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Abstract: As an essential subfield of context awareness, activity awareness, especially daily activity
monitoring and fall detection, plays a significant role for elderly or frail people who need assistance in
their daily activities. This study investigates the feature extraction and pattern recognition of surface
electromyography (sEMG), with the purpose of determining the best features and classifiers of sEMG
for daily living activities monitoring and fall detection. This is done by a serial of experiments.
In the experiments, four channels of sEMG signal from wireless, wearable sensors located on lower
limbs are recorded from three subjects while they perform seven activities of daily living (ADL).
A simulated trip fall scenario is also considered with a custom-made device attached to the ankle.
With this experimental setting, 15 feature extraction methods of sEMG, including time, frequency,
time/frequency domain and entropy, are analyzed based on class separability and calculation
complexity, and five classification methods, each with 15 features, are estimated with respect to
the accuracy rate of recognition and calculation complexity for activity monitoring and fall detection.
It is shown that a high accuracy rate of recognition and a minimal calculation time for daily activity
monitoring and fall detection can be achieved in the current experimental setting. Specifically, the
Wilson Amplitude (WAMP) feature performs the best, and the classifier Gaussian Kernel Support
Vector Machine (GK-SVM) with Permutation Entropy (PE) or WAMP results in the highest accuracy
for activity monitoring with recognition rates of 97.35% and 96.43%. For fall detection, the classifier
Fuzzy Min-Max Neural Network (FMMNN) has the best sensitivity and specificity at the cost of the
longest calculation time, while the classifier Gaussian Kernel Fisher Linear Discriminant Analysis
(GK-FDA) with the feature WAMP guarantees a high sensitivity (98.70%) and specificity (98.59%)
with a short calculation time (65.586 ms), making it a possible choice for pre-impact fall detection. The
thorough quantitative comparison of the features and classifiers in this study supports the feasibility
of a wireless, wearable sEMG sensor system for automatic activity monitoring and fall detection.

Keywords: surface electromyography (sEMG); feature extraction; classifier; activity monitoring;
fall detection

1. Introduction

As a result of an aging population, the number of elderly or frail people who need help in their
daily activities is rapidly increasing [1–3]. This leads to a series of problems in caring for older people
and people with medical disabilities. Falls are the leading cause of trauma and death among people 65
or older and the resulting health care costs represent a serious public burden [1]. Helping this group of
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people to have a better life has many social benefits. With the development of the wireless network
and wearable sensing technology, wireless, wearable and reliable sensors provide the realization of
context awareness in wireless body area network (WBAN). The wearable sensors provide a central
device called the coordinator with raw data collected from human body. The coordinator processes the
data, and the result can then be used for diagnostics, prescription, wellness monitoring, entertainment,
rehabilitation, or security purposes [2]. One essential basis for context-aware applications is the
daily activity monitoring, which monitors a user’s biological signals, movement patterns, or body
posture [2], and further does activity recognition [3,4]. The capability of automatically identifying the
activities could improve the objectivity and comprehensiveness of a patient’s physical performance
record and further offers intelligent assistance for patients suffering from cognitive disorders such as
Parkinson’s or Alzheimer’s diseases [3]. The other important applications are fall detection [5,6] and
rehabilitation [7].

Compared with vision or acoustic sensors, wearable sensors provide important advantages such
as their compatibility with diverse physical environments, the feasibility of outdoor operations, and no
disclosure of privacy. One major concern for wearable sensors is the user’s compliance with wearing
additional devices. However, with wearable sensors becoming smaller, lighter, and wireless, they
can be worn in band- and ring-like fashion, or even embedded in clothes, causing little obstruction
when employed for activity awareness applications [4,8–10], and hence making them promising in a
wide range of uses, such as those related to walking issues, paralysis, neurological disorders and even
walking aids. Recent systems use gyroscopes, acceleration, heart rate monitors, EMG and other kinds
of sensors to help building a wearable device.

Due to their relative ease of use and versatility, accelerometer (ACC) or gyroscope sensors are
the most common sensors used in activity monitoring [11] and fall detection [12]. ACC sensors
collect the information of both the acceleration and the angle between gravity and the acceleration.
The acceleration energy can be distinguished between static and dynamic activities. Thus, a threshold
can be set for ADLs-detection with the use of accelerometer [12]. Existing studies can guarantee an
average recognition rate about 90% using SVM, fuzzy neural networks, etc., [13–15].

