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Abstract: Bus Rapid Transit (BRT) has become an increasing source of concern for public
transportation of modern cities. Traditional contact sensing techniques during the process of health
monitoring of BRT viaducts cannot overcome the deficiency that the normal free-flow of traffic would
be blocked. Advances in computer vision technology provide a new line of thought for solving
this problem. In this study, a high-speed target-free vision-based sensor is proposed to measure
the vibration of structures without interrupting traffic. An improved keypoints matching algorithm
based on consensus-based matching and tracking (CMT) object tracking algorithm is adopted and
further developed together with oriented brief (ORB) keypoints detection algorithm for practicable
and effective tracking of objects. Moreover, by synthesizing the existing scaling factor calculation
methods, more rational approaches to reducing errors are implemented. The performance of the
vision-based sensor is evaluated through a series of laboratory tests. Experimental tests with different
target types, frequencies, amplitudes and motion patterns are conducted. The performance of the
method is satisfactory, which indicates that the vision sensor can extract accurate structure vibration
signals by tracking either artificial or natural targets. Field tests further demonstrate that the vision
sensor is both practicable and reliable.

Keywords: vision-based sensor; vibration measurement; structural health monitoring; keypoint
matching; CMT; BRT viaducts

1. Introduction

Civil engineering structures are the main bodies that resist loads. During their operational life,
civil engineering structures are exposed to various external loads, such as traffic, wind gusts, and
seismic loads. These external loads are the main reason for the degradation of the structures. Health
monitoring on major civil engineering structures has become an important research topic. At present,
structural health monitoring (SHM) is carried out through the installation of contact sensors and their
corresponding data acquisition systems. Such an approach, however, has many limitations such as
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installation difficulty, and being time-consuming, and high cost. Specifically, installation of these
contact sensors often interrupts the normal operation of the structure. Therefore, it is necessary to
develop a more effective and practical SHM method. The first bus rapid transit (BRT) line was built in
Curitiba (Brazil) in 1974. After that, the new transportation method spread rapidly all over the world
and has now become an indispensable part of urban traffic. As one of the main modes of transportation
in big cities, such as Chengdu (China), the BRT viaduct use cannot be interrupted in view of the heavy
traffic and security. In this case, traditional sensing systems are not easily implemented.

At present, structural vibration response can be applied to the operational state analysis [1–3]
of existing bridges. Furthermore, damage identification [4–6] and life prediction calculations [7,8]
can also be carried out. Such a method has become an active research field owing to its excellent
performance and the fact that it requires very few parameters. Therefore, it is of great significance
to measure the vibrations precisely, rapidly, and economically. Currently available sensors for
measuring structural vibrations can be classified into contact and non-contact sensors. Contact sensors,
such as accelerometers [9,10], linear variable differential transformers (LVDT) [11], and strain-type
displacement sensors (STDS) [12] are widely used in monitoring systems to obtain valuable structure
vibration information. Non-contact sensors such as global position system (GPS) [13], laser Doppler
vibrometers [14], and radar interferometry system [15] are less used because they are expensive,
complex, and not very accurate [16–18].

Vision-based vibration measurement systems are burgeoning. They are gradually replacing
conventional vibration measurement sensors owing to their relatively low cost as well as flexible and
convenient installation, especially for target-free vision-based sensor approaches. Various techniques
have been implemented for moving object tracking and displacement measurement, such as template
matching [19,20], optical flow field [21,22], frame differential method [23], and digital image correlation
method (DICM) [24,25]. The optical flow is greatly affected by different light intensities, making it not
very applicable to the field. The frame differential method is only used to determine whether an object
is moving in an area or not and cannot extract the full image of the moving objects. The digital image
cross-correlation is a measurement method for the analysis of the entire field displacement and strain,
however, it cannot measure local vibrations.

The most frequently used method is template matching, which can be categorized into three
types based on its template styles, namely, global template matching, local template matching and
keypoint matching. The first two matching methods have good precision, however their efficiency is
low because of their high consumption of time and random-access memory (RAM). The keypoints
matching method can overcome this deficiency, and thus, this method has been widely studied.
A variety of keypoints have been detected and descriptor algorithms have been proposed, such as
scale-invariant feature transform (SIFT) [26], speeded-up robust features (SURF) [27], features from
accelerated segment test (FAST) [28,29], adaptive and generic accelerated segment test (AGAST) [30],
binary robust invariant scalable keypoints (BRISK) [31] and ORB [32]. Among these algorithms,
the ORB algorithm is very popular for the reason that it has the best efficiency and rotational invariance
and its scale invariance is retained. It consists of two components—oFAST and rBRIEF—which have
improved performance compared to the FAST keypoint detector and Binary Robust Independent
Elementary Features(BRIEF) [33] descriptors. The ORB algorithm is nearly two orders of magnitude
faster than the SIFT one [34], and one order faster than the SURF one [33]. Thus, a number of object
tracking algorithms have been proposed, such as tracking learning detection (TLD) [35], visual tracking
decomposition (VTD) [36], incremental visual tracking (IVT) [37], multi-task tracking (MTT) [38], visual
tracker sampler (VTS) [39], and CMT [40,41]. The CMT algorithm was proposed by Nebehay et al.
in 2014. It employs a novel consensus-based scheme for outlier detection in the voting behavior to
eliminate erroneous keypoints. In this method, the number of keypoints has been reduced, while the
process becomes more efficient.

