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Abstract: This article proposes a protocol layer trust-based intrusion detection scheme for wireless
sensor networks. Unlike existing work, the trust value of a sensor node is evaluated according to
the deviations of key parameters at each protocol layer considering the attacks initiated at different
protocol layers will inevitably have impacts on the parameters of the corresponding protocol layers.
For simplicity, the paper mainly considers three aspects of trustworthiness, namely physical layer
trust, media access control layer trust and network layer trust. The per-layer trust metrics are then
combined to determine the overall trust metric of a sensor node. The performance of the proposed
intrusion detection mechanism is then analyzed using the t-distribution to derive analytical results of
false positive and false negative probabilities. Numerical analytical results, validated by simulation
results, are presented in different attack scenarios. It is shown that the proposed protocol layer
trust-based intrusion detection scheme outperforms a state-of-the-art scheme in terms of detection
probability and false probability, demonstrating its usefulness for detecting cross-layer attacks.
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1. Introduction

Wireless sensor networks (WSNs) are widely used in variety of fields, such as agricultural,
environmental, industrial and military monitoring applications. WSNs can be divided into
flat- architecture WSNs and clustered-architecture WSNs according to their architecture. In the
flat- architecture WSNs, all the sensor nodes (SNs) transmit their own data or relay data for other
nodes to the base station (BS). In the clustered-architecture WSNs, the adjacent SNs are organized as a
cluster, and a cluster head (CH) controls its cluster. The SNs that belong to the same cluster can only
exchange information via their CH and the CH transmits information either directly or through some
other CHs to the BS. Clustering brings many advantages, such as energy efficiency, better network
communication, efficient topology management, minimized delay, and so on.

WSNs face serious security problems, because of the openness of nodal deployment and wireless
communication. In some WSN deployments, the SNs may be captured and the key information
might be leaked or compromised. The purpose of an attacker is to disrupt the security attributes of
WSNs, including confidentiality, integrity, availability and authentication. To achieve these objectives,
the attacker may launch attacks from different protocol layers of WSNs. At the physical layer,
the attacker can jam the physical channel by interfering with the radio frequencies that nodes use
for communication [1]. The attacker can also extract the secret information from the captured node,
tamper with its circuitry, modify the program codes, or even replace it with a malicious node [2].
Attacks at the medium access control (MAC) layer aim to disrupt the availability of the network by
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purposefully creating collisions, obtain unfair priority in the contention for the channel or dissipate the
limited energy of nodes. Attacks at the MAC layer include collision, denial of sleep, Guaranteed Time
Slot (GTS) attack, back-off manipulation and so on [3–6]. Attacks at the network layer aim to disrupt
the network routing, and acquire or control the data flows. Examples are spoofed routing information,
selective packet forwarding, sinkhole, wormhole, blackhole, sybil, and hello flood attack [7–10].
Besides the attacks aiming at a single protocol layer, there are cross-layer attacks which relate to
multiple layers in WSNs [11–13]. Cross-layer attack can achieve better attack effects, better conceal the
attack behavior or reduce the cost of attack compared to the attacks at a single layer.

Considering the limited resources of the SNs, it is not realistic for WSNs to implement
high-strength security mechanisms. Furthermore, the attacker may have the ability of breaking
through or bypassing the protection of security mechanism with the progress of attack technologies.
Thus serving as a second wall, intrusion detection plays an important role in protecting the network.
The intrusion detection system for WSNs can detect whether there are behaviors violating the security
policy and record evidence of being attacked by collecting and analyzing the information from
sensor nodes and networks. It can send alarm timely to the system administrator and perform some
countermeasures against the attack.

There are now two kinds of intrusion detection systems [14]. One is the misuse detection system,
the other is the anomaly detection system. Misuse detection is based on predefined rules, where it
is easy to detect known attacks, but impossible to detect unknown attacks. Anomaly detection
compares present activities with normal system status and user behaviors to detect anomalies.
Compared with misuse detection, anomaly detection has higher detection rate and the ability to detect
unknown attacks, with its false positive rate increasing correspondingly. The focus of this paper is on
anomaly detection schemes. Recently, different types of anomaly detection schemes based on traffic
prediction [15], statistical method [16], data mining [17], game theory [18–20], immune theory [21],
or trust management [22–37], etc., have been proposed.