Despite their long-standing dominant role, ACC sensors have shortcomings. For example, ACC
sensors can hardly distinguish between active versus passive movements, meaning that these sensor do
not work well for users in elevators, cars, or subways. They also have difficulty in detecting abnormal
movements, like a mechanical tremor or vibration. These sensors are not good at differentiating
between loaded and non-loaded condition, e.g., stair-ascending carrying no load versus a 3 kg sandbag.
Last but not least, ACC sensors can hardly detect static activities, e.g., sitting in the chair for several
hours could possibly not be distinguished from exercising on a stationary bicycle with fixed-position
handlebars [3].

To overcome the aforementioned problems of ACC sensors, some studies have tried to use an
additional gyro to detect the postures at much higher cost [16]. As another widely used sensor in
monitoring activities, gyros detect the movement of the human body by the transformation of triaxial
and geomagnetic triangular angles. For example, Nyan used three gyroscope sensors at three different
locations, and explored sideways and backward falls from normal activities of daily living using
angular rate sensors (gyroscopes). Despite the 100% sensitivity, 16% of ADL events tested were
misinterpreted as falls [17]. The main drawback of gyro is its drift caused by disturbed torque, which
would generate false angular velocity.

In contrast with accelerometers or gyroscope sensors, surface electromyography (sEMG) sensors
which measure the electrical potentials generated by muscle activity using noninvasive electrodes
placed on the skin surface, have an inherent advantage in distinguishing passive and active activities,
predicting movements and getting a short calculating time, thus making it a possible solution to
overcome the above difficulties caused by accelerometer and gyroscope sensors.

EMG is not yet a popular choice of detecting activities, for the following reasons: first, the quality
of EMG data can be affected by movement artifacts, physical contact/pressure, sweat and muscle
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fatigue [18]. Besides, EMG signals are weak, thus adding to the difficulty in processing the raw
data. A second concern is that the quality of EMG signals has a high relationship with the sensor
location [7]. However, first, with the fast development of sensor technology, many sensors are designed
with amplifiers, software selectable filters and motion artifact suppression, like the Trigno™ Wireless
EMG System and SX230FW of Biometrics. Secondly, many studies have considered the knowledge
of anatomical landmarks for the location of EMG sensors [1,3,7,19–26], and indeed recent years have
seen the fast development of EMG technology in monitoring wearable systems.

Studies have found that sEMG signals could be successfully applied to gesture recognition, gait
analysis, limb prosthetic control, etc. [20–22]. An EMG sensor is employed in [27] to detect the muscle
activities during human locomotion and captures the human walking dynamics for motion recognition
and step detection in a Pedestrian Dead Reckoning (PDR) solution. Myers studied the feasibility
of AgNWs electrodes for measuring sEMG signals, which were flexible, wearable, and potentially
robust for daily use [28]. Recent developments in EMG technology have increased the feasibility of
implementation of an EMG-based monitoring system appropriate for use in the home or community.
These developments include portability, in the form of data loggers and telemetry systems, and the
miniaturization of sensors, which include on-board circuitry to minimize the physical size of the
system and enhance patient usability. EMG signals have inherent attributes that make them ideally
suitable for monitoring functional activities. They provide information from the different muscle
groups that are active during a motor activity; hence they have the potential to uniquely identify the
different activities [23].

With respect to fall detection, it is desirable to develop a system capable of detecting falls in
advance of an injury. This is difficult because of the low lead-time before the impact (less than 700 ms).
Compared with inertial sensors like ACC or gyro sensors, EMG has a decisive factor in this aspect.
Laboratory data show that inertial sensors detect a fall-action in 400 ms [29,30], while in order to realize
pre-impact fall detection [1], the detection time must be less than 300 ms [31]. EMG sensors would
reduce detection time to 200 ms or less [29]. Furthermore, in contrast with accelerometer or gyroscope
sensors, sEMG can recognize the movement in advance [4,32]. For this reason, EMG-based solution
has drawn much attention for fall detection.

