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Abstract: Since 2015, China has successfully launched five experimental BeiDou global navigation
system (BDS-3) satellites for expanding the regional system to global coverage. An initial performance
assessment and characterization analysis of the BDS-3 is presented. Twenty days of tracking data have
been collected from eleven monitoring stations. The tracking characteristics and measurement quality
are analyzed and compared with the regional BDS (BDS-2) in terms of observed carrier-to-noise
density ratio, pseudo-range multipath, and noise. The preliminary results suggest that the
measurement quality of BDS-3 outperforms the BDS-2 for the same type of satellites. In addition, the
analysis of multipath combinations reveals that the problem of satellite-induced code biases found in
BDS-2 seems to have been solved for BDS-3. Precise orbit and clock determination are carried out
and evaluated. The orbit overlap comparison show a precision of 2–6 dm in 3D root mean square
(RMS) and 6–14 cm in the radial component for experimental BDS-3 satellites. External validations
with satellite laser ranging (SLR) show residual RMS on the level of 1–3 dm. Finally, the performance
of the new-generation onboard atomic clocks is evaluated and results confirm an increased stability
compared to BDS-2 satellite clocks.

Keywords: BeiDou; multipath combination; code pseudo-range; precise orbit determination;
clock stability

1. Introduction

Since the late 20th century, China has been working on the development of its own satellite
navigation system known as BeiDou Navigation Satellite System (BDS). The development has three
phases: the demonstration system (BDS-1), the regional system (BDS-2), and the global system
(BDS-3) [1]. BDS-1 was declared to be operational at the mid of 2003 with two geostationary satellites
and a backup satellite [2]. As a multi-function system, BDS-1 provided users in China with both
positioning and short message communication services. BDS-2 has been providing official positioning,
navigation and timing (PNT) services over the Asia-Pacific area since 27 December 2012 [3].
The constellation of BDS-2 consists of 14 satellites, five geostationary orbit (GEO), five inclined
geostationary orbit (IGSO), and four medium Earth orbit (MEO), transmitting triple-frequency signals
centered at B1 (1561.098 MHz), B2 (1207.14 MHz), and B3 (1268.52 MHz). The BDS-3 is expected to
complete the constellation deployment with the launching of 35 satellites (five GEOs, three IGSOs, and
27 MEOs) by 2020, providing greatly improved services to global users [1–4].

With the advent of BDS-2, many studies have been carried out to investigate various aspects
of BDS-2, including signal characteristics [5], multipath effects [6], precise orbit determination
(POD) [7–9], performance of satellite clocks [10–12], relative positioning [13], and precise point
positioning (PPP) [14], etc. Montenbruck, et al. [7] conducted initial assessment of the BDS-2 based
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on observations of six reference stations, and the 3D root mean square (RMS) values of orbit overlap
comparison were 1–10 m. The BDS-2 satellite orbits determined by Shi, et al. [15] have a radial
orbit precision of about 10 cm. Ge, et al. [16] also reported radial orbit overlap RMS values of about
1 dm. Zhao, et al. [8] carried out POD of BDS-2 using three day arcs. The 3D overlap precision
reaches about 1.8 m for GEO and 0.3 m for IGSO and MEO, and radial overlap precision is better
than 0.1 m for all satellites. In addition, the performance of the indigenous clocks of the BDS-2 has
been evaluated [10,11], showing Allan deviations roughly 2–3 times larger than the GPS IIF rubidium
atomic frequency standard (RAFS) and the Galileo passive hydrogen maser (PHM). When it comes to
the BDS signal characteristics, some studies based on the analysis of multipath combination revealed
that the systematic code biases, which are absent for other global navigation satellite system (GNSS),
are commonly found in BDS-2 IGSO and MEO satellites [17–19]. These biases, called satellite-induced
code biases [19,20], are elevation-dependent and can vary more than 1 m from horizon to zenith,
which would affect BDS precise applications with code measurements, e.g., ambiguity fixing [20] and
single-frequency PPP [19], based on the ionosphere-free code-carrier combination.

