Next Article in Journal
Adaptive Estimation of Multiple Fading Factors for GPS/INS Integrated Navigation Systems
Next Article in Special Issue
Design and Performance of a Portable and Multichannel SPR Device
Previous Article in Journal
Distributed Piezoelectric Sensor System for Damage Identification in Structures Subjected to Temperature Changes
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Sensors 2017, 17(6), 1255; doi:10.3390/s17061255

Nanoporous Gold Films Prepared by a Combination of Sputtering and Dealloying for Trace Detection of Benzo[a]pyrene Based on Surface Plasmon Resonance Spectroscopy

1
State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
2
School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
*
Authors to whom correspondence should be addressed.
Academic Editor: Giovanna Marrazza
Received: 8 April 2017 / Revised: 8 May 2017 / Accepted: 26 May 2017 / Published: 1 June 2017
(This article belongs to the Special Issue Surface Plasmon Resonance Sensing)
View Full-Text   |   Download PDF [1990 KB, uploaded 2 June 2017]   |  

Abstract

A wavelength-interrogated surface plasmon resonance (SPR) sensor based on a nanoporous gold (NPG) film has been fabricated for the sensitive detection of trace quantities of benzo[a]pyrene (BaP) in water. The large-area uniform NPG film was prepared by a two-step process that includes sputtering deposition of a 60-nm-thick AuAg alloy film on a glass substrate and chemical dealloying of the alloy film in nitric acid. For SPR sensor applications, the NPG film plays the dual roles of analyte enrichment and supporting surface plasmon waves, which leads to sensitivity enhancement. In this work, the as-prepared NPG film was first modified with 1-dodecanethiol molecules to make the film hydrophobic so as to improve BaP enrichment from water via hydrophobic interactions. The SPR sensor with the hydrophobic NPG film enables one to detect BaP at concentrations as low as 1 nmol·L−1. In response to this concentration of BaP the sensor produced a resonance-wavelength shift of ΔλR = 2.22 nm. After the NPG film was functionalized with mouse monoclonal IgG1 that is the antibody against BaP, the sensor’s sensitivity was further improved and the BaP detection limit decreased further down to 5 pmol·L−1 (the corresponding ΔλR = 1.77 nm). In contrast, the conventional SPR sensor with an antibody-functionalized dense gold film can give a response of merely ΔλR = 0.9 nm for 100 pmol·L−1 BaP. View Full-Text
Keywords: nanoporous gold film; surface plasmon resonance; benzo[a]pyrene; high sensitivity nanoporous gold film; surface plasmon resonance; benzo[a]pyrene; high sensitivity
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Wang, L.; Wan, X.-M.; Gao, R.; Lu, D.-F.; Qi, Z.-M. Nanoporous Gold Films Prepared by a Combination of Sputtering and Dealloying for Trace Detection of Benzo[a]pyrene Based on Surface Plasmon Resonance Spectroscopy. Sensors 2017, 17, 1255.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top