EMG signal activation is associated with the muscle contraction and can be used to identify the
motion. Researchers have been working on this issue for several decades [1,3,8–10,19–26]. The critical
problem of these investigations is the choice and computation of effective features from the signals
and classification techniques. Feature extraction is generally divided into the time domain, frequency
domain, time-frequency domain, and entropy-spectrum. Among these, the time domain analysis is the
most common method because it is computed based on the signals’ amplitude, which can be easily
calculated. Arief et al. [33] analyzed Mean Absolute Value (MAV), Variance (VAR), Willison Amplitude
(WAMP), Waveform Length (WL), and Zero Crossing (ZC) from the time domain, aiming to find the
best way to minimize the complexity of implementation and reduce the cost of information processing.
For the frequency domain, two modified mean and median frequencies are presented for robust feature
extraction [34]. Time-frequency domain, a combination of time and frequency, can characterize varying
frequency information at different time locations, providing plenty of non-stationary information about
the analyzed signals [35]. One of the methods, Wavelet Transform (WT), a research hotspot in recent
decades, is more appropriate for representing short bursts of high-frequency signals or long-duration,
slow-varying signals [36]. The Wavelet Packet Transform (WPT), a crucial extension of WT, can
effectively eliminate the high frequency noises and extract the characteristics of EMG signals [37].
However, the WT is still poor in high-frequency band and WPT lacks a translation-invariant property.
Therefore, a new solution was proposed to use the wavelet packet node energy to construct the feature
vector [38]. Entropy-spectrum, as a measure of disorder or uncertainty in the data, was introduced
by Shannon. To date, many different types of entropy methods have been used in many diverse
applications within the biomedical domain [39]. Diab et al. [40] investigated the performance of the
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sample entropy, which was applied to real uterine EMG signals to distinguish between pregnancy and
labor contraction bursts.

Another important step in activity monitoring and fall detection is the classification technique
selection. For systems with a few inputs, the most common algorithm for classification, especially for
the statistical feature evaluation and classification, is the Linear Discriminant Analysis (LDA). Though
accurate and fast, its use becomes complicated for multi-input and multi-output systems. To address
this problem, the so-called “kernel-trick” was taken into account. For example, Nonparametric
Weighted Feature Extraction (NWFE), Principal Component Analysis (PCA), kernel PCA with Gaussian
kernel, and kernel PCA with polynomial kernel were suggested for classification [38]. Kakoty et al. [36]
used a linear kernel Support Vector Machine (SVM) with discrete wavelet transform to classify six
grasp types, which showed a recognition rate of 84± 2.4%. Based on machine learning theory, the SVM
is the state-of-the-art classification method, which has significant advantages due to its high accuracy,
elegant mathematical tractability, direct geometric interpretation, and lack of a need for a large number
of training samples to avoid overfitting [41]. To achieve a higher efficiency, Fuzzy Min-Max Neural
Network (FMMNN), whose learning phase is single-pass-through and online-adaptive, was studied.
This also led to other modified methods like multi-level fuzzy min-max (MLF) classifier, which mainly
uses a multi-level tree structure handles the overlapping area problem [42]. Other widely used
unsupervised learning methods are clustering techniques. Fuzzy c-means (FCMs) data clustering was
used to automate the construction of a simple amplitude-driven inference rule base, which resulted in
the overall classification rates of lower-limb actions ranging from 94% to 99% [43].

In retrospect, a few studies can be found for the quantitative performance comparison of feature
extraction and classification of sEMG in the context of controlling prosthetic limbs or gait phase
recognition [44,45], but almost no studies can be found for the quantitative performance comparison of
activity monitoring and fall detection. For systems with a good performance, EMG features should be
selected in maximum class separability, high recognition accuracy and minimum computational
complexity, ensuring as low as possible misclassification rate in real-time implementation with
reasonable hardware [44]. The current research is aimed at selecting the best sEMG features and
classification method from the three approaches mentioned above for the recognition of daily activities
and falls.

The remainder of this paper is structured as follows: Section 2 outlines daily activities and
falls, and data acquisition. Section 3 presents various feature extraction techniques and classification
methods. The analysis of experiments performed are described in Section 4. The conclusions and
discussions are presented in Sections 5 and 6, respectively.

2. Activity Monitoring and Data Acquisition

In order to achieve daily activity monitoring and fall detection, it is necessary to distinguish daily
activities and falls. The most common three activities of daily living (ADL) were selected, i.e., walking,
stair-ascending and stair-descending. Four ADLs, stand-to-squat, squat-to-stand, stand-to-sit, and
sit-to-stand, were selected as well. They are not easily distinguished from falling or each other.

Since the activities mentioned above result from contraction of the muscles in the lower limbs,
four surface electrodes were used to measure sEMG signals from gastrocnemius, rectus femoris, tibialis
anterior, and semitendinosus, which are muscles with lower limb motions. The sEMG electrodes were
placed upon muscles of the left lower limb, indicated by small circles in Figure 1 marked by CH1
through CH4. Semitendinosus plays a crucial role in stretching the hips, flexing the legs and rotating
the knee joints externally [46]. Gastrocnemius is mainly concerned with standing and walking activities.
Rectus femoris is a powerful knee extensor, which has a role in flexing the hips, and the tibialis anterior
muscle’s roles are mainly regarding stretching the ankle and enabling the foot eversion [47].

