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Abstract: The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking
controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a
lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control.
Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle
parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled
Auto-Regression and Moving-Average) model, a second-order control system model is built. Using
forgetting factor recursive least square estimation (FFRLS), the system parameters are identified.
Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path
tracking control based on the vehicle model and the steering system model. Experimental simulation
results show that the proposed model and algorithm have the high real-time and robustness in path
tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation
tracking control, and lays the foundation for the vertical and lateral coupling control.

Keywords: intelligent vehicle; steer control; forgetting factor recursive least square; neural network;
PID control; path tracing

1. Introduction

In recent years, intelligent vehicles play an important role in the intelligent transportation
system. They have attracted considerable attention to the research community and industry. Different
functionalities are already available in commercial vehicles, such as, early mature technology, the
Antilock Braking (ABS) [1], Traction Control System (TCS) [2], Electronic Stability Program(ESP) [3],
Electric Power Steering (EPS) [4,5], and Electronic Braking System (EBS) [6,7], and Automatic Braking
System (ABS) [8]. There are also newer technologies such as adaptive cruise control system (ACC) [9],
Automatic Parking System (APS) [10], Anti-Collision System (ACS) [11–13],and others Advanced
Driver Assistance Systems (ADAS) [14–17].The ultimate goal of the technological development is to
realize automatic driving.

Automatic driving is a complex process, and it is also a process of self-learning which includes
environmental recognition, real time localization, path planning and motion tracking control [18–22].
In this case, soft computing techniques provide the advantage of representing expert knowledge for
controlling complex and nonlinear processes, such as autonomous driving. Several control strategies
have been developed in the literature: in reference [23], the output feedback self-tuning controller
proposed for the vehicle lateral control problem is developed. H∞ controller [24] based on the loop
shape procedure for control, and widely use adaptive tracking control system in references [25–27].
The PID control method is a typical representative of classical control algorithms, PID controllers
were proposed in [28–30] and used these for the experimental evolution of control. Sliding mode
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controllers [31,32] are used for trajectory tracking. The fuzzy logic control [33] is used for a skid
steering vehicle. The neural network controller is used for the steering vehicle in [34], and it is widely
used in machine learning for nonlinear patterns [35,36].The above methods are independently used,
and there are some shortcomings in terms of system control. Combining the above methods for
the control system is more widely in practical application, and the control effect is better in [37–41].
Other techniques are too numerous to be listed here.

These methods consider the problem of trajectory tracking for nonlinear systems state change
process. However, for intelligent vehicles at different speeds, the computation time (for optimization
algorithm) becomes very difficult for real-time operation. Different methods showed that the class
of adaptive controllers represents a very promising technique for such uncertain and nonlinear
application [19].

The neural networks PID controller can achieve good results in controlling an intelligent vehicle,
and provide safe driving. This control technique has proven to be robust against system parameter
variations. Zhang et al. [40,41] applied to keep and track the pre-given trajectory in the lateral control.
This control strategy is well suited for driving applications. In addition, an algorithm of vehicle lateral
adaptive PID control with neural network was proposed. The parameters of PID control are tuned by
back propagation neural networks. In the tuning process, the plant predictive output is used to modify
the weights of neural networks; it is nonlinear prediction which improves the predictive accuracy.

This paper focuses on motion tracking control, which is mostly dedicated to the lateral control.
Lateral control is concerned with steering the vehicle automatically in order to follow the reference
path. First, the vehicle model is established according to the vehicle parameters. Second, according
to the vehicle steering control system and the CARMA model, a second-order control system model
is established, and system identification is used to adjust the model parameters. Finally, based
on the previous research [42,43] in the path planning adopting behavior dynamics method, using
the established neural network PID controller, the intelligent vehicle planning tracing controlling
is realized.

This paper is organized as follows: Section 2 describes the analysis of vehicle model and dynamics.
The vehicle steering system equivalent to the actual model and the model parameter identification is
introduced in Section 3. In Section 4, the design of the lateral BP (Back Propagation) neural network PID
controller of the autonomous vehicle for path tracking is presented; simulation results of illustration
examples and discussion are also presented. Finally, the conclusion and further discussion is given in
Section 5.

2. Vehicle Dynamics Analysis and Modeling

Vehicles can be treated as a multiple rigid body systems including components, motion pair,
mechanical elements, etc. Vehicle model is a highly complicated nonlinear system; it is often difficult
to use one or more of the mathematical formulas to accurately describe. Therefore, the dynamic model
of vehicle should be simplified to derivate the model of vehicle in order to calculate and analyze its
dynamic characteristic. This design uses a simplified vehicle model, which converts four-wheel vehicle
models to two rounds of vehicle models [20].