Although computer vision measurement technology is still in its infancy, some achievements
have been recorded and it has great prospects for the future. In this study, we propose a novel
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vision-based sensor for BRT viaduct vibration measurement employing CMT combined with ORB
algorithm. In practical application, the primary concern for vision-based sensor is the measurement
efficiency which mainly refers to the accuracy and operating speed. To improve the accuracy of object
orientation, keypoint matching technology was employed to seek the latent object point, meanwhile
voting and consensus were applied for removing the outliers. A more efficient combination pair of
detector and descriptor was further tested to improve the execution speed of the algorithm based on
the aforementioned technology. In general, the proposed vision sensor has the following properties:
(1) easy to install and set up, without pre-installed artificial targets; (2) the measurement efficiency of
algorithm is higher than that of existing algorithms, which means that the sensor is well adapted to
high-speed monitoring systems; (3) precision is kept at a good level.

This study aims at solving vibration sensing and measuring problems through the vision sensor
method. To address these challenges, three key steps were employed, namely, preprocessing, object
tracking, and vibration analysis. Homomorphic filtering was introduced for preprocessing, tracking of
objects was realized using an improved CMT object recognition and tracking algorithm, resulting in an
improved method for calculation of scaling factors and a more accurate vibration analysis. A series of
laboratory tests were conducted to evaluate the reliability of this method. Furthermore, the vibration
measurement of a BRT viaduct in Chengdu (China) was selected as a case study to illustrate the specific
process of the vision sensor method. Finally, field test results were used to validate this method.

2. Proposed Vision Sensing Approach

In this study, the basic principle of the vision-based sensor for vibration displacement
measurement is the keypoints matching technology. The proposed methodology mainly includes three
steps: preprocessing of captured video, free-target tracking using the combination of CMT tracking
algorithm and ORB keypoints detector, and vibration analysis, as illustrated in Figure 1.
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2.1. Preprocessing of Captured Video

In order to improve the identifiability of an object selected arbitrarily in this study, pretreatment
of the captured video was performed at the beginning because the vision-based sensor was considered
well suited for harsh field environments that are not properly illuminated. Brightness and contrast
adjustment are simple and effective tasks that can be employed for preprocessing. Homomorphic
filtering [42] has been incorporated into contrast enhancement and consists of the following steps:

Step One: The basic nature of the image F(x, y) can be naturally described as:

F(x, y) = i(x, y)r(x, y), (1)

where i(x, y) and r(x, y) denote the illumination and reflection components respectively,
0 < i(x, y) < ∞ and 0 < i(x, y) < 1.

Step Two: Because the Fourier transform of the product of two functions is not separable, logarithmic
transformation is employed to solve the problem. Define:

z(x, y) = ln F(x, y) = ln i(x, y) + ln r(x, y). (2)

Then:
F(z(x, y)) = F(ln F(x, y)) = F(ln i(x, y)) + F(ln r(x, y)), (3)

where F() denotes the Fourier transform.

Equation (3) can be written as:

Z(u, v) = I(u, v) + R(u, v), (4)

where Z(), I(), R() are the Fourier transforms of z(), lni(), and lnr() respectively.
Step Three: A homomorphic filter is applied to suppress low frequency components and enhance high

frequency components. Thus:

S(u, v) = H(u, v)Z(u, v) = H(u, v)I(u, v) + H(u, v)R(u, v), (5)

we apply a exponential high-pass filter (EHPF) to the method as follows:

D(u, v) =
√
(u− x0)

2 + (v− y0)
2, (6)

H(u, v) = (Hh − Hl)× (1− e−c( D(u,v)
D0

)
4

) + Hl , (7)

where 1< u < M, 1 < v < N, M and N denote the number of pixels on the x- and y-axes.
x0 = floor(M/2), y0 = floor(N/2), and floor() are rounded down. Hh, Hl, c, D0 are the filter
parameters that must be entered by users. All of these parameters are selected by a human
visual system (HVS). After several tests, the values were identified as Hh = 1.0, Hl = 1.5,
c = 1.5, D0 = 1.0.

Step Four: Using an inverse Fourier transform, the processed image is reconstructed. This can be
obtained using:

s(x, y) = F−1(S(u, v)) = F−1(H(u, v)I(u, v)) + F−1(H(u, v)R(u, v)), (8)

by defining:
i′(x, y) = F−1(H(u, v)I(u, v)), (9)
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and:
r′(x, y) = F−1(H(u, v)R(u, v)), (10)

we get:
s(x, y) = i′(x, y) + r′(x, y), (11)

where F−1() denotes the inverse Fourier transform.
Step Five: The inverse yields the desired enhanced image g(x, y), that is:

g(x, y) = exp(s(x, y)) = gi(x, y)gr(x, y), (12)

where gi(x, y) and gr(x, y) denote the enhanced illumination and reflection
components respectively.

As shown in Figure 2, the enhancing algorithm can significantly improve the quality of the images as
the object becomes easier to capture.
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2.2. Improved CMT Algorithm for Object Tracking

In this study, the proposed vision sensor was developed based on CMT, a keypoint-based method
for object tracking first described Nebehay et al. Image sequences I1, I2,. . . ,In and an initializing region
b1 in I1 are the input of this object tracking system, and the system returns subsequent region b2. . . ,bn

in I2,. . . ,In. In this process, voting and consensus are the core of the algorithm as described in the
following procedure.

Step One: The ORB detector is employed to detect the keypoints located in the initialization region
and described using the BRISK descriptor to initialize a set of keypoints O, followed by
a mean normalization of the keypoints locations. In each frame, the set of keypoints
O is used for matching; this will assist in recognizing the object when it re-enters the
visual field.

Step Two: In each frame t, we are interested in finding a set of corresponding keypoints Kt to
represent the object as accurately as possible. Two complementary methods are presented
for investigation: optical flow and keypoint-based method. Similarly, a set of candidate
keypoints P can be established using the ORB algorithm. On the other hand, another
set of candidate keypoints T is obtained by the option flow method, As a result Kt−1

contains only the keypoints located in region box in the previous frame; therefore, the set
of candidate keypoints T do not include the keypoints exist in background.