The sEMG signal was recorded using Trigno™ Wireless EMG (Delsys Inc, Natick, MA, USA),
which provided a 16-bit resolution, a bandwidth of 20–450 Hz, and a baseline noise <1.25 µV (rms).
It has a typical operating range of 40 m and the communication protocol is Bluetooth. It has a motion
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artifact suppression (patent) that can be freely moved. The sEMG signals were sampled at 1024 Hz
using EMGworks 4.0 acquisition software (DelSys Inc.). All sensors were secured to the skin by
a double-sided adhesive interface. A reference electrode was attached to the skin near the SEMG
electrodes to supply a voltage baseline.

Figure 1. Muscles channels and sEMG sensors placement. (a) Forward muscle; (b) Backward muscle;
(c) Forward sensors placement; (d) Backward sensors placement.

3. Algorithm Description

3.1. Feature Extraction

Surface EMG features were computed using 1.5 s epochs (1536 samples), which was the time
necessary to complete the longest activity (stand-to-squat) in our experiment. And we collected data
for each activity separately and get the features.

For the purpose of comparison, 15 well-known EMG feature types were considered as shown in
Table 1, where N and xi denote the number of samples and the i-th raw EMG sample, respectively, and
u(x) indicates a unit-step function.

(1) Integral of Absolute Value (IAV)

In case of discrete signals, IAV is represented as the average of the absolute value of each signal
sample, and the formula is as follows [4]:

IAV =
1
N

N

∑
i=1
|xi| (1)

(2) Variance (VAR)

In the stochastic process, variance characterizes the average power of a random signal and can be
explained as follows [4]:

VAR =
1

N − 1

N

∑
i=1

x2
i (2)

(3) Wilson Amplitude (WAMP)

This is the number of times that the difference between two consecutive amplitudes exceeds a
certain threshold. It can be formulated as:

WAMP =
N

∑
i=1

u(|xi+1 − xi| − T) (3)

In this study, a threshold T of 0.05 V is considered. This feature is an indicator of firing motor unit
action potentials (MUAP) and therefore an indicator of the muscle contraction level [25].
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(4) Zero Crossing (ZC)

ZC represents the number of times that the amplitude of the signal passes through zero [48]:

ZC =
N−1

∑
i=1

u(−xixi+1) (4)

(5) Number of Turns (NT)

NT counts the number of changes in the sign of the slope, in other words, the number of signal
peaks [49]:

NT =
N−2

∑
i=1

u[(xi+1 − xi)(xi+1 − xi+2)] (5)

(6) Mean of Amplitude (MA)

This feature determines the mean of the difference in amplitudes of two consecutive samples [44]:

MA =
N−1

∑
i=1
|xi+1 − xi| (6)

(7) Mean Frequency (MF)

This feature estimates the mean frequency of the signal in a time segment [50]:

MF =
∑N

i=1 hi fi

∑N
i=1 hi

(7)

where fi denotes frequency, and hi denotes intensity of frequency spectrum.

(8) Histogram (HIST)

HIST contains a series of highly unequal vertical stripes or segments representing data
distribution [49]. This study considers the amplitude range as −5 V–5 V and then divides it into 21
amplitude slots of equal size.

(9) Auto-Regressive Coefficient (AR)

In the Auto-Regressive model, the signal samples are estimated by the linear combination of
their earlier samples. This process computes linear regression coefficients. It has been shown that
the EMG spectrum changes with muscle contraction that results in change in AR coefficients [51].
Various experimental and theoretical studies have shown that the model order P = 4 is suitable for
EMG signals [52]. Therefore, it was used in the current research.

(10) Auto-Regressive Coefficient From Third-Order Cumulant (ARCU)

The ARCU is the AR from the third-order cumulant of the signal in each time segment. The novel
part of this method is that the input of the algorithm is the cumulant rather than an auto-correlation
function. Normally ARCU can effectively separate recycle stationary signals and stationary signals,
and completely suppress Gaussian colored noise in theory. Here, a fourth-order AR model from the
third-order cumulant is used [44].
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(11) Energy of Wavelet Coefficient (EWT)

This feature computes the energy of the wavelet-transformed signal:

Fj =

√√√√ 1
K

K

∑
k=1

W2
j,k (8)

where Fj is the coefficient of wavelet energy. K is the number of the j-th layer decomposed coefficient.
Wj,k is the k-th coefficient of the j-th layer decomposed coefficient. Db8 wavelet and decomposition
layer 5 is used in our study.

(12) Energy of Wavelet Packet Coefficient (EWP)

This feature computes the energy of the wavelet packet transformed signal. It is similar to the
EWT. Compared with EWT, the advantage of EWP is that it can deal with both high and low frequency
components, but the number of feature components is increased, therefore the computation complexity
is also increased [34].