However, there are still some unsolved issues in the existing intrusion detection schemes for
WSNs. Many of the schemes detect attacks according to the anomalies of network traffic. Actually, it is
a great challenge to distinguish normal behavior from abnormal behavior because not all of attacks
on WSNs will introduce abnormal network traffic. Many intrusion detection schemes only aim to
detect several typical types of attacks, while the scenarios of different types of attacks carried out
concurrently or cross-layer attacks are seldom considered. The attack behaviors on WSNs are usually
interconnected and transformed mutually. It is difficult to obtain good detection performance by only
studying how to detect a certain kind of attack. Therefore, it is necessary to pay more attention to
complex attack behaviors, such as cross-layer attack, and study how to utilize the protocol feature
parameters at different protocol layers, especially the key parameters which may have an important
influence on the performance of the network in order to improve the detection ability of intrusion
detection systems [38].

In this paper, we propose a trust-based intrusion detection scheme which uses the deviations of
parameters of multiple protocol layers as trust metrics, considering that the attacks will inevitably
have impacts on the parameters of the different protocol layers. Inspired by the method proposed by
Bao et al. [34,35], we utilize weighting method to build the system model and t-distribution to analyze
the performance of our scheme. In our scheme, the monitoring node observes the key parameters of
the monitored nodes at the physical layer, MAC layer and network layer, and calculates the deviations
of these key parameters. According to the deviations of the parameters, the monitoring node can
evaluate the trustworthiness toward the monitored node by aggregating the trust values at different
layers and send it to the CH or BS. The CH or BS can then calculate the aggregated trust value of a
node according to the trust values which are evaluated by multiple monitoring nodes. If the trust
value of a node is less than a predefined threshold, the node is regarded as abnormal. Because the key
parameters of multiple layers are being monitored, it is effective for our scheme to detect different
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types of attacks at different protocol layers. Moreover, our scheme is applicable to both clustered
WSNs and flat WSNs.

The rest of this paper is organized as follows. Section 2 surveys existing work on trust-based
intrusion detection in WSNs. Section 3 describes our intrusion detection scheme. Section 4 analyzes
the performance of our scheme by using analytical and simulation approaches, and compares its
performance results with those of an existing scheme in the literature. Section 5 concludes the paper.

2. Related Work

Trust management is an effective method to identify malicious, selfish or compromised nodes.
In recent years, research on trust management and its application to intrusion detection has received
considerable attention from researchers. The current trust evaluation schemes aim to improve the
detection performance, resource efficiency, robustness etc., by using fuzzy theory, probability theory
and statistics, weighting method, etc. [22].

In [23–25], fuzzy theory is used to determine the trust degree of a sensor node. Feng et al. [23]
proposed a trust evaluation algorithm named as Node Behavioral strategies Banding belief theory
of the Trust Evaluation algorithm (NBBTE). In their scheme, each node firstly establishes the direct
and indirect trust values of neighboring nodes by comprehensively considering various trust factors
and then fuzzy set theory is used to decide the trustworthiness levels of the sensor nodes. Finally,
D–S evidence theory method is adopted to obtain an integrated trust value instead of a simple
weighted-average one. Wu et al. [24] put forward a trust model to detect anomaly nodes in WSNs
based on fuzzy theory and evidence theory. Fuzzy theory is used to calculate the trustworthiness
levels of multi-dimensional characteristics of the evaluated node and the evidence theory is applied
to integrate a direct trust value for the evaluated node. Shao et al. [25] proposed a lightweight and
dependable trust model for clustered wireless sensor network, in which the fuzzy degree of nearness
is adopted to evaluate the reliability of the recommended trust values from the third party nodes.