Step Three: The set of keypoints M is obtained by matching the candidate keypoints P with the
keypoints O. By doing this, the background keypoints are removed from M.
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Step Tour: The next step is to fuse T and M into a set of keypoints K'. Tracked keypoints are removed
when there exists a match associated with the same model keypoint, this results in a more
robust matched keypoints. It is worth mentioning that the outliers still exist.

Step Five: In the CMT algorithm, voting is implemented to relocate the object in each frame.
Each keypoint in K' casts a vote for the object center, resulting in a set of votes:

V = {h(ai, mi)}NK′

i=1 , (13)

where ai refers to the keypoint position in image coordinates and mi = (x0
i , xt

i ) are the index
of the corresponding keypoints in frame t, in which xt

i denotes the position of x0
i in frame

t. We consider translational, scale, and rotational changes of the object:

h(a, m) = a− s · Rrm, (14)

where rm is the relative position of the corresponding keypoints in O, s is the scale factor
given by:

s = med

({
‖xt

i − xt
j‖

‖x0
i − x0

j ‖
, i 6= j

})
, (15)

where med is the median, and R is a 2D rotation matrix given by:

R =

(
cos α − sin α

sin α cos α

)
. (16)

The rotation α can be obtained using the function atan 2 as described in reference [41]:

α = med
({

a tan 2(x0
i − x0

j )− a tan 2(xt
i − xt

j), i 6= j
})

. (17)

Step Six: The outlier keypoints can be removed by consensus. Just as in the CMT, the hierarchical
agglomerative clustering based on the Euclidean distance is applied to cluster the
correspondences. The consensus cluster Vc is identified according to the highest number
of votes, and the active keypoints Kt is the subset of K' that voted into Vc; it is used for the
next cycle to acquire the Kt+1.

Step Seven: The bounding boxes can be derived by:

bt = f (b1, µt, st, αt), (18)

where b1 is the initializing region, µt is the object center in t frame and it can be obtained by:

µ =
1
n

n

∑
i=1

Vc
i , (19)

where n is the element number of Vc, st is the scale factor in t frame, and αt is the rotation
factor in t frame.

To describe the process better, the procedure for object region (b2) identification in the second
frame is shown in Figure 3. In this algorithm, the keypoints detector and descriptor have a significant
impact on the operational efficiency of the procedures. In this section, we report the results of a
comparative analysis of the different keypoint detector and descriptor algorithms pairs. For the
FAST, ORB, BRISK and AGAST detectors and the ORB and BRISK descriptors, the processing time,
the computational cost, and the matching accuracy were evaluated in order to compare the performance
of the different algorithms.
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2.2.1. Processing Time

The detectors and descriptors were evaluated using the processing time metric. As a general
rule, the processing time depends on the number of detected keypoints and the complexity of the
input image. For the evaluation, a video with an artificial target was used. Figure 4 shows the average
number of active keypoints for a sample video with different combinations of detectors and descriptors.
As shown in Figure 4, the average number of active keypoints detected by ORB and BRISK were higher
than those detected by FAST and AGAST. In general, the number of active keypoints has an impact
on tracking stability. On the other hand, the processing time of single keypoint tracking is listed in
Table 1. The result shows that the best validity and efficiency were achieved by using the ORB detector
algorithm. As can be seen from Figure 4, the number of keypoints which are detected by ORB is far
larger than that detected by other detectors, which means that using ORB detector ensures stability of
target tracking. On the other hand, Table 1 shows that the durations for tracking a keypoint was 3.8349
and 2.7244 ms, respectively. Both are minimum processing time of the different combination pairs,
which proves the efficiency of this algorithm.
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Table 1. Processing time of different combination pairs.

Detector

Descriptor ORB FAST BRISK AGAST
ORB 3.8349 7.1912 8.4991 7.9967

BRISK 2.7244 7.2786 5.8103 7.6261

2.2.2. Computational Cost

To evaluate the computational cost, different combination pairs were tested. The processor time,
defined as the percentage of processor execution time for idle threads, was evaluated in order to
determine the central processing unit (CPU) utilization. Table 2 presents the average processor time
for the sample video. It was observed that the ORB detector was more efficient compared with BRISK,
FAST, and AGAST. For instance, the average processor time of ORB is less than those of BRISK, AGAST,
and FAST by a factor of 1, 2, and 2.5, respectively.

Table 2. Processor time for different combination pairs.

Detector

Descriptor ORB FAST BRISK AGAST
ORB 1.2919 4.1020 2.5908 3.9482

BRISK 1.4055 5.2712 2.6885 4.3334

2.2.3. Matching Accuracy

The matching accuracy criterion was introduced, similar to the one proposed in [43], and is
defined as the ratio between the number of correct matches and the total number detected:

accuracy =
n
N
× 100%, (20)

where n denotes the number of correct matches and N is the total number of matches. The number of
false matches relative to the total number detected is given by:

1− accuracy =
N − n

N
× 100%, (21)

therefore, the 1-accuracy can be calculated. Table 3 lists the 1-accuracy values. The table indicates that
the BRISK detector had the best results; the BRISK descriptor yielded the best results irrespective of
the implemented detector, while the ORB detector yielded the second best results.

Table 3. 1-Accuracy of different combination pairs.