(13) Zero Crossing of Wavelet Coefficient (ZCWT)

It is a similar algorithm to ZC. It calculates the number of base-line crossings in the wavelet
domain [53]

ZCWT =
K

∑
j=1

u(−WjWj+1) (9)

where Wj is j-th layer decomposed coefficient.

(14) Fuzzy entropy (FE)

Fuzzy entropy describes the degree of fuzziness of fuzzy sets, which used to quantify the regularity
of time series. The formula is as follows:

FuzzyEn(N, m, r) = lim
N→+∞

(ln φm − φm+1) (10)

φm = 1/(N −m)
N−m

∑
i=1

[1/(N −m− 1)]
N−m

∑
j=1,j 6=i

Dm
ij (11)

where N is the number of samples, m defines the dimension of the data, Dij is the similarity degree
of two samples, r is the width of the exponential function in Dij, and φm is called the mean average
similarity [54].

(15) Permutation entropy (PE)

The permutation entropy is a way of quantifying the relative occurrence of the different motifs [55],
which is based on the complexity of the measurement, applies to non-linear signal, and has a high
anti-interference ability and a good robustness. The core of PE is choosing n consecutive points of
samples and making up an n-dimensional vector. The obtained signals are sorted in ascending order.
The permutations and combinations of the new sequence is one of n!. Then probability statistics of
various permutations and combinations in the entire time series is calculated. It is symbolized as p(π),
in which π represents different permutations ways [56]. The formula is as follows:

H(n) = −
n!

∑
π=1

p(π) ln(p(π)) (12)
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Table 1. List of features.

ID Extraction Feature Acronym Dimension

1 Integral of Absolute Value IAV 4
2 Variance VAR 4
3 Wilson Amplitude WAMP 4
4 Zero Crossing ZC 4
5 Number of Turns NT 4
6 Mean of Amplitude MA 4
7 Mean Frequency MF 4
8 Histogram HIST 84
9 Auto-Regressive Coefficient AR 12

10 Auto-Regressive Coefficient From Third-Order Cumulant ARCU 12
11 Energy of Wavelet Coefficient EWT 20
12 Energy of Wavelet Packet Coefficient EWP 32
13 Zero Crossing of Wavelet Coefficient ZCWT 20
14 Fuzzy Entropy FE 4
15 Permutation Entropy PE 4

3.2. Feature Class Separability

In order to perform a qualitative evaluation of the extracted feature, the Fisher’s discriminant
function was used to translate data samples into a class separability index.

To achieve the class separability index, the trace of the between-class scatter matrix is divided
into the trace of the within-class scatter matrix [57].

The between-class scatter matrix SB is defined as follows:

SB =
k

∑
i=1

(mi −mm)(mi −mm)
T (13)

SB is the covariance matrices of the means of all classes in which mm is the mean of all the classes’
means and mi is the mean of the i-th class.

The within-class scatter matrix Sw is defined as follows:

Sw =
k

∑
i=1

E((x−mi)(x−mi)
T) (14)

Sw is the mean of the covariance matrices of all classes in which mi is the mean of the i-th class
and x is the sample vector.

The class separability index is calculated as:

J =
trace(Sb)

trace(Sw)
(15)

It is obvious that the quality of the space feature will improve when the value of the
index increases.

3.3. Classification

Five representative classification techniques (shown in Table 2) were considered and listed below:

(1) Fisher Linear Discriminant Analysis (FDA)

The FDA, also known as Fisher’s Linear Discriminant Analysis (LDA), finds a linear combination
of features that characterizes or separates two or more classes of objects or events. The resulting
combination may be used as a linear classifier or for dimensionality reduction before later
classification [57].
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(2) Fuzzy Min-Max Neural Network (FMMNN)

The FMMNN is based on the hyperbox fuzzy sets. A hyperbox is defined by its minimum and
maximum points which are created by the input patterns [58]. The membership function is set with
respect to the minimum and maximum points of the hyperbox [59]. Its multilayer structure is capable
of dealing with a nonlinear separability issue. It also possesses an adaptive learning capability.

(3) Gaussian Kernel Fisher Linear Discriminant Analysis (GK-FDA)

Kernel Fisher Linear Discriminant Analysis (KFDA) is the evolution of the FDA and it calculates
the projection by kernel function rather than Fisher’s algorithm. In a real experiment, most of the
kernel methods solve a linear problem in the kernel feature space [60]. In the current study, Gaussian
kernel, the most pervasive kernel, is used.