In [26,27], probability distribution is used to build the trust evaluation model. Ganeriwal et al. [26]
presented a distributed reputation-based framework for sensor networks. It uses a watchdog
mechanism to monitor communication behaviors of neighboring nodes, represents node reputation
distribution using Beta distribution and calculates the trust value according to the statistical expectation
of the probability reputation distribution. Luo et al. [27] proposed a dynamic trust management scheme
for WSNs. It uses a hash algorithm to generate identify labels for SNs and builds a trust-evaluating
model based on beta density function.

In [28–33], trust is estimated using weighting method. Atakli et al. [28] proposed a weighted-trust
evaluation based scheme to detect compromised or misbehaved nodes in WSNs by monitoring their
reported data. The hierarchical network can reduce the communication overhead between sensor
nodes by utilizing clustered topology. Shaikh et al. [29] presented a group-based trust management
scheme for clustered WSNs. It evaluates the trust of a group of nodes in contrast to traditional trust
schemes that usually focus on the trust values of individual nodes, which reduces the cost of trust
evaluation. Yao et al. [30] put forward a parameterized and localized trust management scheme for
WSNs, where each sensor node maintains highly abstracted parameters, rates the trustworthiness of
its interested neighbors to adopt appropriate cryptographic methods, identify the malicious nodes,
and share the opinion locally. Li et al. [31] proposed a lightweight and dependable trust system for
clustered WSNs. Given the cancellation of feedback between nodes, it can greatly improve system
efficiency while reducing the effect of malicious nodes. By adopting a dependability-enhanced trust
evaluating approach for cooperation between CHs, it can effectively detect and prevent malicious,
selfish and faulty CHs. Jiang et al. [32] presented an efficient distributed trust model for WSNs. In their
model, the trustworthiness of a node includes direct trust and indirect trust. During the calculation of
direct trust, communication trust, energy trust and data trust are considered. When a subject node
cannot directly observe object nodal communication behaviors, the indirect trust value is gained based
on the recommendations from some other nodes. Ishmanov et al. [33] put forward a lightweight
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and robust trust establishment scheme using the weight of misbehavior. In their scheme, a new trust
component, misbehavior frequency is introduced to improve the resiliency of the trust mechanism.

Bao et al. [34,35] utilizes weighting method to build the trust evaluation model and statistical
method to analyze the false alarm probability. In [34], they presented a trust-based intrusion detection
scheme using a highly scalable cluster-based hierarchical trust management protocol. It considers both
quality of service trust and social trust as trust metrics and uses an analytical model based on stochastic
Petri nets to evaluate the performance of the scheme, as well as a statistical method to calculate the
false alarm probability. They adopt honesty to measure social trust and energy and cooperativeness to
measure quality of service trust. In [35], intimacy, honesty, energy, and unselfishness are considered as
four different trust components.

In [36,37], some new models are used to evaluate the trustworthiness. Zhang et al. [36]
put forward a trust evaluation method for clustered wireless sensor networks based on cloud
model, which implements the conversion between qualitative and quantitative of trust metrics and
produces different types of trust cloud to evaluate trust values of cluster heads and cluster members.
Rajeshkumar et al. [37] presented a trust based adaptive acknowledgment intrusion detection system
for WSNs based on number of active successful deliveries, and Kalman filter to predict node trust.

It is important for a trust management scheme to select proper trust factors to evaluate the
trustworthiness of a SN. From the literature on this topic, we can find that the trust factors of a SN
is mainly based on the nodal communication behavior, energy level, or recommendation from the
third party and there is no unified standard in the selection of the trust factors. The attacks initiated at
each protocol layer and their influence on the parameters of the corresponding protocol layers lack
comprehensive analysis. To the best of our knowledge, there is still no trust management scheme
which elaborately describes the trustworthiness of a SN from the standpoint of protocol layer. Thus,
it is interesting to build the trust evaluation model based on the protocol layer trust. In view of the
reality of intrusion detection scheme, we mainly consider the direct trust of a node in our scheme
and the trustworthiness of a node is evaluated according to its behaviors at different protocol layers.
The consideration of trust worthiness from the viewpoint of multiple protocol layers distinguishes
this paper from the previous related works [23–37]. Since the deviations of the key parameters of
multiple layers are used to evaluate the trustworthiness of a node, it is helpful for our scheme to detect
nodal malicious behaviors initiated from different protocol layers, which is effective for detecting
cross-layer attacks.