On 30 March 2015, China launched an experimental BDS-3 satellite into space, named M1S, for
its original global navigation and positioning network using a Long March-3C carrier rocket at the
Xichang Satellite Launch Center [21]. The launch marked the beginning of expanding the regional
system to global coverage. Up to February 2016, five experimental BDS-3 satellites, including two
IGSOs (C31, C32) and three MEOs (C33, C34, C35), have completed deployment (Table 1). Currently,
four satellites (C31–C34) are in operation and C35 is in a test orbit. For brevity, the BDS-3 henceforth
refers to these experimental BDS-3 satellites in this paper. The task of these satellites is to test the
new types of the navigation signals and inter-satellite links, as well as provide services as part of
the existing BDS-2 constellation. In addition, all BDS-3 satellites are equipped with new RAFSs and
PHMs, which build exclusively on Chinese technology [21]. The BDS-3 includes the migration of
its civil B1 signal from 1561.098 MHz to a frequency centered at 1575.42 MHz, which is the same as
the GPS L1 and Galileo E1 civil signals, and its transformation from a quadrature phase shift keying
(QPSK) modulation to a multiplexed binary offset carrier (MBOC) modulation similar to the future
GPS L1C and Galileo E1. Xiao, et al. [22] analyzed the navigation signals transmitted by BDS-3 M2S
satellite with the help of a 7.3-m high-gain antenna. Chen, et al. [21] evaluated the contribution of
inter-satellite link measurement on BDS-3 precise orbit and clock determination and the performance
of BDS-3 satellite clock prediction.

Table 1. The status of the experimental BDS-3 satellites (February 2016).

Satellite PRN Type Launch Date Carrier Rocket Mean Longitude
(Inclination)

I1S C31 IGSO 30 March 2015 Long March-3C 92.8◦ E (55.5◦)
I2S C32 IGSO 29 September 2015 Long March-3B 96.5◦ E (55.5◦)
M1S C33 MEO 25 July 2015 Long March-3B (55.5◦)
M2S C34 MEO 25 July 2015 Long March-3B (55.5◦)
M3S C35 MEO 1 February 2016 Long March-3C (55.5◦)

In this contribution, we initially assess the characterization and performance of four BDS-3
satellites based on collected GNSS tracking data. The carrier-to-noise density ratio and multipath
combinations of BDS-3 observations are firstly investigated and compared with those of BDS-2 satellites
to analyze signal characteristics, pseudo-range multipath and errors. Then, precise orbit and clock
determination is carried out by jointly processing for BDS-2 and BDS-3 satellites. Orbit results are
evaluated by orbit overlap comparison and SLR validation. The performance of the onboard clocks is
analyzed and compared with those of BDS-2 satellites by the modified Allan deviations computed
using the clock solutions. The paper is organized as follows: In the “GNSS Processing” section, we
describe the data collection, processing strategy, and post-fit residuals for BDS-3 precise orbit and
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clock determination. In the “Result” section, the results of the analysis of measurement quality and
validation of orbit accuracy, as well as the assessment of clock performance, are shown. Conclusions
and future work are given in the last section.

2. GNSS Processing

2.1. Data Collection

China has launched the International GNSS Monitoring and Assessment System (iGMAS) [23]
to monitor and assess the performance as well as operational status of BDS satellites and to promote
compatibility and interoperability among different GNSS systems. BDS-3 observations for the
present study are collected by a total of eleven reference stations, among which eight stations
are from the iGMAS tracking network, and the other three stations in Australia are from the GA
(Geoscience Australia) network. In addition, BDS-2 observations from twenty-six MGEX (Multi-GNSS
Experiment) [24] and eight CMONOC (Crustal Movement Observation Network of China) stations
are selected for joint POD processing. The orbit and clock results discussed in this paper are based
on data for the time period 22 July (DOY 204) until 10 August 2016 (DOY 223). Figure 1 shows the
geographic distribution of all GNSS stations and the ground tracks of four BDS-3 satellites. Table 2
lists the information of stations capable of tracking BDS-3 satellites. Since these stations provide only
BDS-3 B1 and B3 observations in common with BDS-2, we assess B1 and B3 signal characteristics and
use B1 and B3 observations for POD in this paper.
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Figure 1. Ground traces of BDS-3 satellites and distribution of the tracking stations used in this study.
Stations capable of tracking BDS-3 satellites are marked in blue. The other stations are marked in red.

Table 2. GNSS monitoring stations with BDS-3 tracking capability.