(4) Gaussian Kernel Support Vector Machine (GK-SVM)

It is a nonlinear version of the SVM classification. Kernel trick with SVM is the most used kernel
classifier among the available kernel methods. It makes the SVM more robust and flexible for any kind
of data irrespective of its linearity to achieve a highly accurate classification rate [60].

(5) Fuzzy C-means algorithms (FCM)

Fuzzy C-means (FCM) is a method of clustering that allows data to belong to two or more
clusters [61]. Fuzzy C-means model aims to get membership degree of each sample point in all
classes through optimization of the objective function. This function determines the sample type and
fulfills the purpose of automatic sample data classification. The common Fuzzy C-means model is an
unsupervised machine learning that analyzes and models data with fuzzy theory.

Table 2. List of classification methods.

Classification Algorithm Acronym

Fisher Discriminant Analysis FDA
Fuzzy Min-Max Neural Network FMMNN

Kernel Linear Discriminant Analysis GK-FDA
Kernel Support Vector Machine GK-SVM

Fuzzy C-Means FCM

4. Experiments and Results

Three subjects (two males and one female, age 24–26, height 160–180 cm, weight 48–70 kg) without
neural or musculoskeletal deficits were randomly recruited for the experiment. Each subject performed
seven activities of daily living (ADLs): stand-to-squat, squat-to-stand, stand-to-sit, sit-to-stand,
stair-ascending, stair-descending, and walking. In addition, a few unexpected simulated trip falls
induced by a custom-made device attached to the ankle, were interspersed among the normal walking
trials. The custom-made device attached to the ankle is made by a round cushion and a rope. The
participants repeated the procedure for 10 times in each experiment day, making sure that the total
times of each activity and trip fall was at least 30, and the order of activities stayed same for each
experiment. The experiment scene is shown in Figure 2.
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(b) squat-to-stand; (c) stand-to-sit ; (d) sit-to-stand; (e) walking, stair-ascending and stair-descending;
(f) trip-fall.

Typical EMG signals recorded from a typical subject are shown in Figure 3, illustrating the raw
sEMG signals of eight typical activities used in this paper. The sEMG signals burst only at the posture
transition. During the period of the posture transition, sEMG signals have obvious ups and downs,
and the magnitude of some of the transition roses up to 7 mV. The trip falls have a relatively obvious
change in most channels. Squat-to-sit and sit-to-squat had a similar EMG with a high magnitude in
Channel 1. Others, such as stair-descending and walking, can hardly be recognized from the raw
signals. Each activity has its own sEMG patterns in the four channels of signals. This issue reflects the
difference in signal patterns of four muscles on lower limb.

4.1. Class Separability Results

Figure 4 illustrates class separability index values (refer to Section 3.2) of the 15 types of EMG
feature sets (Table 2 and Section 3.1) for each of three subjects. A high class separability score means
that the corresponding feature data are highly separable. The WAMP feature is ranked as the top one,
followed by MA, EWT, and EWP. The IAV, ARCU, and FE features are the worst ones.

Figure 4 also shows that there is no significant individual difference in the separability value
of EMG features. The average of Spearman’s rank correlation coefficient value between subjects is
almost 0.98, indicating that the type ranking hardly vary among individuals. This result indicates
that the main results in our study remain intact even for a small number of subjects with a large
number of samples for each individual subject. Besides, there is no considerable difference in inherent
characteristics of EMG signals between subjects with disabilities and subjects without disabilities [3].

Calculation complexity is an important factor in online applications, particularly in fall detection.
The complexity is normally reflected in the calculation time. In the current study, it was calculated on
a PC (Intel Core i5-4210U at a 2.4-GHz CPU with a 4G RAM), using MATLAB R2013.
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Figure 5 shows the class separability values and calculation time, which were averaged across
subjects, for each individual feature type. The results illustrate that although some feature types have
a good separability, some of them like the EWT and EWP, which get better separability values than
many other features, have a very long calculation time. Considering this issue, the paper introduced a
performance index to trade off the separability value against calculation time, which is defined as:

index = (1− w)× a + w× t (16)

where a denotes the normalized separability of each extraction method, t means the inverse normalized
calculation time, w (ranges 0 to 1) denotes the proportion of the computational cost in the algorithm.
The fastest and the best separability equalized to 100, and the rest are quantified by their respective
proportions. According to this equation, the higher index means the better feature. Since the separability
always plays a more important role in an arithmetic, the w’s range was selected from 0 to 0.5 and the
interval was equalized to 0.05. Figure 6 illustrates that regardless of calculation time (w = 0), all of
WAMP, MA, EWT and EWP performed well. As expected, the index of AR was mostly affected by the
time. When the calculation time weighs greater than 0.3, AR becomes better than others, except for
WAMP. The figure also shows that taking into account the time, the WAMP still ranked first among
those feature types.Sensors 2017, 17, 1229  12 of 19 
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4.2. Activities Recognition Results

