-step prediction can be obtained by the
following equations:

X j
i,k|k−1 = S0j

k−1|k−1ξ
j
i + x0j

k−1|k−1

X∗j
i,k|k−1 = f (X j

i,k|k−1)
(14)

where S0j
k−1|k−1 is the square root factor of P0j

k−1|k−1, and P0j
k−1|k−1 is the estimated error covariance of

model j at time k− 1. {ξ j
i} is the matrix with a set of vector, and the corresponding weight matrix is

{ω j
i}. The fifth-degree simplex cubature points and the corresponding weights are as follows:

ξ
j
i =



[0, 0, · · · , 0]T i = 1,√
n + 2ai−1 i = 2, · · · , n + 2,
−
√

n + 2ai−n−2 i = n + 3, · · · , 2n + 3,√
n + 2bi−2n−3 i = 2n + 4, · · · , (n2 + 5n + 6)/2,
−
√

n + 2bi−(n2+5n+6)/2 i = (n2 + 5n + 8)/2, · · · , n2 + 3n + 3.

(15)
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ω
j
i =


2

n+2 i = 1,
(7−n)n2

2(n+1)2(n+2)2 i = 2, · · · , 2n + 3,

2(n−1)2

n(n+1)2(n+2)2 i = 2n + 4, · · · , n2 + 3n + 3.

(16)

where n represents the dimension of state vector; the point sets of ai and bi are given by (5) and (6).
The predicted state xj

k|k−1 and predicted error covariance Pj
k|k−1 can be computed using the

cubature transformation as:

xj
k|k−1 =

L
∑

i=1
ωiX

∗j
i,k|k−1

Pj
k|k−1 =

L
∑

i=1
ωi(X∗j

i,k|k−1 − xj
k|k−1)(X∗j

i,k|k−1 − xj
k|k−1)

T
+ Qk−1

(17)

where the number of points L is n2 + 3n + 3, and Qk−1 denotes the system noise covariance matrix.

B. Measurement Update

The cubature points used for the measurement update and the propagated cubature points are
derived as:

χ
j
i,k|k−1 = Sj

k|k−1ξ
j
i + xj

k|k−1

Z j
i,k|k−1 = h(χj

i,k|k−1)
(18)

where Sj
k|k−1 can be obtained by factorizing the predicted error covariance Pj

k|k−1.

The prediction value of the measurement vector zj
k|k−1, the innovation covariance matrix Pj

zz,k|k−1,

and the cross covariance matrix Pj
xz,k|k−1 are given as follows:

zj
k|k−1 =

L
∑

i=1
ωiZ

j
i,k|k−1

Pj
zz,k|k−1 =

L
∑

i=1
ωi(Z j

i,k|k−1 − zj
k|k−1)(Z j

i,k|k−1 − zj
k|k−1)

T
+ R

Pj
xz,k|k−1 =

L
∑

i=1
ωi(χ

j
i,k|k−1 − xj

k|k−1)(Z j
i,k|k−1 − zj

k|k−1)
T

(19)

Finally, the estimated state x̂j
k|k of model j and the estimated error covariance Pj

k|k of model j can
be derived as follows:

Kj
k = Pj

xz,k|k−1 · inv(Pj
zz,k|k−1)

x̂j
k|k = xj

k|k−1 + Kj
k(zk − zj

k|k−1)

Pj
k|k = Pj

k|k−1 −Kj
kPj

zz,k|k−1(K
j
k)

T
(20)

Step 3. Updating the Mode Probability at Time k

A. Computing the likelihood function at time k

With the use of the latest measurement zk, the likelihood function value of model j at time k is
given by:

Lj
k = N(zk; zj

k|k−1, vj
k) =

∣∣∣2πS(j)
k

∣∣∣−nz/2
exp

{
−1

2
[zk − zj

k|k−1]
T
(S(j)

k )
−1

[zk − zj
k|k−1]

}
(21)

where vj
k = zk − zj

k|k−1 denotes the filter residual and S(j)
k denotes the innovation covariance and nz

denotes the dimension of measurement vector.
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B. Updating the mode probability at time k

The mode probability µ
j
k|k at time k is computed by the following equation:

µ
j
k|k =

Lj
kCj

C
, C =

r

∑
i=1

Lj
kCi (22)

Step 4. Output Integration

Finally, the state estimate x̂k|k and corresponding covariance Pk|k are obtained by the model-conditional
estimates and covariances of different models:

x̂k|k =
r

∑
j=1

µ
j
k|k x̂j

k|k (23)

Pk|k =
r

∑
j=1

µ
j
k|k

{
Pj

k|k +
[
x̂j

k|k − x̂k|k

][
x̂j

k|k − x̂k|k

]T
}

(24)

4. Simulation and Results

To validate the performance of the proposed algorithm, a highly maneuvering target example
has been considered. The proposed algorithm will be compared with the IMMCKF, IMMUKF, and
IMM5thCKF algorithm.