Abb. Location Country Receiver Antenna

BJF1 Beijing China CETC-54 GMR-4011 LEIAR25.R4 LEIT
BRCH Braunschweig Germany CETC-54 GMR-4011 LEIAR25.R4 LEIT
CLGY Calgary Canada CETC-54 GMR-4011 LEIAR25.R4 LEIT
GUA1 Urumqi China GNSS_GGR RINT-8CH CETD
LHA1 Lhasa China CETC-54 GMR-4011 NOV750.R4 NOVS
TAHT Tahiti France GNSS_GGR RINT-8CH CETD
WUH1 Wuhan China CETC-54 GMR-4011 LEIAR25.R4 LEIT
ZHON Antarctica United Nations CETC-54 GMR-4011 LEIAR25.R4 LEIT
FROY Fitzroy Crossing Australia SEPT POLARX5 LEIAR25.R3 LEIT
KUNU Kununurra Australia SEPT POLARX5 JAVRINGANT_DM SCIS
WLAL Wallal Australia SEPT POLARX5 LEIAR25.R3 LEIT
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2.2. POD Strategy

Orbits of the BDS-2 and BDS-3 satellites, and associated clock solutions, are computed with a
modified version of the Positioning And Navigation Data Analyst (PANDA) software package [25],
developed at the GNSS Research Center of Wuhan University, China. In this study, the observations
from BDS-2 and BDS-3 are jointly processed in a unified processing strategy. We take three consecutive
days as one orbit arc and process BDS data of these days to obtain a long arc solution in a batch
mode. For each three-day solution, the ionospheric-free linear combinations of B1 and B3 code and
phase observations are used to form basic observation equations to eliminate the ionospheric delay.
The a priori orbits are taken from the broadcast ephemeris provided by the iGMAS. The BDS-2 and
BDS-3 satellite orbit parameters, which include the initial position and velocity, solar radiation pressure
(SRP) parameters, satellite clock offsets, station coordinates, receiver clock biases, float ambiguities, and
2-h ZTD (zenith total delay) parameters are estimated together in a weighted least-squares approach.
The receiver antenna phase center offset (PCO) and phase center variation (PCV) values are not
considered for BDS-3 observations as they are not available. For BDS-2 satellites, the PCO and PCV
corrections provided by WHU (Wuhan University) are used resulting in improved performance [23].
For BDS-3 satellites, the PCO corrections are provided by the Operation Control Department, and no
PCV corrections are available. For further processing options, see Table 3.

Table 3. Important options of the GNSS processing for POD.

Item Models

Basic observable B1 and B3 code and phase observations of BDS-2 and BDS-3
Modeled observable Ionospheric-free linear combination
Sampling rate 300 s
Elevation cutoff 10◦

Weighting A priori precision of 0.002 m and 2.0 m for raw phase and code observables, respectively, and
elevation-dependent data weighting

Phase wind up Phase polarization effects applied [26]
Tropospheric delay Saastamoinen model [27], global mapping function [28], two-hourly ZTD without gradients
Tide displacement Solid Earth tide, pole tide, ocean tide loading; according to IERS Conventions 2003 [29]
Relativity effect Considered according to IERS Conventions 2003 [29]
Geopotential EIGEN_GL04C up to 12 × 12 degree
N-body gravitation Sun, Moon, and other planets; JPL DE405 ephemeris used
Solar radiation ECOM 5-parameter model [30]

2.3. Post-Fit Residuals

The mean RMS values for the station-specific post-fit residuals of ionosphere-free linear
combination of B1 and B3 code and phase observations from the POD parameter estimation are
shown in Figure 2. The station THAT (Table 2) cannot observe BDS-3 IGSO (C31 and C32) satellites.
The mean phase residuals for all stations are about 1.01 cm, 1.13 cm, 0.99 cm, and 1.01 cm for BDS-2
IGSO, BDS-2 MEO, BDS-3 IGSO, and BDS-3 MEO satellites, respectively. The mean code residuals
for all stations are about 1.66 m, 1.86 m, 1.94 m, and 1.69 m for BDS-2 IGSO, BDS-2 MEO, BDS-3
IGSO, and BDS-3 MEO satellites, respectively. We can see that the phase and code post-fit residuals of
BDS-2 and BDS-3 are nearly the same level. It is noted that these errors are amplified by a factor of
about three when forming the ionosphere-free linear combination, compared to the single-frequency
measurement. In the next section, we will further analyze pseudo-range errors (multipath and noise)
by the multipath combination.
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Figure 2. Mean RMS values of the station-specific post-fit residuals of ionosphere-free linear
combination of B1 and B3 code and phase observations for BDS-2 and BDS-3 satellites. I(2) and
M(2) represent BDS-2 IGSO (C06, C07, C08, C09, C10) and MEO (C11, C12, C14) satellites, and I(3) and
M(3) represent BDS-3 IGSO (C31, C32) and MEO (C33, C34) satellites, respectively.