The feature dataset of seven kinds of ADLs and falls was individually input into five types of
classifiers (Table 2). All simulations were performed using a fivefold cross validation. The dataset was
divided into five equal-sized subsets. Among those subsets, one of the subsets was chosen as testing
data and the remaining subsets as training data. This process was repeated for each subset, resulting
in five results. The results averaged over five sub-data sets are showed in Figure 7.
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The coefficients in algorithm always play an important role to judge the goodness of an algorithm.
Hence, to perform simulations of the FMMNN, the exhaustive search was employed. It means that
the best result out of all experiments with a wide range of parameter values was chosen. To perform
simulations of the GK-LDA and the GK-SVM, the best result among all experiments with a number of
parameter values varying from 0.5 to 5 with a step size of 0.1, was chosen.

The average of recognition accuracy rates can be seen in Figure 7 and Table 3. The calculation
time, which is the time of feature extraction and the time of pattern recognition, is shown in Table 3.
The GK-SVM using the PE feature ranked first at 97.35%. The classifier GK-SVM with IAV, MF, AR, FE
and PE features delivered the recognition rates of above 95% which are satisfied for activity monitoring.
The classifier GK-SVM with all features resulted in the calculation time below 50 ms.

The GK-SVM gets the highest recognition rate for all feature types except for the ZC. The GK-SVM
gets also the lowest calculation time for all feature types. The best feature is WAMP for all classifiers
except for FMMNN, with which the EWP feature is the best feature. Figure 7 also illustrates that the
GK-SVM has the minimum variance for all feature types. Figure 8 is a plot of the average recognition
accurate rates versus the average calculation time of 15 features across the classifiers. This figure
clearly shows that the best features are in the bottom right of the figure.
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Table 3. Recognition Rates and Calculation Time (%, ms). The bold numbers indicate the features with
the highest accuracy rate for each classifier. The shaded numbers indicate the classifiers with the highest
accuracy rate for each feature. The zigzag underlines indicate the features with shortest calculation
time for each classifier. The straight underlines indicate the classifiers with shortest calculation time for
each feature.

FMMNN FDA GK-FDA GK-SVM FCM

IAV 67.50 800.94 62.60
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4.3. Fall Detection Results 

All seven activities in ADLs are classified as type one and the trip-fall as type two. The used 

recognition method is the same as that of section 3.3. Figure 9 and Table 4 show the sensitivity (SEN, 

falls identified correctly), the specificity (SPE, ADLs identified correctly), and the calculation time. 

The highest sensitivity is 99.35% that belongs to two classifiers. The first classifier is the FMMNN 

with the WAMP, HIST, AR, ZCWT, and FE features and the second classifier is the FDA with the 

VAR, WAMP, MA, and FE features. All classifiers with all feature types have good specificity of 

above 95%, except the FDA with all feature types and the FCM with the feature of ZC, MA, ZCWT 

and PE. However, the FCM is the worst in terms of both the sensitivity and specificity. Besides, the 

performance of LDA was poor in the specificity. It is worth noting that the false positive was mainly 

caused by the stand-to-sit (Channel 1 of the Figure 3), whose signal is similar to trip-falls. Although 

the FMMNN classifier regardless of feature types has the best performance in both of sensitivity and 

specificity, its calculation time is longest. The classifier GK-FDA with the feature WAMP delivered 

high sensitivity (98.70%) and specificity (98.59%) and a short calculation time (65.586 ms), which is 

satisfied for pre-impact fall detection. 

The WAMP and MA, which are two feature types with high recognition rates in 

ADLs-recognition, were chosen and their sensitivity, specificity, the total accuracy recognition rates 

were analyzed. The results are shown in Figure 10. The WAMP, FMMNN, and GK-FDA features 

performed well in all three rates. The GK-SVM has a high specificity but its sensitivity drops to 

87.5%, meaning that it cannot recognize tip-falls perfectly. Although the GK-SVM for the MA feature 

has a specificity of 90%, but its sensitivity is even lower than the others’. It indicates that the 

GK-SVM method is not an appropriate choice for this process.  
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Figure 8. The average recognition accurate rates vs. the average calculation time of 15 features across
the classifiers.