Detector

Descriptor ORB FAST BRISK AGAST
ORB 66.0715 81.8441 49.9039 83.8834

BRISK 52.7826 90.4555 44.5814 89.0591

To evaluate the performance of different combination pairs in order to obtain scientific and
constant experimental data, a dimensionless parameter was introduced as:

X∗ =
X−min

max−min
, (22)

where X∗ denotes the normalized values of the parameter, X denotes the sample data, max and min
denote the maximum value and minimum value of the sample data, respectively.
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In order to illustrate the impact of all these parameters on the computing performance,
the comprehensive performances of different combination pairs were represented with colors.
The dimensionless result of processing time, processor time, and 1-accuracy were represented with
color values in R, G and B channels, respectively. As shown in Figure 5, colors were used to represent
the computing performance of different combination pairs. For all the parameters, the lower the value,
the better the computing performance, and the darker the color, the better the performance. It is clear
that our choice of the combination of ORB detector and BRISK descriptor gave the best performance.Sensors 2017, 17, 1305 9 of 30 
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2.3. Scaling Factor Determination

From the captured video, the pixel length at the image plane can be obtained. In order to obtain
the structural displacements, the relationship between the pixel coordinate and the physical coordinate
should be established. According to the method developed by Feng et al. [44], two calculation methods
for scaling factor have been made a detailed introduction in [44]. Therefore, the following equations
can be deduced based on the above calculation processes according to [44]:

SF1 =
yA − yB

Iiy
A − Iiy

B

, (23)

SF2 =
D

f cos2 θ
· dpixel , (24)

where yA and yB are the coordinates of the two points on the object surface as shown in Figure 6;
Iiy
A and Iiy

B are the corresponding pixel coordinates at the image plane, which can be computed using
the captured video, D is the distance between the camera and the object along the optical axis, f is the
focal length, θ is the angle between the camera optical axis and the normal directions of the object
surface, namely, α and β; dpixel is the pixel size (e.g., in mm/pixel). yA and yB can be calculated as follows:

yA =
Dyi

A
f cos2 θ − yi

A cos θ sin θ
, (25)

yB =
Dyi

B
f cos2 θ − yi

B cos θ sin θ
, (26)

where yi
A = Iiy

A ·dpixel and yi
B = Iiy

B ·dpixel are the coordinates at the image plane.
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In addition, the error calculation formula is given in [44]. For example, if the object point has
a small displacement ∆ in Figure 6, it can be decomposed into ∆1 along the x-axis and ∆2 along the
y-axis at the object surface. Similarly, xC and xD are the coordinates of the two points in the x-axis,
and yC and yE are the coordinates of the two points in the y-axis. These coordinates can be calculated
by Equations (25) and (26). The “true displacement” ∆1 and ∆2 are considered to be the distances
between corresponding points, which are that:

∆1 = xC − xD =
Dxi

C

f cos2 α− xi
C cos α sin α

−
Dxi

D
f cos2 α− xi

D cos α sin α
, (27)

∆2 = yC − yE =
Dyi

C

f cos2 β− yi
C cos β sin β

−
Dyi

E
f cos2 β− yi

E cos β sin β
, (28)

where xi
C = Iix

C ·dpixel, xi
D = Iix

D ·dpixel, yi
C = Iiy

C ·dpixel, yi
E = Iiy

E ·dpixel are the coordinates of point C before
and after translation at the image plane. From the scaling factors SF1 in Equation (23) and SF2 in
Equation (24), the “measurement displacement” can be calculated as follows:

∆̃1 = (Ii
C − Ii

D) · SF1, (29)

∆̃2 = (Ii
C − Ii

D) · SF2. (30)

Numerical methods were applied to quantify the error resulting from camera
non-perpendicularity. The measurement error from the two scaling factors can be defined as:

Error1 =
(∆̃1 − ∆)

∆
× 100%, (31)

Error2 =
(∆̃2 − ∆)

∆
× 100%. (32)

In this study, we used data from [44]. The following values were assigned: dpixel = 4.8 µm,
Ii
A = 200, Ii

B = 160, and D = 10 m. Point C has a 1 pixel translation both in the x-axis and y-axis at the
image plane from Ii

C = 100 to Ii
D = 99. The effect of the tilt angle (θ) and lens focal length (f ) were

investigated by considering a variable range and the results are shown in Figure 7.
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From Figure 7, we observe that the absolute value of the error increased with the increase of the
tilt angle. Furthermore, the error varied inversely with the focal length and the effect was smaller than
that of the tilt angle. Since that the error analysis method of the displacement in x-axis is similar to that
of y-axis, then the error can be obtained by the same method.

In BRT structural vibration measurement, the vibration amplitude is only a few millimeters;
therefore, the error should be minimized as much as possible. As expected, the calculation results of
the scaling factor SF1 were larger than the “true displacement” while the calculation results of scaling
factors SF2 were smaller. To reduce the error, we propose the use of a scaling factor SF, which can be
obtained by:

SF =
1
2
× (

xA − xB

Ii
A − Ii

B
+

D
f cos2 θ

· dpixel) (33)

The error analysis results calculated using scaling factor SF are shown in Figure 7. It can be seen
that the error due to camera non-perpendicularity decreased significantly while the validity improved.
In the laboratory and field tests conducted in this study, the scaling factor SF was adopted. xA and
xB can be obtained from field calibration and its corresponding image dimension in pixels Ii

A and Ii
B,

while the intrinsic parameters of the camera can be obtained from camera calibration [45].
It is noteworthy that the measurement error from SF1 be decreased when the measurement point

C gets closer to the known dimension AB, the results of the error analysis when IC = 190 to 189 as
shown in Figure 8. This may lead to that the proposed methods fail to achieve the desired goal of
reducing the measurement error. To solve this problem, the reference object could be kept farther away
from the target objects, which enables the measurement point keep away from the known dimension.
Normally, the target objects are located in the neighborhood of the captured video regional center
while the reference object located in the upper-left or right corner of the video.
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3. Hardware of the Vision Sensor System

As tabulated in Table 4, the proposed vision sensor system consists of three components: a
video camera, optical lens, and laptop computer. The camera was fixed on a tripod during the test
process. It was aimed at an arbitrary target, and captured the target within the shooting range of the
video camera.
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Table 4. Hardware components of proposed vision-based sensor.

Components Brand Technical Characteristics Accessories

Consumer grade
camera

Sensors 2017, 17, 1305 14 of 30 

 

Table 4. Hardware components of proposed vision-based sensor. 