3. Results

In this section, we present the results of measurement quality analysis, including carrier-to-noise
density ratio (C/N0), multipath combination, orbit accuracy validation, and clock performance
assessment for four BDS-3 satellites. For comparison, some results of BDS-2 satellites are also shown.

3.1. Measurement Quality Analysis

3.1.1. Carrier-to-Noise Density Ratio

The C/N0 ratio given by GNSS receiver is a result of signal gain and loss along the complete
transmitting and receiving chain [5]. The whole chain consists of the electronic circuit and antenna of
the satellite, the signal path, and the antenna and the electronic circuit of the receiver. The observed
C/N0 values of BDS-2 and BDS-3 signals at sites BJF1 and KUNU equipped with the GMR-4011 and
POLARX5 receivers are depicted as a function of elevation in Figure 3. Eighteen days of tracking
data between DOY 204 and DOY 221 (2016) are used to produce the results. We first group all C/N0
values according to their corresponding elevations separately for B1 and B3 signal of all BDS-2 IGSO,
BDS-2 MEO, BDS-3 IGSO, BDS-3 MEO satellites. Then, all C/N0 values within an elevation range
of 1◦ are classified into one group. Finally, a mean value of C/N0 is computed and shown for each
elevation group.

From the figure, BDS-2 and BDS-3 signals from these two stations exhibit generally similar
elevation-dependent C/N0 characteristics, from about 35 dB-Hz (at the low elevation) to about
50 dB-Hz (at the high elevation). MEO satellites are generally tracked with a 2–4 dB-Hz higher C/N0
values than the IGSO satellites, which are related to the smaller orbital radius. Furthermore, it is
obvious that the B1 signal of BDS-3 IGSO and MEO satellites has approximately 1–2.5 dB-Hz higher
C/N0 values than the corresponding BDS-2 IGSO and MEO satellites, respectively. For B3 signal, the
C/N0 values of BDS-3 IGSO are higher by about 1–4 dB-Hz than BDS-2 IGSO, and BDS-3 MEO are
higher by about 1–2 dB-Hz than BDS-2 MEO. In general, the signal strength of BDS-3 signals exceeds
the values of the BDS-2 for the same satellite type on the each frequency.
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Figure 3. Mean C/N0 values as a function of elevation for BDS-2 and BDS-3 IGSO and MEO satellites
signals at site BJF1 equipped with GMR-4011 receiver with LEIAR25.R4 antenna (left) and site KUNU
equipped with POLARX5 receiver with JAVRINGANT_DM antenna (right) during DOY 204-221, 2016.
The upper and bottom panels show the results of B1 and B3 frequencies, respectively.

3.1.2. Multipath Combination

The multipath (MP) combination is a measure of the combined results of multipath, receiver
noise, and bias variations between pseudo-range and carrier-phase measurements. The combination is
constructed using a single-frequency code measurement and dual-frequency phase measurements of a
pass that one receiver is continuously tracking for one GNSS satellite without cycle slips [31]. The constant
biases, such as ambiguities, hardware delay in satellite and receiver are eliminated by averaging the
MP series of a pass. The residual series are dominated by the multipath and noises of pseudo-range
measurements since the carrier phase multipath and noises are much smaller in magnitude.

Figure 4 shows MP time series of the B1 signal for BDS-2 (C10, C12) and BDS-3 (C31, C32, C33,
C34) satellites during a pass as a function of time and a function of elevation angle, sampled at 30 s,
at station BJF1 according to different satellite types, i.e., IGSO (a) and MEO (b) satellites. In general,
the continuous tracking duration is about 18–20 h and 7–8 h for IGSO and MEO satellites. Note that
C34 satellite tracking data of about one hour at the beginning is lost. As expected, signals observed
at low elevation angles are affected more severely by multipath conditions. Moreover, we can see
from MP series that BDS-2 satellites (red) contain additional systematic biases (drifts), namely, the
satellite-induced code biases, which are obviously elevation-dependent. The code bias variations could
reach up to about 1 m at high elevation angles, particularly for BDS-2 MEO satellite. These results of
BDS-2 MP combinations are very consistent with those discussed in Hauschild, et al. [5] and Wanninger
and Beer [19], while for BDS-3 satellites (blue), these code biases found in BDS-2 signals have been
greatly reduced, comparable to those of other GNSS systems [32]. Figure 5 shows the results for MP
combinations of the B3 signal for BDS-2 and BDS-3 satellites. We can see that the multipath errors and
noise level of B3 signal are smaller than those of B1 for each satellite. Similarly, there are almost no
code biases in BDS-3 measurements for B3 signal.