3. System Model

We consider a WSN where the network can be divided into multiple clusters, as illustrated in
Figure 1. Each cluster consists of a number of SNs and a CH. SNs can communicate with their CH
either directly or through other SNs. A CH can forward the aggregated data to the BS directly or
through other CHs.
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Figure 1. Clustered wireless sensor networks (WSN) architecture. (SN = sensor node, CH = cluster
head, BS = base station).



Sensors 2017, 17, 1227 5 of 19

Our trust-based intrusion detection scheme includes two levels of trust evaluation, one is
CH-to-SN trust evaluation, the other is BS-to-CH trust evaluation. In CH-to-SN trust evaluation,
each SN evaluates its neighbors and sends the trust evaluation results to its CH periodically. The CH
evaluates all the SNs in its cluster by analyzing statistically the trust evaluation results reported by
other SNs. The trust update period is ∆t, which is a system parameter. The length of ∆t could be
made shorter or longer based on network analysis scenarios. Similarly, in BS-to-CH trust evaluation,
each CH performs trust evaluation toward its neighboring CHs and sends its trust evaluation results
to the BS. The BS evaluates all the CHs in the network by using the same methods as adopted in
CH-to-SN trust evaluation. Since the two levels of trust evaluation use the same method, we mainly
describe CH-to-SN trust evaluation.

The nodal trustworthiness consists of the trust degree of each protocol layer, including physical
layer, MAC layer, network layer, transport layer and application layer. Since most of the attacks against
WSNs aim at the physical layer, MAC layer and network layer, for simplicity, in this paper we mainly
focus on the trusts at these three layers. Let TDIRECT

ij (t) denote the trust value that the sensor node i
directly evaluates toward its neighboring node j at time t. It can be calculated by:

TDIRECT
ij (t) = w1TPHY

ij (t) + w2TMAC
ij (t) + w3TNET

ij (t), (1)

where TPHY
ij (t), TMAC

ij (t), and TNET
ij (t) represents the trust value that node i evaluates toward node j at

the physical (PHY) layer, medium access control (MAC) layer, and network (NET) layer, respectively,
w1, w2, and w3 are the corresponding weight values associated with these three trust components,
w1 ∈ [0, 1], w2 ∈ [0, 1], w3 ∈ [0, 1] and w1 + w2 + w3 = 1. The values of the weights w1, w2, and w3

are determined according to the concrete requirement of a detection system under implementation.
Generally speaking, the number of attacks aiming at the network layer is greater than those aiming
at the MAC layer and physical layer. Hence, the value of w3 is usually slightly larger than that of w1

or w2. In order to evaluate the trustworthiness of each protocol layer, we can choose some important
parameters at each protocol layer and calculate the deviations of these parameters. Actually, our
scheme is scalable. If a more accurate trust value is needed, we can choose additional parameters at
each protocol layer and calculate the deviations of these parameters. Certainly, the more parameters
are selected, the more complex the detection system will be. Hence, we can select parameters according
to the requirement and complexity of the detection system.

The trustworthiness of a SN (or CH) should be updated periodically. Node i evaluates the trust of
node j during a time window of length ∆t, so the updated trust of node i toward node j is:

Tij(t) = αTij(t− ∆t) + (1− α)TDIRECT
ij (t), (2)

where Tij(t− ∆t) denotes the historical trust value of node i toward node j, and α ∈ [0, 1] is the
weight value of the historical trust value. Actually, the direct observation result is more important and
accurate than the historical trust value. Therefore, α can be defined as e−∆t. Next, we will describe the
calculation of the trust at each protocol layer.