2.1. Vehicle Model

The four-wheel vehicle model and two rounds of vehicle model are shown in Figures 1 and 2.
According to the simplified two-wheel vehicle model, the vehicle system model is established,

which is shown in Figure 3.
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Figure 1. Four-wheel vehicle  model. 
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2.2. Vehicle Dynamics Analysis

According to the simplified two-wheel vehicle model for vehicle dynamics analysis, the two
degrees of freedom vehicle kinematics equation is set up:

Side-slip Angle and yawing angular velocity:{
mVx

dβ
dt + µ(Kf + Kr)β+ [mVx +

µ(lfKf−lrKr)
Vx

]dψ
dt = µKfδ

Iz
d2ψ
dt2 + µ(lfKf − lrKr)β+

µ(l2f Kf+l2r Kr)
Vx

dψ
dt = µlfKfδ

In Equations (1) and (2) for Laplace transform:
.
ψ = ω[

mVxs + µ(Kf + Kr) mVx +
2

Vx
(lfKf + lrKr)

µ(lfKf + lrKr) Is + 2
Vx
(l2f Kf + l2r Kr)

][
β(s)
ω(s)

]
=

[
µKfδ(s)
µlfKfδ(s)

]
(3)

According to Equations (3) to (4):

d3ψ

dt3 + µ(
l2f Kf + l2r Kr

VxIz
+

Kf + Kr

mVx
)

d2ψ

dt2 + (µ
lrKr − lfKf

Iz
+

KfKrL2

mV2
xIz

)
dψ
dt

=
LlfKf

mVxIz

dδ
dt

+
LKfKr

mVxIz
δ (4)

a0, a1, b0, b1 are as follows:

a0 = µ(
l2f Kf+l2r Kr

VxIz
+ Kf+Kr

mVx
)

a1 = µ
lfKf−lrKr

Iz
+ KfKrL2

mV2
xIz

b0 = LlfKf
mVxIz

b1 = LKfKr
mVxIz

The Equation (4) is simplified to Equation (5):

...
ψ+ a1

..
ψ+ a0

.
ψ = b1

.
δ+ b0δ (5)

According to
.
ψ = ω available Equation (6):

ω(s)
δ(s)

= W1(s) =
b1s + b0

s2 + a1s + a0
(6)

Vehicle parameters are shown in Table 1.

Table 1. Vehicle parameters.

Sign Meaning Value Unit

L × D × H Vehicle size 3600 × 1600 × 1700 mm ×mm ×mm
µ Road friction coefficient 2
m Vehicle Mass 1100 kg
Iz Yaw moment of inertia 2850 kg m2

lf Front axle-COG distance 1.15 m
lr Rear axle-COG distance 1.05 m
Kf Cornering stiffness of the front tire 32000 N/rad
Kr Cornering stiffness of the real tire 32000 N/rad
v Vehicle ≤60 km/h

According to the vehicle parameters and Equation (6), the specific transfer function can
be obtained:

W1(s) =
b1s + b0

s2 + a1s + a0
=

11.79s + 43.12
s2 + 5.125s + 6.814

(7)
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3. Vehicle Steering System Control Modeling

In the control system, it is necessary to find a system equivalent to the actual model in order
to facilitate the practice test. Therefore, it is import that the model is chosen from a set of models,
according to certain principles and the best fitting of the concern of dynamic or static characteristics of
the actual system. The main tasks of Identification include determining model structure, the estimated
model parameters and the unknown test model results [44,45].

3.1. Identification Signal

In the intelligent vehicle system, the vehicle steering system is a slow change of a strongly
nonlinear system, and this feature will often bring great difficulty in vehicle dynamics research.
The steering system is mainly composed of a steering mechanism, steering gear and a transmission
mechanism, etc., so the vehicle’s steering system can be at least a second order system model.
The steering wheel angle with the number of input pulses is one-to-one correspondence. However,
when the number of input pulses is the same, the steering wheel angle is different, with the noise of
the mathematical model of the system given.

In engineering, generally, the longest linear shift register sequence (such as M sequence) is chosen
as the identification input signal. Four order M sequences are used as input signals, which is the input
voltage signal of the steering stepper motor controller in the actual physical significance.

3.2. Identification and Analysis of Vehicle Steering System

The vehicle steering system and driving system are graded as a strongly nonlinear system.
When the vehicle is in normal operation, the vehicle steering system can be approximately described
by a two order system. The vehicle steering system is described as the output signal of the steering
servo motor, driven by the drive as the front wheel steering structure, and driven by the front wheel
rotation. The transfer function is the relationship between the motor input pulse number and the
lateral angular velocity.