4.1. Tracking Model and Measurement Model

Let the state vector at time k be xk = [xk,
.
xk, yk,

.
yk]

T, which includes the position (m) and velocity
component (m/s) in the x-axis and y-axis. For tracking of the maneuvering target, three models are
employed: the constant velocity (CV) model, left constant turn (LCT) model and right constant turn
(RCT) model. For constant velocity model, the equation of state is described as:

xk = FCVxk−1 + wCV, (25)

FCV =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 (26)

where wCV is the white Gaussian process noise with zero mean and nonsingular covariance QCV.

QCV =


T3/3 T2/2 0 0
T2/2 T 0 0

0 0 T3/3 T2/2
0 0 T2/2 T

qCV (27)

where the scalar parameter qCV is the spectral density and set to 1. The constant turn (CT) model is
defined as:

xk = FCTxk−1 + wCT, (28)

FCT =


1 sin ωT

ω 0 −
(

1−cos ωT
ω

)
0 cos ωT 0 − sin ωT
0 1−cos ωT

ω 1 sin ωT
ω

0 sin ωT 0 cos ωT

 (29)
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where wCT is the white Gaussian process noise with zero mean and nonsingular covariance QCT.

QCT =


T3/3 T2/2 0 0
T2/2 T 0 0

0 0 T3/3 T2/2
0 0 T2/2 T

qCT (30)

where the scalar parameter qCT is set to 1, T is the sampling interval, w stands for the turn rate which
is supposed to be known, the right turn rate is defined as −3◦, and the left turn rate is defined as 3◦.

In the experiment, the radar is located at the origin of the plan and equipped to measure range
and bearing. Then, the measurement equation can be written as:

zk =

(
rk
θk

)
=

( √
x2

k + y2
k

tan−1(yk/xk)

)
+ vk (31)

where rk is the range value at time k, θk is the bearing value at time k, tan−1(·) is the inverse
tangent function, and vk is the white Gaussian measurement noise with zero mean and covariance
Rk = diag([σ2

r , σ2
θ ]). σr and σθ denote the standard deviation of range measurement noise and bearing

angle measurement noise, respectively.

4.2. Simulation of the IMM5thSSRCKF

The simulation scene is designed as follows. The sampling interval is T = 1 s and repeats 100 times.
The target moves in different state for five periods. The initial position is (15,000 m, 1000 m) and the
target starts at 1 s with the velocity (−180 m/s, 200 m/s). From 1 s to 20 s it has motion at constant
velocity; from 21 s to 70 s it turns right with ω = −3◦; from 71 s to 120 s it has motion at a constant
velocity; from 121 s to 170 s it maneuvers and turns left with ω = 3◦; and from 171 s to 200 s it has
motion at constant velocity.

The initial estimates x̂0 are generated from the Gaussian distribution N(x̂0; x0, P0) in which the
true initial is x0 = [15,000, −180, 100, 200]T. The standard deviation of range measurement noise σr is
40 m and the standard deviation of bearing angle measurement noise σθ is 7 mrad. The initial model
probability is µ = [0.8 0.1 0.1] and the transition probability is given as:

pij =

 0.95 0.025 0.025
0.025 0.95 0.025
0.025 0.025 0.95

 (32)

The root mean square error (RMSE) of the target position at time k and the accumulative RMSE
(ARMSE) of estimated position at all times are defined in Equations (33) and (34):

RMSEpos(k) =

√√√√ 1
M

M

∑
m=1

((xk − x̂m,k)
2 + (yk − ŷm,k)

2) (33)