3.1. Calculation of Physical Layer Trust

Energy consumption rate is an important parameter at the physical layer. A malicious node
usually sends or receives more packets than a normal node. It will inevitably consume more node
energy, so we choose energy consumption as trust metric at this layer. The monitoring node i can
obtain the energy consumption of its neighboring node j during the time period of ∆t. The relative
deviation of energy consumption of node j can be calculated by:

RDEC(t) =
∆Ej(t)− ∆E(t)

∆E(t)
, (3)
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in which ∆Ej(t) = Ej(t− ∆t) − Ej(t), ∆E(t) = 1
n ∑n

i=1 ∆Ei(t). Ej(t) indicates the residual energy of
node j at time t and ∆Ej(t) represents the energy consumption of node j during the time period of ∆t.
∆E(t) is the average energy consumption level of all neighboring nodes of node i during this time
period and n denotes the number of neighboring nodes of node i. Node i can roughly evaluate the
energy consumption of its neighboring nodes during the time period of ∆t by monitoring their packet
transmission activities. The greater the deviation of energy consumption is, the lower the nodal
trustworthiness will be. So we obtain the physical layer trust as:

TPHY
ij (t) =


1− RDEC(t), if 0 < RDEC(t) < 1

0, RDEC(t) ≥ 1
1, RDEC(t) ≤ 0

, (4)

In Equation (4), if the relative deviation of energy consumption is less than or equal to 0,
which means the energy consumption of the monitored node is less than the average energy
consumption, the monitored node is considered trustworthy at the physical layer. If RDEC is greater
than or equal to 1, which means the energy consumption of the monitored node is more than double
or double the average energy consumption, the monitored node will be considered untrustworthy at
the physical layer.

3.2. Calculation of MAC Layer Trust

Next we calculate the MAC layer trust. There are variety of attacks initiated at this layer whose
main objective is to get the priority of channel access. A malicious node can select a small back-off time,
choose a small size of contention window (CW), or wait for shorter interval than distributed inter-frame
spacing (DIFS), aiming to gain significant advantage in the contention of channel over the unmalicious
nodes. Therefore, the interval time between two consecutive successful transmissions of malicious
node, which we define as idle time, will be less than that of the unmalicious node. The malicious
node can also scramble the frames sent by other nodes in order to obtain the priority of channel access.
As a result, the average number of retransmissions of the malicious node will be less than that of
the unmalicious node. As described above, we choose two important parameters, the idle time and
number of retransmissions, as the trust metrics at the MAC layer. Thus, at the MAC layer, the node i
evaluates the trust value of node j as:

TMAC
ij (t) = p1Tidle_time

ij (t) + p2Tnum_retr
ij (t), (5)

where p1, p2 are the weight values associated with the two trust components, p1 ∈ [0, 1], p2 ∈ [0, 1],
and p1 + p2 = 1. The exact values of p1 and p2 depend on the requirements of the detection system
under implementation.

In order to calculate Tidle_time
ij (t), the monitoring node i can obtain the idle time xk (k means the

k-th transmission of the monitored node) according to Request To Send (RTS)/Clear To Send (CTS)
access in Distributed Coordination Function (DCF) mode, and xk can be calculated by:

xk = tk − tk−1 − tSIFS − tACK, (6)

where tk denotes the time of the k-th RTS packet reception, tk−1 is the end time point of the reception
of the previous data segment, tSIFS is the duration of the Short Inter-Frame Spacing (SIFS) frame, and
tACK is the duration of Acknowledgement (ACK) frame, as illustrated in Figure 2.
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For an unmalicious node, xk = tDIFS + bk, where tDIFS is the duration of DIFS frame, and bk is
the random back-off time. A malicious node is trying to decrease the idle time by manipulating the
back-off time and DIFS period. Therefore, the monitoring node can detect these misbehaviors by
calculating the deviation of the idle time. We can obtain the average idle time of the CH, according to:

x = tDIFS + b = tDIFS +
1
u

u

∑
k=1

bk, (7)

where u denotes the number of successful transmissions by the CH during the observation period of
∆t. We then calculate the deviation of the idle time:

Didle_time(t) =
1
m

m

∑
k=1

(xk − x), (8)

where m is the observed number of successful transmissions of the monitored node. Therefore,
the relative deviation of the idle time can be expressed as:

RDidle_time(t) =
|Didle_time(t)|

x
(9)

and the idle time trust is calculated by:

Tidle_time
ij (t) =

{
1− RDidle_time(t), if ∑m

k=1(xk − x) < 0
1, else

. (10)

It means that the trust value of the monitored node will decrease if its idle time is less than the average
idle time.

In order to calculate the number of retransmissions trust Tnum_retr
ij (t), we first calculate the

deviation of the number of retransmissions of the monitored node j. The monitoring node i can detect
a retransmission by observing a repeated sequence number in the head of frames. It monitors the
number of retransmissions of node j during the time period of ∆t, which is denoted by yij(t). It can

also obtain the average number of retransmissions y(t) during the time period of ∆t, by monitoring
the number of retransmissions of its neighboring nodes. y(t) = 1

n ∑n
k=1 yik(t), where yik(t) means the

number of retransmissions of node k during the time period of ∆t, node k is one of the neighboring
nodes of node i and n denotes the number of neighboring nodes of node i. Then, the relative deviation
of the number of retransmissions of node j can be calculated by:

RDnumretr(t) =
y(t)− yij(t)

y(t)
(11)
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and the number of retransmissions trust can be expressed as:

Tnum_retr
ij (t) =

{
1− RDnumretr(t), if yij(t) < y(t)

1, else
. (12)

If the number of retransmissions of node j is less than the average number of retransmissions, its trust
value will decrease.

3.3. Calculation of Network Layer Trust

Attacks at the network layer aim to disrupt the network routing, and acquire or control the
data flows. A malicious node can make itself a part of a routing path by advertising bogus routing
messages, such as a good Link Quality Indicator (LQI) or a small hop count. It can also initiate sinkhole
or selective forwarding attack and result in dropping all or part of forwarding packets. Therefore,
we choose route metric and packet forwarding rate as trust metrics to evaluate the network layer trust.
The network layer trust is described as:

TNET
ij (t) = q1Troute_metric

ij (t) + q2TPFR
ij (t), (13)

where q1 ∈ [0, 1], q2 ∈ [0, 1] are weight values and q1 + q2 = 1. The exact values of q1 and q2 depend
on the requirements of the detection system under implementation.

There are different route metrics for routing protocols in WSNs. For example, in the MintRoute
protocol, it uses link estimates as routing metric and includes the LQI within its route update packet [39].
In the TinyAODV (Tiny Ad-hoc On-Demand Vector) protocol, the routing metric is the number of hop
count and includes the hop count in Route Reply (RREP) packet [40]. A malicious node can make its
neighbors change their current parents and choose it as their new one by advertising an attractive LQI
for itself in the route update packet or giving a small value of hop count in RREP packet. We then take
LQI and hop count as basis to calculate the route metric trust.

We can calculate the deviation of LQI by comparing the actual LQI value with the advertised
one. When a monitoring node receives a route update packet from a monitored node, it can calculate
the actual LQI value according to LQI′k = 255× (RSSIk + 81)/91 [41], where k denotes the k-th route
update packet that it received and RSSIk represents the received signal strength indicator of the k-th
route update packet. The monitoring node can obtain the advertised LQI from the route update packet
which is denoted by LQIk. Then the average deviation of LQI is calculated by:

DLQI(t) =
1
m

m

∑
k=1

(
LQIk(t− ∆t, t)− LQI′k(t− ∆t, t)

)
, (14)

where m denotes the number of route update packets that the monitoring node has received during
the time period of ∆t. Therefore, the LQI trust that node i evaluates toward node j can be described as:

TLQI
ij (t) =

{
1− DLQI(t)

LQImax
, if ∑m

k=1
(
LQIk − LQI′k

)
> 0

1, else
, (15)

where LQImax equals to 255 in MintRoute protocol [39]. This formula means that the trust degree of
the monitored node will decrease if the advertised LQI value is larger than the actual one.