In the experimental process, the model of identification of the vehicle steering system is
the CARMA (Controlled Auto-Regression and Moving-Average) model of using the least squares
identification algorithm. However, the ordinary least squares identification method can elicit the “data
saturation” phenomenon and lose correction ability, and for the time-varying system, it will lead to the
change of the parameter estimates as it cannot track the time-varying parameters. The forgetting factor
recursive least squares algorithm (FFRLS) is used to estimate time-varying parameters. The transfer
function of the steering system by the bilinear transformation can get its discrete form:

Based on the CARMA model of difference Equation (8):

A(z−1)z(k) = B(z−1)u(k) + C(z−1)ε(k) (8)

u(k) and z(k) are the input and output system, ε(k) is the mean to 0,for constant unrelated noise
variance, A(z−1), B(z−1) and C(z−1) polynomials parameter. The CARMA model Equation (7) can be
converted to the least square of parameter identification problems Equation (9):

z(k) = ψT(k)θ+ ε(k) (9)

The input and output value and unknown parameter vector θ, respectively.{
ψ̂

T
(k) = [−z(k− 1), · · · ,−z(k− na), u(k− 1), · · · , u(k− nb), ε(k− 1), · · · , ε(k− nc)]

θ̂ = [â1 · · · âna , b̂0 · · · b̂nb , ĉ1 · · · ĉnc)]
T (10)
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Selection criterion function J(θ) = 1
2 E
{
[z(k + n)−ψT(k + n)θ]

}
, can get the parameters of the

algorithm as shown in Equation (11).

θ̂(k + n) = θ̂(k− 1) + ρ(l)ψ(k + n)
[
z(k + n)−ψT(k + n)θ̂(k− l)

]
k = 1, 2 · · · (11)


θ̂(k) = θ̂(k− 1) + K(k)[z(k)− ψ̂T

(k)θ̂(k− 1)]

K(k) = P(k− 1)ψ̂(k)[µ+ ψ̂T
(k)P(k− 1)ψ̂(k)]

−1

P(k) = 1
µ [I−K(k)ψ̂T

(k)]P(k− 1)
0 < µ ≤ 1

According to the above theory, under the CARMA model, the establishment of an intelligent
vehicle steering model system of second order differential Equation (12):

z(k) = a1z(k− 1) + a2z(k− 2) + b0u(k− 1) + b1u(k− 2) + ε(k) + c1ε(k− 1) + c2ε(k− 2) (12)

a = [1− 1.795 0.8972]′ b = [2.625× 10−6]
′

a = [1 0.3 0.2]′

3.3. Identification of Simulation Calculation

Using the above algorithm identification, there was a sampling time of 0.01 s, the number of
iterations is 100 times. The fourth-order inverse M sequence input signal, and the simulation output of
steering wheel Angle and the actual output are shown in Figure 4.
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1â 1.79559  , 
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Using forgetting factor recursive least squares estimation (FFRLS), the forgetting factor value

is 0.98, the theoretical value of equations of each factor is θ̂ (0) =
[

0 0 0 0 0 0
]T

,

P(0) = 106 × I6×6. FFRLS algorithm is adopted to the parameter estimation, system parameter
estimation process is shown in Figure 5, When K=1000, â1 = −1.79559, â2 = 0.84126, b̂1 = 0.000654,
b̂2 = 0.000354, d̂1 = 0.202272, d̂2 = 0.27674.
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In Figure 5, d1 and d2 parameters converge slower, and other parameters converge, which is
caused by inaccuracy in the white noise estimation. In practice, however, increasing the simulation
steps can improve the parameter estimation accuracy.

The parameter error is shown in Figure 6, the parameters estimation error of d1 and d2also exhibit
slower convergence, which is caused by inaccurate white noise estimation. The other parameter error
tends to zero finally. Thus, we get the transfer function Equations (13) and (14):

H(z) =
b̂2z + b1

z2 + â2z + â1
=

0.0002399z + 0.0008576
z2 − 1.716z + 0.7596

(13)

W2(s) =
−0.0008623s2 − 0.09355s + 53.2

s2 + 19.02s + 378.2
(14)
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4. The Heading Angle Neural Network PID Control System

4.1. The Neural Network PID Control Structure

PID controller is a feedback loop in industrial control applications. The collected data and a
reference value are compared to input of the controller; the error value is used to calculate the new
input values. This experiment proves that other control methods may cause the system to create
unstable error or shocks, and PID feedback loop can retain the stability of the system.