Sensors 2017, 17, 1233 7 of 14
Sensors 2017, 17, 1233 7 of 14 

 

 

Figure 4. MP combinations of BDS-2 (red) and BDS-3 (blue) B1 frequency as a function of time and a 

function of elevation angle for IGSO (a), and MEO (b) satellites at station BJF1. The olive lines 

represent corresponding satellite elevation. 

In order to further analyze and compare pseudo-range noise, multipath errors and 

satellite-induced code biases, we plot results of the MP combination for B1 and B3 measurements for 

two individual stations, as shown in Figure 6. All values of MP combination are grouped according 

to their corresponding elevations, and the mean and standard deviation are computed for each 

satellite type (IGSO and MEO). The results for the CETC-54 GMR-4011 receiver (The 54th Research 

Institute of China Electronics Technology Group Corporation, Shijiazhuang, China) at site BJF1 are 

depicted in the left panels, and the SEPT POLARX5 receiver (Septentrio, Leuven, Belgium) at site 

KUNU is shown in the right panels. Again, observations from the same test period between DOY 

204 and DOY 221 (2016) are used. We can see that the variation of the mean and standard deviation 

with elevation reveals a similar characteristic for the two stations. For the mean values, BDS-3 

exhibits a typical stochastic error (zero-mean), whereas an obvious systematic bias can be observed 

in BDS-2 for each receiver and each frequency. The elevation-dependent bias for B1 signal is more 

pronounced than B3, and IGSO is smaller than MEO. The standard deviation does not include the 

systematic bias component. For B1 signal, a standard deviation of about 0.8 m at low elevations 

angles and about 0.2 m close to zenith can be seen for BDS-2 and BDS-3. It becomes obvious that the 

multipath and noise for the B1 signal are higher compared to B3, which exhibits a standard deviation 

of about 0.5 m at low elevations angles and about 0.1 m at high elevation angles. Moreover, the 

standard deviations of B1 signal for BDS-3 are, on whole, slightly smaller than BDS-2 for the same 

satellite type at these two sites. Most important of all, the results of Figures 4–6 indicate that the 

new-generation BeiDou satellites have improved satellite-internal hardware device design to avoid 

the problem of code biases like for BDS-2, which would provide better performance. 

0 20 40 60 80
-2

-1

0

1

2

0 20 40 60 80
-2

-1

0

1

2

0 20 40 60 80
-2

-1

0

1

2

0 20 40 60 80
-2

-1

0

1

2

0 20 40 60 80
-2

-1

0

1

2

0 20 40 60 80
-2

-1

0

1

2

2000 3000 4000
-2

-1

0

1

2

(b)

 

B
1

 M
P

 f
o

r 
IG

S
O

 [
m

]

0

20

40

60

80

 

2000 3000 4000
-2

-1

0

1

2
C31C10

Epoch [interval = 30 s]

 

 

Epoch [interval = 30 s]

0

20

40

60

80

 

2000 3000 4000
-2

-1

0

1

2
C32

 

 

0

20

40

60

80

 E
le

v
a

ti
o

n

C10

 

 

C31

Elevation [degree]

  

 

Elevation [degree]

C32

  

 

1200 1500 1800
-2

-1

0

1

2
C12

 

B
1

 M
P

 f
o

r 
M

E
O

 [
m

]

0

20

40

60

80

 

300 600 900
-2

-1

0

1

2
C33

 

 

0

20

40

60

80

 

1400 1600 1800 2000
-2

-1

0

1

2
C34

 

 

0

20

40

60

80

 E
le

v
a

ti
o

n

C12

 

C33

  
 

C34

  

 

(a)

Figure 4. MP combinations of BDS-2 (red) and BDS-3 (blue) B1 frequency as a function of time and
a function of elevation angle for IGSO (a), and MEO (b) satellites at station BJF1. The olive lines
represent corresponding satellite elevation.