Components Brand Technical Characteristics Accessories

Consumer 
grade camera 

 
Nikon D3100 

Sensor: CMOS 

Tripod, 
lamps, etc. 

Sensor size: 23.1 × 15.4 mm 
Maximum resolution: 1920 × 1080 
Image processor: EXPEED 2 

Interface: HDMI, AV, USB 2.0 

Optical lens 

 
Nikon AF-S DX NIKKOR 

Focal length: 18 to 105 mm 
Maximum aperture: F3.5 
Minimum focus distance: 0.45 m 
Manual zoom and luminosity control 
Dimensions: 89 × 76 mm2 

Weight: 0.42 kg 

Laptop 
computer 

 
Compaq Presario CQ42 

Operating system: Windows 7 × 64 
CPU: Intel(R) Core(TM) i5 M430 @ 
2.27 GHz 
RAM: 4 GB DDR3 
Discs: Seagate 500 GB 5400 rpm 16 MB 

Screen: 14″ 

4. Laboratory Tests 

4.1. Moving Platform Tests 
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vision-based sensor in a laboratory environment. The mechanical testing and simulation (MTS) 
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used in displacement measurement of civil engineering structures. These apparatus work by the 
strain bridge principle. Specifically, the small deformation measured by the strain bridge and thus 
the mechanical quantity is changed into an electrical quantity. It has many advantages compared 
with traditional displacement sensors, for example, higher accuracy, wider range of measurement, 
longer service life, faster response speed, better frequency response, no environmental restrictions, 
cost-effectiveness and so on. Because it has an excellent performance in terms of small displacement 
measurements, the STDS is an optimum option in this experiment. In addition, the selection of vision 
sensor equipment should take into account vibration parameters and the working environment. 

Figure 9 shows the setup for the moving platform experiment. The target plate was installed on 
the CMT electronic servo TestSuite. The displacement sensor was installed on the target plate, with 
the magnetic stand fixed on it. The sensor of the measuring head maintained contact with the target 
plate. The camera head was installed on a tripod for steady output, and fixed at the right position to 
ensure that the target can be captured smoothly during the test duration. 
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4. Laboratory Tests

4.1. Moving Platform Tests

The moving platform tests experiment was carried out to evaluate the performance of the
vision-based sensor in a laboratory environment. The mechanical testing and simulation (MTS)
electronic servo testsuite was used as the vibration source, and the motion was captured by the
vision-based sensor and the strain-type displacement sensors (STDS). At present, STDS are widely
used in displacement measurement of civil engineering structures. These apparatus work by the
strain bridge principle. Specifically, the small deformation measured by the strain bridge and thus
the mechanical quantity is changed into an electrical quantity. It has many advantages compared
with traditional displacement sensors, for example, higher accuracy, wider range of measurement,
longer service life, faster response speed, better frequency response, no environmental restrictions,
cost-effectiveness and so on. Because it has an excellent performance in terms of small displacement
measurements, the STDS is an optimum option in this experiment. In addition, the selection of vision
sensor equipment should take into account vibration parameters and the working environment.

Figure 9 shows the setup for the moving platform experiment. The target plate was installed on
the CMT electronic servo TestSuite. The displacement sensor was installed on the target plate, with the
magnetic stand fixed on it. The sensor of the measuring head maintained contact with the target plate.
The camera head was installed on a tripod for steady output, and fixed at the right position to ensure
that the target can be captured smoothly during the test duration.
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Since that there are many vibration modes in the real environment, various frequencies, 
amplitudes and operating modes were applied to simulate the natural environment in a series of 
experiments. Tables 5 and 6 list a series of low frequency vibration test parameter values. In 
addition, higher frequency vibration tests were designed to validate the performance; the parameter 
values are listed in Table 7. 

  

Figure 9. Setup for moving platform experiment: (a) Experimental setup; (b) Setup of target
plant region.

Commissioning tests were carried out after equipment installation to determine the appropriate
distance between the camera and target plate. The stability of the proposed algorithm is verified
by designing two different types of target, as shown in Figure 10. Firstly, the artificial target is
designed with significant characteristics, which is conductive to the achievement of continuous target
tracking, but for the free targets, the colors, sizes and positions, are assigned randomly. In this way,
the effectiveness and stability of the object tracking of arbitrary targets are confirmed. Secondly,
the free target plant is designed with two different targets, which can be used to verify whether the
error caused by human selection could have been prevented. Lastly, targets with different colors are
employed to verify the color sensitivity of the algorithm.
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Since that there are many vibration modes in the real environment, various frequencies,
amplitudes and operating modes were applied to simulate the natural environment in a series of
experiments. Tables 5 and 6 list a series of low frequency vibration test parameter values. In addition,
higher frequency vibration tests were designed to validate the performance; the parameter values are
listed in Table 7.
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Table 5. Experimental parameters of artificial target tests.

Number Frequency (Hz) Amplitude (mm) Operating Mode

I-1 0.05 ±5 Sine-wave
I-2 0.10 ±5 Sine-wave
I-3 0.05 ±5 Liner-wave
I-4 0.10 ±5 Liner-wave
I-5 0.05 ±9 Sine-wave
I-6 0.10 ±9 Sine-wave
I-7 0.05 ±9 Liner-wave
I-8 0.10 ±9 Liner-wave

Table 6. Experimental parameters of free target tests.

Number Frequency (Hz) Amplitude (mm) Operating Mode

II-1 0.05 ±5 Sine-wave
II-2 0.10 ±5 Sine-wave
II-3 0.05 ±5 Liner-wave
II-4 0.10 ±5 Liner-wave
II-5 0.05 ±9 Sine-wave
II-6 0.10 ±9 Sine-wave
II-7 0.05 ±9 Liner-wave
II-8 0.10 ±9 Liner-wave

Table 7. Experimental parameters of higher frequency vibration tests.