4.3. Fall Detection Results

All seven activities in ADLs are classified as type one and the trip-fall as type two. The used
recognition method is the same as that of Section 3.3. Figure 9 and Table 4 show the sensitivity (SEN,
falls identified correctly), the specificity (SPE, ADLs identified correctly), and the calculation time. The
highest sensitivity is 99.35% that belongs to two classifiers. The first classifier is the FMMNN with the
WAMP, HIST, AR, ZCWT, and FE features and the second classifier is the FDA with the VAR, WAMP,
MA, and FE features. All classifiers with all feature types have good specificity of above 95%, except
the FDA with all feature types and the FCM with the feature of ZC, MA, ZCWT and PE. However, the
FCM is the worst in terms of both the sensitivity and specificity. Besides, the performance of LDA was
poor in the specificity. It is worth noting that the false positive was mainly caused by the stand-to-sit
(Channel 1 of the Figure 3), whose signal is similar to trip-falls. Although the FMMNN classifier
regardless of feature types has the best performance in both of sensitivity and specificity, its calculation
time is longest. The classifier GK-FDA with the feature WAMP delivered high sensitivity (98.70%)
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and specificity (98.59%) and a short calculation time (65.586 ms), which is satisfied for pre-impact
fall detection.

The WAMP and MA, which are two feature types with high recognition rates in ADLs-recognition,
were chosen and their sensitivity, specificity, the total accuracy recognition rates were analyzed. The
results are shown in Figure 10. The WAMP, FMMNN, and GK-FDA features performed well in all
three rates. The GK-SVM has a high specificity but its sensitivity drops to 87.5%, meaning that it cannot
recognize tip-falls perfectly. Although the GK-SVM for the MA feature has a specificity of 90%, but its
sensitivity is even lower than the others’. It indicates that the GK-SVM method is not an appropriate
choice for this process.
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Table 4. Sensitivity, Specificity and Calculation times (%, % and ms). The bold numbers indicate
the features with highest Sensitivity and Specificity rate for each classifier. The shaded indicate the
classifiers with the highest Sensitivity and Specificity rate for each feature. The zigzag underlines
indicate the features with shortest calculation time for each classifier. The straight underlines indicate
the classifiers with shortest calculation time for each feature.

FMMNN FDA GK-FDA GK-SVM FCM

IAV 83.33 95.89 798.171 71.43 85.37 22.238 76.60 95.60 71.658 67.70 97.70 31.680 23.53 99.80 80.084
VAR 76.92 74.60 774.504 99.35 82.35
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sEMG sensors was sufficient for achieving the sensitivity and specificity results in the 90% range, with
less than 10% misclassifications. This study provides evidence that automated monitoring of a variety
of activities of daily living and fall detection can be achieved using a wireless and wearable surface
EMG sensor system with feature extraction and pattern recognition techniques.

There are several basic limitations associated with this study that need further development
to provide a wearable sEMG-based activity monitoring and fall detection system for the elderly or
patients that can be used under real-world conditions. The authors of the current research study
monitored “scripted” daily activities and simulated trip falls performed by healthy volunteers in a
laboratory environment. It is not known how well this algorithm would work in a real scenario with
unscripted free-form activities performed by elderly or real patients. In this study, each individual was
trained separately and required multiple repetitions of the task to obtain sufficient data for training
and testing purposes. However, it is not clear how different it is from identifying activities and falls in
real life with a larger task set. These conditions need to be investigated before using these algorithms
for clinical purposes.

6. Conclusions

Based on the accuracy of recognition rate and computational complexity, a series of methods
of surface EMG feature extraction and recognition were estimated for activity monitoring and fall
detection. The statistical analysis of fifteen types of EMG feature sets determined that the WAMP, MA,
EWT, and EWP features are highly separable and the IAV, VAR, and AR features have the shortest
calculation time. The statistical analysis of class separability against calculation time recognized the
WAMP, AR, and MA as the most advantageous features. In terms of activity monitoring, the WAMP
is the best feature, the GK-SVM is the best classifier, and the combination of the GK-SVM and PE
is the best possible combination of EMG feature types and classification methods. In terms of fall
detection, the FMMNN classifier has the best performance in the sensitivity and specificity, but the
longest calculation time. Since the detection time for realizing pre-impact fall detection must be less
than 300 ms [1], the best choice is the GK-FDA classifier with the WAMP feature whose sensitivity and
specificity are both above 98% and the calculation time is 65 ms.

This system would further reduce recognition errors if combined with mechanical sensors such
as accelerometer or gyroscope sensors. This idea helps to achieve both high recognition rate and
reliability for the development of activity monitoring and fall detection systems. Besides, it also has
important implications for other EMG signal-based devices, such as clinical assistive devices, walking
assist devices, and robotics or prosthetic devices.
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