In order to further analyze and compare pseudo-range noise, multipath errors and
satellite-induced code biases, we plot results of the MP combination for B1 and B3 measurements for
two individual stations, as shown in Figure 6. All values of MP combination are grouped according to
their corresponding elevations, and the mean and standard deviation are computed for each satellite
type (IGSO and MEO). The results for the CETC-54 GMR-4011 receiver (The 54th Research Institute of
China Electronics Technology Group Corporation, Shijiazhuang, China) at site BJF1 are depicted in the
left panels, and the SEPT POLARX5 receiver (Septentrio, Leuven, Belgium) at site KUNU is shown in
the right panels. Again, observations from the same test period between DOY 204 and DOY 221 (2016)
are used. We can see that the variation of the mean and standard deviation with elevation reveals
a similar characteristic for the two stations. For the mean values, BDS-3 exhibits a typical stochastic
error (zero-mean), whereas an obvious systematic bias can be observed in BDS-2 for each receiver and
each frequency. The elevation-dependent bias for B1 signal is more pronounced than B3, and IGSO is
smaller than MEO. The standard deviation does not include the systematic bias component. For B1
signal, a standard deviation of about 0.8 m at low elevations angles and about 0.2 m close to zenith can
be seen for BDS-2 and BDS-3. It becomes obvious that the multipath and noise for the B1 signal are
higher compared to B3, which exhibits a standard deviation of about 0.5 m at low elevations angles
and about 0.1 m at high elevation angles. Moreover, the standard deviations of B1 signal for BDS-3 are,
on whole, slightly smaller than BDS-2 for the same satellite type at these two sites. Most important
of all, the results of Figures 4–6 indicate that the new-generation BeiDou satellites have improved
satellite-internal hardware device design to avoid the problem of code biases like for BDS-2, which
would provide better performance.
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Figure 5. MP combinations of BDS-2 (red) and BDS-3 (blue) B3 frequency as a function of time and
a function of elevation angle for (a) IGSO, and (b) MEO satellites at station BJF1.
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Figure 6. Mean and standard deviation (std) of MP combinations as a function of elevation for BDS-2
and BDS-3 IGSO and MEO satellites signals at stations BJF1 (left) and KUNU (right) during DOY
204-221, 2016. The upper and bottom panels show the results for B1 and B3, respectively. I(2) and M(2)
represent BDS-2 IGSO (C06, C07, C08, C09, C10) and MEO (C11, C12, C14) satellites, and I(3) and M(3)
represent BDS-3 IGSO (C31, C32) and MEO (C33, C34) satellites.
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3.2. Orbit Validation

We assess BDS orbit quality through both internal consistency and external validation. For internal
consistency, the direct comparison of satellite positions in the overlapped time span from different
orbit solutions is utilized in this study. For any two adjacent three-day solutions shifted by one day,
there are 48-h orbit overlap errors. Figure 7 shows the RMS values of 48-h orbit overlap errors of every
orbital arc during the experiment period for BDS-3 satellites C31, C32, C33, and C34 in along-track,
across-track, and radial directions. As an unfortunate exception, the C32 satellite was in a test orbit
from DOY 210 to 214 in 2016 and, therefore, no results of orbit validation can be shown. The RMS
differences between the days are quite large (Figure 7), which is because of serious loss of data at some
stations, especially for site THAT (Table 2) having only two days of tracking data available. In addition,
the mean RMS values of orbit overlap comparison for each BDS-3 satellite and each type of BDS-2
IGSO and MEO satellite are listed in Table 4. From the results of orbit overlap comparison in Figure 7
and Table 4, the RMS values of the along-track component are the largest for all satellites and the radial
component has the smallest RMS values due to the observation geometry. The averaged 3D RMS
values are 33.4 cm and 55.5 cm, and the averaged RMS values in the radial component reach 5.9 cm
and 13.4 cm for BDS-3 IGSO and MEO satellites, respectively. BDS-3 IGSO satellite shows smaller orbit
overlap errors than MEO satellite, simply because there are better spatially-distributed BDS-3-capable
tracking stations used in the POD and ground traces of satellites (refer to Figure 1).
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Figure 7. RMS values of 48-h orbit overlap errors for four BDS-3 satellites in along-track, across-track,
and radial directions during the period of the experiment.

It can be seen from Table 4 that the RMS values of BDS-2 IGSO and MEO satellites are smaller
than BDS-3 corresponding type of satellites, which may be due to the higher number and better spatial
distribution of tracking stations for BDS-2. To validate this assumption, we conducted BDS-2 and
BDS-3 POD in a unified processing strategy using only the stations listed in Table 2, which are capable
of tracking BDS-2 and BDS-3 satellites simultaneously. The results of orbit overlap comparison are
listed in Table 5. We can see that the averaged RMS values are larger than the corresponding results in
Table 4, especially for BDS-2. This indicates that the insufficient number and poor spatial distribution
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of the tracking stations are the main reasons why BDS-3 POD precision is relatively poor, as listed in
Table 4. However, the averaged RMS values for BDS-2 MEO are still smaller than the BDS-3 MEO
as listed in Table 5. This might be due to a lesser number of available observations for C33 and
C34 satellites.