Number Target Type Frequency (Hz) Amplitude (mm) Operating Mode

III-1 Artificial 0.5 ±9 Sine-wave
III-2 Artificial 1.0 ±9 Sine-wave
III-3 Natural 0.5 ±9 Liner-wave
III-4 Natural 1.0 ±9 Liner-wave

In the laboratory experiment, the video camera was aimed at the target center, and made an angle
θ = 0. The rest of the parameters are summarized in Table 8. Using the parameters and Equation (33),
the scaling factor was obtained as SF = 0.138858.

Table 8. Laboratory test cases.

xA-xB (mm) Ii
A-Ii

B (Pixel) Measurement Distance (mm) Focal Length (mm) dpixel (mm/Pixel)

11.5 80 528.2 55.15 0.0144

To further evaluate the error performance and verify the precision and accuracy of the developed
vision-based sensor, the normalized root mean squared error (NRMSE) was introduced as follows:

NRMSE =

√
1
n

n
∑

n=1
(xi − yi)

2

ymax − ymin
, (34)

where n is the number of measurement data, xi and yi denote the ith displacement data at time ti
measured by the vision sensor and the STDS, respectively, and ymax = max(y), ymin = min(y).

Figure 11 shows a set of experimental results obtained with the artificial target measurement test
in I-5. The NRMSE errors were used in the analysis of the experimental data. The results are shown in
Table 9, where the average NRMSE of the vision sensor measurement was 1.822%, and the maximum
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value was 3.041%. The average NRMSE of the displacement sensor measurement was 1.442%, and the
maximum value was 3.433%.Sensors 2017, 17, 1305 17 of 30 
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corresponding test data. Figure 12 shows the experimental results with artificial target measurement 
test of Ι-2 and Ι-4. As shown in the Figure 12, exceptional data with abnormal causes are present in 
some periods during the test duration which explains why the average NRMSE of the vision sensor 
measurement is larger than that of the displacement sensor measurement. The most likely cause of 
this anomaly is that unavoidable movement of the camera stand occurred. Removing the abnormal 
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A = 9 mm).

Table 9. NRMSE analysis of artificial target experimental results.

Number NRMSE between Vision Sensor Measured
Values and Standard Values (%)

NRMSE between STDS Measured
Values and Standard Values (%)

I-1 1.630 0.945
I-2 3.041 3.433
I-3 1.125 0.919
I-4 2.757 2.068
I-5 0.768 0.726
I-6 1.549 0.850
I-7 1.547 0.951
I-8 1.272 1.646

Avgerage 1.822 1.442

From Table 9, it can be noted that two sets of tests that have relatively big errors, 3.041% and 2.757%
respectively. The reasons of this phenomenon can be obtained by analyzing the corresponding test data.
Figure 12 shows the experimental results with artificial target measurement test of I-2 and I-4. As shown
in the Figure 12, exceptional data with abnormal causes are present in some periods during the test
duration which explains why the average NRMSE of the vision sensor measurement is larger than that
of the displacement sensor measurement. The most likely cause of this anomaly is that unavoidable
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movement of the camera stand occurred. Removing the abnormal results, the average NRMSE of
the vision sensor measurement was 1.315%, which implies that the improved vision-based sensor is
consistent with traditional displacement sensor and therefore, suitable for actual measurements.
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Figure 13 shows a set of experimental results with free target measurement test in II-6. Table 10
presents the NRMSE errors analysis results. As presented in Table 10, the average NRMSE error of
the vision-based sensor measurement was 1.805%, and the average NRMSE error of the displacement
sensor measurement was 1.471%. Clearly, the vision-based sensor using a free target achieved a high
accuracy comparable to traditional contact sensors.
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the average NRMSE error of the target two measurement was 1.856%. It can be concluded that the 
accuracy of the vision sensor measurement is independent of the selected target points. This means 
that the improved vision-sensor can avoid errors caused by human selection. Furthermore, motion 
tests with higher frequency were conducted. Figure 14 shows the measurement results and Table 11 
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Figure 13. Free target measurement comparisons: (a) Measurement results of vision sensor capturing
target one compared with standard values; (b) Measurement results of vision sensor capturing target
two compared with standard values; (c) Measurement results of STDS compared with standard values.
(f = 0.1 Hz, A = 9 mm).

Table 10. NRMSE analysis of free target experimental results.

Number
NRMSE between Target

One Measured Values and
Standard Values (%)

NRMSE between Target
Two Measured Values and

Standard Values (%)

NRMSE between STDS
Measured Values and
Standard Values (%)

NRMSE between Target One
Measured Values and Target

Two Measured Values (%)

II-1 3.231 3.218 0.731 1.005
II-2 2.184 2.375 0.796 0.472
II-3 1.778 1.765 1.568 0.331
II-4 2.075 2.276 3.404 0.705
II-5 0.836 1.301 0.619 0.353
II-6 1.983 2.120 1.112 0.268
II-7 0.800 0.787 1.470 0.284
II-8 1.140 1.005 2.069 0.243

Avgerage 1.753 1.856 1.471 0.458

On the other hand, the average NRMSE error of the target one measurement was 1.753%, and the
average NRMSE error of the target two measurement was 1.856%. It can be concluded that the accuracy
of the vision sensor measurement is independent of the selected target points. This means that the
improved vision-sensor can avoid errors caused by human selection. Furthermore, motion tests with
higher frequency were conducted. Figure 14 shows the measurement results and Table 11 lists the
NRMSE error analysis results. The maximum NRMSE error of the measurement results of the vision
sensor was 3.922%. Measurement accuracy is consistent with the low frequency experimental results.
This indicates that the improved vision-based sensor can be applied to track higher frequency motion.
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It is noteworthy that the performance of the vision sensor in higher frequency measurements depends
on the ability of the imaging equipment.
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Table 11. NRMSE analysis of free target experimental results with higher frequency.