The BP (Back-Propagation) neural network can approximate arbitrary nonlinear systems and the
structure and learning algorithm are simple. Through neural network self-learning ability, Kp, Ki, Kd
parameters can find an optimal control law. Based on the BP neural network, the PID (Proportion
Integral Derivative) controls system structure is shown in Figure 7:
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The controller is described using the incremental PID control algorithm and three layer neural
network. The PID control equation is as follows Equation (15):

u(k) = u(k− 1) + ∆u(k)

∆u(k) = K
3
∑

i=1
wi(k)xi(k) = K(w1(k)x1(k) + w2(k)x2(k) + w3(k)x3(k))

x1(k) = e(k)− e(k− 1), x2(k) = e(k), x3(k) = e(k)− 2e(k− 1) + e(k− 2)
Kp = w1(k), Ki = w2(k), Kd = w3(k)

(15)

Kp, Ki, Kd is the proportion, integral, differential coefficient.
The control algorithm is summarized as follows:

• Step1: The determined system structure of the BP network is 1-3-1, the given system weight
coefficients initial value, learning rate and inertia coefficient, the iteration times k = 1.

• Step2: Sampling get rink(k) and yout(k), calculating error at time: e(k) = rink(k) − yout(k).
• Step3: According to calculate input and output of NN neurons in each layer by, the output of the

NN is PID controller parameters Kp, Ki, Kd.
• Step4: According to the Equation (15) to calculate the output of the PID controller u(k) .
• Step5: Neural network learning, online adjust the weighting coefficient to realize the adaptive

adjustment of PID control parameters.
• Step6: The iteration times k = k + 1, to return Step 2.

4.2. The Heading Angular Control

To verify the effectiveness of the proposed control algorithms, let us consider a two-wheeled
vehicle as shown in Figure 2. In the simulation, the vehicle parameters are given Table 1. Moreover,
in the neural network PID closed-loop system, two neural network PID controllers are used to
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control the longitudinal and angular subsystem separately, and the separated subsystems are of the
second-order form independently. Then, the neural network PID controller can be changed to a
single-input single-output (SISO) direct estimator. The following shows the test simulation model and
controller. The experimental testing process is implemented according to Figure 8.
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4.3. Adaptive PID Neural Network Controller Stability Analysis 

A mathematical model of adaptive PID neural network controller  is above the Equation (15): 

Through the Lyapunov [46] stability analysis is as follows Equation (16): 

k
2

i 1

1
v(k) e (i)

2 

   
(16) 

The BP neural network learning process leads to the change of v(k)  as follows: 

k 1 k k
2 2 2 2

i 1 i 1 i 0

1 1
v(k) ( e (i) e (i)) (e (i 1) e (i))
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Figure 8. The control system model.

4.3. Adaptive PID Neural Network Controller Stability Analysis

A mathematical model of adaptive PID neural network controller is above the Equation (15):
Through the Lyapunov [46] stability analysis is as follows Equation (16):

v(k) =
1
2

k

∑
i=1

e2(i) (16)

The BP neural network learning process leads to the change of v(k) as follows:

∆v(k) =
1
2
(

k+1

∑
i=1

e2(i)−
k

∑
i=1

e2(i)) =
1
2

k

∑
i=0

(e2(i + 1)− e2(i)) (17)

If e(0) = 0, then

∆v(k) =
1
2

k

∑
i=0

((e(i) + ∆e(i))2 − e2(i)) =
1
2

k

∑
i=0

(2e(i)∆e(i) + ∆e2(i)) (18)

Due to BP the learning process, the change of the error is Equation (19):

e(k + 1) = e(k) + ∆e(k) = e(k) + (
∂e(k)
∂w(k)

)
T

∆w(k) (19)

The objective function is Equation (20):

J(k) =
1
2

k

∑
i=1

(r(i)− c(i))2 =
1
2

k

∑
i=1

e2(i) (20)

In order to J(k) and w(k) is the negative gradient direction, we have the following Equation (21):

w(k + 1) = w(k)− Z(
∂J(k)

∂w(k)
) (21)

By Equations (20) and (21), Equation (22) can be obtained:

∂J(k)
∂w(k)

= e(k)
∂J(k)

∂∆u(k)
∂u(k)
∂w(k)

(22)
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∆w(k) = −Z
∂J(k)

∂w(k)
= −Ze(k)

∂e(k)
∂∆u(k)

∂∆u(k)
∂w(k)

If

M =

[
∂e(k)
∂w(k)

]T

=
∂e(k)

∂∆u(k)

[
∂∆u(k)
∂w(k)

]T

then,
∆e(k) = −ZMMTe(k) (23)

By bringing Equation (23) to (17), Equation (24) is derived:

∆v(k) = 1
2

k
∑

i=0
(−2e(i)ZMMTe(i)T + Z2MMT(MTe(i)TATe(i))

= − 1
2

k
∑

i=0
(ATe(i)T(2Z− Z2MMT)(MTe(i)))

(24)

Based on the Lyapunov stability theory, when ∆v(k) < 0, the whole control system is stable, so

2Z− Z2MMT > 0, get in range of 0 < Z < 2(MMT)
−1

. Due to ∆v(k) < 0, get in 1/2e2(k + 1) <

1/2e2(k), lim
k→∞

e(k) = 0. With the increase of k, the e(k) is tend to zero, the learning algorithm

convergence. From what has been discussed above, the effect of the adaptive PID neural network
algorithm has a relation with the selection of the adjustable parameters K(xiteP, xiteI, xiteD), Kp, Ki,
Kd, etc.

4.4.Simulation Experiments

4.3.1. Tracking the Curve

First, suppose that the vehicle tracks a curve trajectory. In this paper, MATLAB R2013a simulation
experiments are shown in Figure 9. The simulation parameters: planning path start point is (10, 5, 0,
1.4) (initial x, y position (m), heading angle (◦), speed(m/s)), tracing vehicle initialization parameters
for followVehiclePos = (10,3,90,1,8,90,1).Besides, the BP parameters are chosen as follows: xiteP = 0.40,
xiteI = 0.35, xiteD = 0.40, the PID parameters are set Kp = 0.10, Ki_1 = 0.10, Kd_1 = 0.10.
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With these design parameters, the practical tracking trajectory for the curve trajectory is in
Figure 10a, and the heading direction angle is shown in Figure 10b.The tracing curve point is in
Figure 10c, X direction and Y direction error is also shown in Figure 10d.
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The simulation results deduce that the intelligent vehicle can track planning trajectory very well
with the proposed design control model. It observes that there exists a drastic regulation process on
the turning place, because heading direction angle change is larger on the turning place and results
upright for vehicle body. However, from the partially enlarged drawing in Figure 10c, the tracking
errors ex and ey are explicitly demonstrated to an acceptable bound within ±2 m, and the tracking
heading angle errors eθ is ±3◦, they are also shown in Figure 10d.

Judging by the simulation results, the intelligent vehicle can track planning trajectory very well
with a barrier using the proposed design control model. The trajectory, tracking and heading angle of
the intelligent vehicle are also shown in Figure 9a–c. The tracking errors ex, ey and the heading errors
eθ are also shown in Figure 9d. The experimental results show that the method is more general.

4.3.2. Tracking the Overtaking Behavior

By the simulation results, the intelligent vehicle can track planning trajectory based on overtaking
behavior using the proposed design control model in Figure 11. In Figure 12, the intelligent vehicle
can track planning trajectory based on overtaking behavior using the Fuzzy-PID model. The
trajectory, tracking and heading angle of the intelligent vehicle are also shown in Figures 11a–c
and 12a–c. The tracking errors ex, ey and the heading errors eθ are also shown in Figures 11d and 12d.
The experimental results show smaller error, smoother for heading angle changes, and there is no
appearance of a sharp turn.
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5. Conclusions

This work designs a lateral control dynamic model of the intelligent vehicle, which is used for
lateral tracking control. This control model comprises PID control for heading angle and BP Neural
network control for the PID parameters adjustment. Experiments show that this method can effectively
adapt to the dynamic road environments, and at the same time can be dynamically adjusted to the
heading angle of the sharp change process according to the planning path, and the comfort of the
vehicle lateral control process can be improved. Compared to the classic fuzzy PID in the process of the
dynamic path tracking, the improved model has better robustness. The research results are obtained
to demonstrate:

(1) The results of the pre-study behavioral dynamics motion planning are applied to the current
motion tracking controller.

(2) The model of intelligent vehicle steering system is built by using CARMA model and the
parameters of steering system is trained by using FFRLS identify method. The vehicle model is
set up according to the parameters of intelligent vehicle. The vehicle steering system model and
vehicle model is connected to estimable a second-order control system.

(3) The planning of the heading angle is input to the designed controller and output practices
heading angle. An error between the planning path and tracing trajectory is calculated before
feedback to the controller. The controller calculated the tracing heading angle in order to achieve
zero path error.

(4) The experimental results show that the identification algorithm and the BP neural network
PID control model have real-time performance and reliability in path tracing, and the heading
direction angle tracking effect is good; x, y direction and heading angle error is controllable
and is close to zero. The method will lay a foundation for the lateral and the longitudinal
coupling control.
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