Table 4. Averaged RMS values of 48-h orbit overlap errors for BDS-3 and BDS-2 satellites (unit: cm).

Satellite Along Cross Radial 3D

IGSO
C31 36.1 18.6 5.9 41.1
C32 21.9 11.8 5.9 25.6

MEO
C33 54.3 28.1 14.2 62.8
C34 40.4 23.1 12.6 48.2

BDS-2 GEO 224.0 8.1 7.1 224.2
BDS-2 IGSO 17.9 11.2 4.6 21.6
BDS-2 MEO 10.3 6.2 2.8 12.3

Table 5. Averaged RMS values of 48-h orbit overlap errors for BDS-2 satellites using only the reference
stations with BDS-3 and BDS-2 simultaneous tracking capability (unit: cm).

Satellite Along Cross Radial 3D

IGSO
C31 46.9 38.1 8.3 61.0
C32 38.7 34.5 7.5 52.4

MEO
C33 53.9 27.2 15.1 62.2
C34 50.4 37.0 14.1 64.1

BDS-2 IGSO 41.7 29.4 7.2 51.5
BDS-2 MEO 41.4 29.7 9.3 51.8

For external validation, satellite laser ranging (SLR) residuals provide the opportunity to assess
estimated orbit accuracy as they are based on an independent observation technique. BDS-3 satellites
C31, C32, C33, and C34 are equipped with laser retro-reflectors and tracked by several SLR stations
coordinated by the International Laser Ranging Service (ILRS) [33]. Since the length of a POD arc is
three days, only the orbital solutions of the middle day are used for validation. For the time period
considered in this study, only a very limited number of normal points (NPs) for BDS-3 satellites are
available: one SLR station tracked C31 (Mt Stromlo: four NPs), two SLR station tracked C32 (Shanghai,
Changchun: 20 NPs), three stations for C33 (Herstmonceux, Matera, Monument Peak: 21 NPs), and
two stations for C34 (Shanghai, Yarragadee: six NPs). One has to keep in mind that the SLR validation
primarily assesses the radial component of satellite orbit. The mean, standard deviation (STD), and
RMS of the SLR residuals for the four BDS-3 satellites are listed in Table 6. The overall RMS values
for C31, C32, C33, and C34 are 19.6 cm, 27.1 cm, 20.7 cm, and 10.9 cm, respectively, which are slightly
larger than that of overlap comparison in the radial component.

Table 6. SLR residuals for BDS-3 satellites C31, C32, C33, and C34.

Satellite # NP Mean (cm) STD (cm) RMS (cm)

C31 4 −19.6 0.4 19.6
C32 20 25.0 10.7 27.1
C33 21 9.8 18.3 20.7
C34 6 −3.3 10.4 10.9

3.3. Clock Performance

The onboard atomic frequency standard is a key component of a GNSS satellite. The stability
of the satellite clock affects the accuracy of the clock offset modeling and prediction of broadcast



Sensors 2017, 17, 1233 11 of 14

information and, thus, directly limits the user positioning and timing accuracy. Therefore, a high
predictability of the onboard frequency standards is required to overcome this limitation and enable an
extended validity of clock correction parameters. Since the early days of BDS, an improved accuracy
of the onboard clocks has been striven for with every new generation of satellites. Compared to BDS-2,
the primary frequency standard of BDS-3 satellites is based on the new RAFS and PHM made by
Chinese technology. During the experiment period, the new rubidium clocks are active as the primary
frequency standards in the C31, C33, and C34 satellites, and a PHM is active in satellite C32.

To assess the performance of the BDS-3 onboard clocks in terms of frequency stability,
modified Allan deviations (MADEV) computed using the 300 s clock estimates obtained from the
above-mentioned precise orbit and clock determination are shown in Figure 8. Before the computation
of MADEV, the outliers, clock jumps and frequency steps in the satellite clock time series were detected
and preprocessed [34]. In all cases, the hydrogen maser at site XATT located in Xi’an (China) has
been selected as a reference for the clock estimation. For BDS-2 satellites, at an integration time of
1000 s, the values of MADEV for all satellites are about 2–4 × 10−13. At an integration time of 10,000 s,
the values are about 6–10 × 10−14. These results are consistent with those given in Wang, et al. [10]
on the magnitude and relative size of each satellite, except for the C02 satellite, which is known to
suffer clock adjustments. Note that the results of BDS-2 shown here are slightly worse than those of
Montenbruck, et al. [7] and Steigenberger, et al. [11], likely due to the quality of the reference clock,
the orbit and clock quality. The degraded clock performance of C06 shown in Figure 8 compared to the
other IGSO satellites is also mentioned by Prange, et al. [35].
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Figure 8. Modified Allan deviation of BDS-3 (C31–C34) satellite clocks for the time period DOY
204–223 (2016). For comparison purposes, the performance of the BDS-2 satellite clocks is also
shown in the plot. G(2), I(2) and M(2) represent BDS-2 GEO (C01–C05 ), IGSO (C06–C10) and MEO
(C11, C12, C14) satellites, and I(3) and M(3) represent BDS-3 IGSO (C31, C32) and MEO (C33, C34)
satellites, respectively.