ARMSEpos =

√√√√ 1
N

N

∑
k=1

(RMSE2
pos(k)) (34)

where M is the number of Monte Carlo runs, N is the total number of sampling points, (xk, yk) is the
actual value of the target position at time k and (x̂m,k, ŷm,k) is the estimated position at time k in mth
Monte-Carlo. The RMSE and the accumulative RMSE in the velocity and acceleration can be defined
in the same way. The performance comparison of the four algorithms are tested 200 times in Monte
Carlo simulations.
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Figure 2 gives the target trajectory and the state estimation generated from a single run of
IMMUKF, IMMCKF, IMM5thCKF and IMM5thSSRCKF. As seen from Figure 2, these four algorithms
can track the trajectory of the target.
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Figure 2. Trajectory of the maneuvering target. IMMUKF: interacting multiple model unscented
Kalman filter; IMMCKF: interacting multiple model cubature Kalman filter; IMM5thCKF: interacting
multiple model fifth-degree cubature Kalman filter; IMM5thSSRCKF: interacting multiple .model
fifth-degree spherical simplex-radial cubature Kalman filter

The RMSEs in position and velocity of the four algorithms are shown in Figures 3 and 4,
respectively. It can be seen that the proposed IMM5thSSRCKF performs better than the IMMUKF,
IMMCKF and IMM5thCKF algorithms when the target moves with CV. The tracking error of target
position of the three IMM algorithms would be almost the same when the target moves at constant
velocity. The estimation effectiveness of the IMM5thSSRCKF estimator for tracking a maneuvering
target outperform greatly than the other two IMM estimators.
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Figure 4. RMSE in velocity versus time step.

To further evaluate the performance of the four algorithms, the ARMSEs of position and velocity
of each algorithm are listed in Table 1. It can be seen from the Table 1 that IMM5thSSRCKF does
better in tracking precision than IMMUKF, IMMCKF and IMM5thCKF, while all of them exhibit no
error divergence.

Table 1. Comparisons of accumulative RMSE (ARMSE) among the four algorithms.

Filters Position ARMSE/m Velocity ARMSE/(m/s)

IMMUKF 74.3 23.4
IMMCKF 72.4 22.5

IMM5thCKF 68.1 20.9
IMM5thSSRCKF 66.2 19.3

The comparisons of CV mode probability of IMMUKF, IMMCKF, IMM5thCKF and
IMM5thSSRCKF are shown in Figure 5. The mode transitions occur at t = 21 s, t = 71 s, t = 121 s
and t = 171 s, respectively. This figure shows that the IMMUKF, IMMCKF, IMM5thCKF and
IMM5thSSRCKF can capture the kinematics of maneuvering when the motion state changes. It can be
seen that the mode probabilities of the IMMUKF algorithm are not good at detecting mode transitions.
The proposed algorithm and IMM5thCKF algorithm are equally faster at detecting model changes
compared with the IMMUKF algorithm and the IMMCKF algorithm.

All the algorithms are implemented on the Intel CoreTM i5-4430 3.0GHZ CPU with 4.00 G RAM.
Table 2 shows the number of points and computational time of IMMUKF, IMMCKF, IMM5thCKF and
IMM5thSSRCKF for each run. The points of IMMCKF as well as IMMUKF differ only by one point.
As shown in Table 2, the computational time of the algorithms is approximately proportional to the
number of points. It is obvious that the IMM5thSSRCKF algorithm has a slightly lower computational
cost than the IMM5thCKF due to the different cubature rule. Although the computation complexity
of IMM5thSSRCKF algorithm is larger than IMMUKF and IMMCKF, it can be remedied by more
high-speed computer technology.
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Table 2. Number of points and computational time of different algorithms.

Filters Number of Points (n = 4) Computational Time (s)

IMMUKF 9 0.289
IMMCKF 8 0.279

IMM5thCKF 33 0.604
IMM5thSSRCKF 31 0.581

5. Conclusions

Maneuvering target tracking is the research hot spot in the target tracking field; this paper has
presented a new maneuvering target tracking algorithm named IMM5thSSRCKF. The 5thSSRCKF
algorithm is an efficient method to deal with the problem of nonlinear system estimation. The proposed
algorithm introduces the 5thSSRCKF algorithm into the IMM framework, which can dispose of all the
models simultaneously through Markov Chain. The performance of the proposed method is evaluated
by simulations and compared with IMMUKF, IMMCKF and IMM5thCKF. Simulation results illustrate
that the IMM5thSSRCKF algorithm has higher tracking accuracy and a quicker sensitivity response
than IMMUKF, IMMCKF and IMM5thCKF algorithms.
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