Next Article in Journal
Structural Health Monitoring for a Z-Type Special Vehicle
Previous Article in Journal
Nanoporous Gold Films Prepared by a Combination of Sputtering and Dealloying for Trace Detection of Benzo[a]pyrene Based on Surface Plasmon Resonance Spectroscopy
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Sensors 2017, 17(6), 1254; doi:10.3390/s17061254

Adaptive Estimation of Multiple Fading Factors for GPS/INS Integrated Navigation Systems

1
School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
2
Collaborative Innovation Center for Resource Utilization and Ecological Restoration of Old Industrial Base, China University of Mining and Technology, Xuzhou 221116, China
*
Author to whom correspondence should be addressed.
Received: 12 April 2017 / Revised: 25 May 2017 / Accepted: 27 May 2017 / Published: 1 June 2017
(This article belongs to the Section Remote Sensors)
View Full-Text   |   Download PDF [2282 KB, uploaded 1 June 2017]   |  

Abstract

The Kalman filter has been widely applied in the field of dynamic navigation and positioning. However, its performance will be degraded in the presence of significant model errors and uncertain interferences. In the literature, the fading filter was proposed to control the influences of the model errors, and the H-infinity filter can be adopted to address the uncertainties by minimizing the estimation error in the worst case. In this paper, a new multiple fading factor, suitable for the Global Positioning System (GPS) and the Inertial Navigation System (INS) integrated navigation system, is proposed based on the optimization of the filter, and a comprehensive filtering algorithm is constructed by integrating the advantages of the H-infinity filter and the proposed multiple fading filter. Measurement data of the GPS/INS integrated navigation system are collected under actual conditions. Stability and robustness of the proposed filtering algorithm are tested with various experiments and contrastive analysis are performed with the measurement data. Results demonstrate that both the filter divergence and the influences of outliers are restrained effectively with the proposed filtering algorithm, and precision of the filtering results are improved simultaneously. View Full-Text
Keywords: cubature Kalman filter; integrated navigation; H-infinity filter; multiple fading filter; optimization cubature Kalman filter; integrated navigation; H-infinity filter; multiple fading filter; optimization
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Jiang, C.; Zhang, S.-B.; Zhang, Q.-Z. Adaptive Estimation of Multiple Fading Factors for GPS/INS Integrated Navigation Systems. Sensors 2017, 17, 1254.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top