For BDS-3 satellites, the frequency stability of onboard clocks is better than that of BDS-2 on the
whole, particularly for the two MEO satellites C33 and C34. C34 shows the best performance, with a
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MADEV of about 1.5 × 10−13 at an integration time of 1000 s, and 4.1 × 10−14 at an integration time of
10,000 s. In addition, the mean frequency stability of 1000 s, 10,000s, and one day, according to different
satellite types, is listed in Table 7. For IGSO, BDS-3 shows an improvement of 19.2%, 38.8%, and 33.3%
for frequency stability of 1000 s, 10,000 s, and one day, respectively. For MEO, the corresponding
improvement is 36.8%, 30.7%, and 55.0%, respectively. In summary, BDS-3 satellite clocks outperform
previous BDS-2 clocks in terms of frequency stability thanks to new RAFS and PHM.

Table 7. Statistics of frequency stability of BDS-2 and BDS-3 satellite clocks.

MADEV BDS-2 GEO BDS-2 IGSO BDS-2 MEO BDS-3 IGSO BDS-3 MEO

1000 s 2.80 × 10−13 3.02 × 10−13 2.99 × 10−13 2.44 × 10−13 1.89 × 10−13

10,000 s 8.43 × 10−14 9.65 × 10−14 6.65 × 10−14 5.91 × 10−14 4.61 × 10−14

1 day 8.94 × 10−15 1.02 × 10−14 7.98 × 10−15 6.80 × 10−15 3.59 × 10−15

4. Conclusions

The transmitted signals of BDS-3 satellites on B1 and B3 frequencies have been tracked by several
GNSS monitoring stations from GA and iGMAS network, enabling a meaningful characteristic analysis
and performance assessment of this newer generation of the GNSS constellation. We analyzed
the observed C/N0 values of BDS-2 and BDS-3 B1 and B3 signals at two sites equipped with
different receivers and antennas. The results indicate that the signal strength of BDS-3 exceeds
BDS-2. Based on MP combinations, we investigated the multipath effect and receiver noise structure,
as well as bias variations between pseudo-range and carrier-phase measurements. Different from
other GNSS, the BDS-2 code measurements are affected by satellite-induced biases larger than 1 m
from horizon to zenith, which will inevitably affect the BDS-2 included precise applications which
involve the code measurements, e.g., ambiguity resolution based on the Hatch-Melbourne-Wübbena
(HMW) combination [36–38]. Fortunately, these biases do not seem to appear in BDS-3 B1 and B3
code measurements.

The BDS-3 orbit and clock parameters were estimated with a smaller amount of tracking stations,
showing that an orbit overlap precision of 2–6 dm in 3D RMS and 6–14 cm in the radial component for
four BDS-3 satellites is achievable. With a better spatially-distributed tracking network and less data
loss, the accuracy of orbit estimates is expected to be considerably improved, reaching a comparable
accuracy with BDS-2 IGSO and MEO satellites on the level of 1–2 dm. The new-generation RAFS
and PHM are currently active as primary frequency standards for BDS-3 satellites. We evaluated
the performance of the BDS-3 clocks using a modified Allan deviation. The results indicate that the
frequency stability of BDS-3 clocks is improved by about 20–50% compared to BDS-2.

The results obtained in this contribution are rather promising. A larger tracking network,
in particular a network providing global coverage for the MEO satellites is an important step for
the improvement of the BDS-3 orbit and clock solutions. However, there are still many related issues
requiring further investigations to achieve better accuracy. First, the PCO and PCV of the BDS-3
satellites should be estimated and refined in the future. Second, the attitude control mechanism and
solar radiation pressure model for BDS-3 should be tested and confirmed. In addition, the comparison
of BDS-3 clocks performance for both long and short-term stability with the latest generation of RAFS
and PHM of other GNSS, such as GPS and Galileo, is considered as an on-going research effort.
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