Target Point Type Frequency (Hz) NRMSE between Measured Values and Standard Values (%)

Artificial target 0.5 0.651
1.0 0.569

Free targets 0.5 0.724 0.765
1.0 0.523 0.762

4.2. Shaking Table Tests

In order to describe the performance of the vision-based sensor better, a series of higher-frequency
and lower-amplitude vibration experiments were carried out to verify the efficiency of this algorithm.
A shaking table was used as the vibration source, and the motion was captured by the vision-based
sensor and the STDS, just as the moving platform tests mentioned in Section 4.1.

Figure 15 shows the setup for the shaking table experiment, which includes four components:
video acquisition system, vibration control system, target system and strain acquisition system.
The video acquisition system are used to capturing the motion states and behaviors, the main role
of the vibration control system is controlling the vibration frequency and amplitude while testing,
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an identifiable target is provided by target system to object tracking steadily and the strain acquisition
system is used to collect displacement data obtained by STDS.
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system; (c) Target system; (d) Strain acquisition system.

The experimental parameters of shaking table tests are listed in Table 12, and Figure 16 shows
the experimental results of IV-9. The NRMSE errors were used in the analysis of experimental data,
the results are shown in Table 13. According to the computing results above, we can safely come to the
conclusion that: (1) The average value of vision-based sensor measurement error is 2.092%, which is
better than STDS, in other words, the performance of vision sensor is better than STDS. (2) The error
increases with frequency in the rough while there are some singular values.
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Table 12. Experimental parameters of shaking table tests.

Number Frequency (Hz) Amplitude (mm) Operating Mode

IV-1 8 ±1 Sine-wave
IV-2 8 ±2 Sine-wave
IV-3 8 ±3 Sine-wave
IV-4 10 ±1 Sine-wave
IV-5 10 ±2 Sine-wave
IV-6 10 ±3 Sine-wave
IV-7 15 ±1 Sine-wave
IV-8 15 ±2 Sine-wave
IV-9 15 ±3 Sine-wave
IV-10 20 ±1 Sine-wave
IV-11 20 ±2 Sine-wave
IV-12 20 ±3 Sine-wave
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Table 13. NEMSE errors analysis of shaking table experimental results.

Number Frequency (Hz) Amplitude (mm)
NRMSE between Vision
Sensor Measured Values
and Standard Values (%)

NRMSE between STDS
Measured Values and
Standard Values (%)

IV-1 8 ±1 0.842 1.657
IV-2 8 ±2 0.699 1.556
IV-3 8 ±3 1.445 2.965
IV-4 10 ±1 1.668 2.975
IV-5 10 ±2 2.391 3.889
IV-6 10 ±3 1.876 2.096
IV-7 15 ±1 2.899 3.764
IV-8 15 ±2 2.567 4.041
IV-9 15 ±3 2.912 2.975

IV-10 20 ±1 2.081 2.999
IV-11 20 ±2 2.678 5.014
IV-12 20 ±3 3.043 4.064

Average 2.092 3.166

4.3. Measuring Distance Tests

As a non-contact remote measurement technique, the performance of different measuring
distances of the developed vision-based sensors should be analyzed in detail. The different measuring
distance are designed to evaluate the impact using shaking table test equipment, the test parameters
are listed in Table 14.

Table 14. Experimental parameters of measuring distance tests.

Number Frequency (Hz) Amplitude (mm) Measuring Distance (m) Operating Mode

V-1 8 ±4 1.0 Sine-wave
V-2 8 ±4 2.0 Sine-wave
V-3 8 ±4 3.0 Sine-wave
V-4 8 ±4 4.0 Sine-wave
V-5 8 ±4 5.0 Sine-wave
V-6 8 ±4 6.0 Sine-wave
V-7 8 ±4 7.0 Sine-wave
V-8 8 ±4 8.0 Sine-wave
V-9 8 ±4 9.0 Sine-wave

V-10 8 ±4 10.0 Sine-wave
V-11 8 ±4 11.0 Sine-wave
V-12 8 ±4 12.0 Sine-wave

Figure 17 shows the test results of V-5. The error analysis results are listed in Table 15. The STDS
is a kind of connecting displacement sensor and its measuring precision is only affected by frequency
and amplitude. On the other hand, the measuring errors of vision sensors increase with the distance.
It is well known that the further the distance between target and camera is, the smaller the target is.
In other words, the pixel numbers of the target decrease with the distance from the imaging device,
providing that the optical focal length is the same. That is the reason which leads to a marked drop in
positioning precision, and result in big measuring error. It is worth mentioning that the performance
of remote measurement depends on the parameter of imaging equipment, especially the focal length
and imaging resolution.
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Figure 17. Measuring distance test results: (a) Measurement results of vision-sensor compared with
standard values; (b) Measurement results of STDS compared with standard values. (D = 5.0 m).

Table 15. NEMSE errors analysis of measuring distance experimental results.

Number Measuring Distance (m)
NRMSE between Vision
Sensor Measured Values
and Standard Values (%)

NRMSE between STDS
Measured Values and
Standard Values (%)

V-1 1.0 1.035 1.632
V-2 2.0 0.889 0.894
V-3 3.0 0.924 2.119
V-4 4.0 1.368 3.186
V-5 5.0 1.789 1.873
V-6 6.0 2.583 2.575
V-7 7.0 3.786 1.645
V-8 8.0 3.357 1.563
V-9 9.0 3.527 2.087
V-10 10.0 5.068 1.563
V-11 11.0 6.268 1.877
V-12 12.0 7.329 1.771

4.4. Discussion

From the analysis of the experiments above, it can be seen that the improved object tracking
approaches successfully enhance the measurement accuracy of the traditional displacement sensors.



Sensors 2017, 17, 1305 25 of 30

Different from the CMT algorithm, the modified CMT algorithm provides more efficient alternatives
in vision-based displacement measurements.

First of all, moving platform tests were designed to verify the tracking stability of free targets.
Compared with artificial target measurement data acquired in the laboratory, the precision of free
target measurement system was verified. The average NRMSE errors from the free target measurement
and the artificial target measurement were 1.805% and 1.822%, respectively, which proves that the
improved CMT vision measurement algorithm gives a higher accuracy. Two different types of free
targets were designed to check whether artificial errors exist in the assignment of initializing region.
The NRMSE error between the measuring values target 1# and target 2# was 0.458%, which indicates
that no artificial errors appear in this method. From the above two conclusions, we can see that the
improved CMT algorithm possesses a good performance on tracking free targets.

Secondly, the moving platform experiments cannot indicate whether this system has a high
precision for low amplitude and high frequency vibrations. Therefore, shaking table tests were
employed to solve the problem. Compared with mechanical testing and simulation (MTS) electronic
servo testsuite, the shaking table can achieve a higher frequency. A series of high frequency and low
amplitude vibration tests were designed to further evaluate the performance of the vision sensor.
The vibration tests frequency scopes in 8 Hz to 20 Hz and amplitude scopes in 1 mm to 3 mm.
Test results prove that the NRMSE error of vision sensor was 2.092%, the results show that the error is
within the acceptable level. This demonstrates the reliability of the vision sensors we proposed in high
frequency and lower amplitude vibration measurements.

Finally, as a non-contact remote measurement technique, measuring distance was used as a
key indicator for judging its performance. Experimental results show that the errors increased
with increasing measuring distance and the theoretical analysis indicates that the decisive factor of
measuring distance are the characteristics of imaging devices, which are not germane to the algorithm.

5. Field Test

Field tests were carried out to evaluate the validity of the vision sensor on the Yingmenkou flyover
of Chengdu (China), which is an important BRT transport hub. The time-domain of motion images
was captured by the vision-based sensor and the STDS sensor, respectively. As shown in Figure 18,
the vision sensor, limited by the camera optional lens, was installed in a location near the bridge.
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Table 16 lists the parameters of the field test and the laboratory test. According to the parameters,
the scaling factor was obtained as SF = 0.186673.

Table 16. Field test cases.

xA-xB (mm) Ii
A-Ii

B (Pixel) Measurement Distance (mm) Focal Length (mm) Tilt Angle (◦) dpixel (mm/Pixel)

13.84 72 469 42.95 22 0.01426

Figure 19 plots the displacement measurement from the vision sensor. It can be seen that the
measurement results include significant noise signals possibly caused by the movements of the camera
stand [46,47], illumination [48] and vapor [48], etc. According to related data and references, the airflow
speed has a significant influence on the movements of the stand. The field tests were carried out when
the wind speed was lower, so it can be approximately considered that the errors caused by the camera
are weak random interfering noise which can be removed by filtering. Similarly, it is proved in the [48]
that the illumination and vapor have a great effect on the measurement accuracy of the vision-based
system, but scientifically arranging the test to avoid this is not that hard and the trifling impact can be
further reduced by a filter.
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Figure 19. Original vertical displacement from the vision sensor.

In order to obtain the most reliable results, a Butterworth low-pass filter [49] was implemented
for noise reduction and the filtering results, plotted in Figure 20a, show that this approach is efficient
and useful. Basic displacement characteristics was preserved, while a lot of noise has been filtered.
The corresponding Fourier spectrum results are plotted in Figure 20b. The displacement measurement
results from the STDS sensor are plotted in Figure 20a, and the Fourier spectrum results are plotted in
Figure 20c. The spectral peaks of vision-based sensor measurement results were consistent with the
STDS measurement results. The inconsistency of displacement measured by vision sensors and STDS
are largely due to the residual noise. From the field test cases, the scaling factor is about 0.14 mm/pixel,
and that is, the measurement resolution is ±0.07 mm. Thus the measuring data which between
−0.07 mm and 0.07 mm is noisy. That means the residual noise will affect the performance and leads to
the difference of curves. Furthermore, two obvious spectral peaks, 79 and 92 Hz, were observed in the
Fourier spectrum. Therefore, it can be concluded that the same spectral information can be obtained
from the vision sensor.
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6. Conclusions

In this study, a vision-based sensor system was developed for the BRT viaduct vibration
measurement. Combining CMT object tracking algorithm with ORB keypoints detector algorithm,
the displacement can be measured with high-precision by tracking any existing target on the structure
without the need for pre-installation of an artificial target panel. Detailed experiments, including a
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series of laboratory tests and a field test, were conducted to evaluate its performance. The following
conclusions can be drawn from this study:

• Analysis of different combinations of detectors and descriptors based on the CMT algorithm
indicates that the proposed method demonstrated good performance in terms of runtime,
CPU usage, and matching accuracy. The realization of the algorithm and the experimental
analysis prove that the improved algorithm achieves the same accuracy as comparable methods
with less computational cost.

• Based on a detailed analysis of error sources, a synthetical scaling factor calculation method was
advanced. The deviation from the tilt angle and lens focal length were reduced, and thus the
errors can be well controlled.

• Three laboratory tests were performed to verify the system stability facing free targets and
measurement accuracy under the special conditions of low amplitude and high frequency,
respectively while exploring the factors influencing distance measuring. Error analysis was
performed using the normalized root mean squared error (NRMSE). The possibility of realizing
high precision measurements with free targets has been proved. In addition, the maximum
spacing between sensing equipment and targets depends on the technical specs and physical
parameters, such as optical focal length and resolution.

• The reliability and practicability of the proposed algorithm was validated via actual vibration
measurements of a BRT viaduct in Chengdu (China). The precision of the measurement data have
been demonstrated by both time and frequency domain data, and thus shows that the proposed
vision-based sensors are useful in the on-the-spot working environment.
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