If the route metric is hop count, the monitoring node can also evaluate the trust degree of the
monitored node by calculating the deviation of hop count. The monitoring node can calculate the
average hop count toward destination node according to the RREP packets it has received during the
time period of ∆t. The average hop count is described as hop_count = 1

n ∑n
k=1 hop_countk, where n

denotes the number of received RREP packets during the observation time and hop_countk is the
value of hop count to the destination node, which is included in the k-th RREP packet. We can also
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adopt the method in [42]. Each node builds a node neighbor database which contains the ID of the
neighboring node and the hop count to the CH for each node. Thus, we can also calculate the average
hop count by hop_count = 1

n ∑n
k=1 hop_countk, where n denotes the number of neighboring nodes.

The relative deviation of hop count of the monitored node j can be calculated by:

RDhopcount
(t) =

hop_count− hop_countj

hop_count
, (16)

where hop_countj denotes the value of hop count from node j to its CH. The hop count trust is
described as:

Thop_count
ij (t) =

{
1− RDhopcount

(t), if hopcountj < hop_count
1, else

(17)

This means if hop_countj is less than the average hop count, the more deviation there is, and the lower
the trust value will be.

In order to obtain the packet forward trust, the monitoring node i can obtain the packet forwarding
rate of the monitored node j by:

TPFR
ij (t) =

Pj→k(t)
Pi→j→k(t)

, (18)

where Pi→j→k(t) denotes the number of packets that node i wants to transmit to node k with the help of
node j and Pj→k(t) indicates the number of packets that node j has received from node i and forwarded
to node k. If node j does not forward packets correctly, its trust degree will decrease.

In order to decide whether or not a node is considered compromised, it is necessary to select a
system trust threshold, Thtrust. In a cluster, all of the monitoring nodes will send their trust evaluation
results with respect to their neighboring nodes to their CH. The CH then computes the trust value of
node j according to:

Tcj(t) =
1
n

n

∑
i=1

Tij(t), (19)

where n denotes the number of neighboring nodes of node j and makes decision by comparing the trust
value with Thtrust. If Tcj(t) is less than Thtrust, then node j is regarded as compromised. The method of
BS-to-CH trust evaluation is similar to that of CH-to-SN trust evaluation.

4. Performance Analysis

The purpose of the analysis is to derive mathematical results of the false positive and false
negative probabilities. The false positive probability is the probability that a node is evaluated as
compromised whereas it is not. On the other hand, false negative probability is the probability that a
node is evaluated as not compromised whereas it is. The expressions for the false positive and false
negative probabilities are derived using a statistical approach. We also calculate the communication
overhead of our scheme.

4.1. Statistical Analysis

We utilize t-distribution to analyze the performance of our trust-based intrusion detection scheme
because it is suitable to detect the difference between two means in the circumstance of limited samples,
which is similar to [34]. Tcj(t) is a random variable with normal distribution and the standard deviation
of Tcj(t) is unknown. In order to calculate the false positive and false negative probabilities, we then
transform Tcj(t) into a random variable Xj(t) following t-distribution with n-1 degrees of freedom,
which is denoted by:

Xj(t) =
Tcj(t)− µj(t)

Sj(t)/
√

n
, (20)
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where Tcj(t) = 1
n ∑n

i=1 Tij(t) is the sample mean, µj(t) is the population mean of the trust value of

node j, Sj(t) =
√

1
n−1 ∑n

i=1
(
Tij(t)− Tcj(t)

)2 is the standard deviation of the trust value that node i
evaluated with respect to node j, and n is the number of neighboring nodes of node j. We can obtain
µj(t) by running simulations for many times. Thus, according to Equation (20), the probability that
node j is evaluated as a compromised node is given by:

P(µj(t) < Thtrust) = P

(
Xj(t) >

Tcj(t)− Thtrust

Sj(t)/
√

n

)
. (21)

The false positive probability can be calculated by:

ρfp(t) = P(Xj(t) >
TN

cj (t)− Thtrust

SN
j (t)/

√
n

= γ) =
∫ ∞

γ

Γ(n+1
2 )√

nπΓ(n
2 )

(1 +
x2

n
)
− n+1

2

dx, (22)

where TN
cj (t) (SN

j (t)) is the mean value (standard deviation) under the condition that node j is
not compromised, superscript N denotes Not compromised and Γ(x) =

∫ ∞
0 tx−1e−t dt is the

gamma function.
The false negative probability is expressed as:

ρfn(t) = P(Xj(t) ≤
TC

cj(t)− Thtrust

SC
j (t)/

√
n

= δ) =
∫ δ

−∞

Γ(n+1
2 )√

nπΓ(n
2 )

(1 +
x2

n
)
− n+1

2

dx (23)

where TC
cj(t) (SC

j (t)) is the mean value (standard deviation) under the condition that node j is
compromised, superscript C denotes Compromised.

4.2. Numerical Results and Discussion

We use Matlab as simulation tool to generate the performance results of our scheme. We consider
a WSN with 50 nodes, randomly deployed in a 100 m × 100 m operational area. The transmitting
power of a SN is 2 mW and the communication frequency is 2.4 GHz. The trust update interval is set
to 10–100 min. The detailed simulation parameters are listed in Table 1.

Table 1. Assumed values of system parameters. MAC = medium access control, AODV = Ad-hoc
On-Demand Vector.

Parameter Value Parameter Value

Size of network 100 m × 100 m w1, w2, w3 1/3
Number of SNs 49 Number of CH 1

Trust update interval 10–100 min p1, p2, q1, q2 1/2
MAC protocol 802.11 DCF Routing protocol AODV

tDIFS 50 µs tSIFS 10 µs
Slot time 20 µs tACK 112 µs

Size of Route Request (RREQ) packet 176 bits Size of Route Reply(RREP) packet 176 bits

Figure 3 shows the relationship between the trust value of a SN and the simulation time and
compares the trust value of the SN with the node density varying from 30 nodes to 50 nodes per
10,000 m2 (e.g., 30 nodes mean 1 CH and 29 SNs). We observe that the trust value of the SN fluctuates
in a narrow range (0.982, 0.984), when the simulation time is relatively short. If the simulation time
is long enough, the trust value of the SN becomes stable, because the longer the simulation time is,
the more data are collected and the more accurate the results are. We also notice that with the increase
of node density the fluctuation of the trust value of the monitored node becomes smaller. This is
because if the node density is small, the number of neighboring nodes of the monitored node will
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be small, the data that the monitoring node can obtain will be less and hence the trust value of the
monitored node will not be so accurate.
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Figure 4 shows the variation of the trust values of the monitored node under the scenario of
several types of attacks. We simulate four typical attacks at the MAC layer and network layer, including
back-off manipulation, selective forwarding attack, sinkhole attack and MAC-Network cross-layer
attack. In the back-off manipulation attack, a malicious node gets unfair priority access to the channel
by setting a small CW. In the selective forwarding attack, a malicious node selectively drops packets
passing though it according to a predefined criterion. In the sinkhole attack, an attacker tries to
attract network traffic by sending bogus RREP messages. In the MAC-Network cross-layer attack,
the malicious node initiates attacks at the MAC layer and network layer simultaneously to make itself
a node on the routing path by using a small CW and sending a fake routing message with small hop
count. We observe that if a node initiates attacks its trust value will decrease obviously (less than
0.8). The behavior of back-off time manipulation of the malicious node will affect its idle time trust
value, number of retransmissions trust value and physical layer trust value, so its trustworthiness
will decrease to about 0.78. The selective forwarding attack will reduce the packet forward trust
value of the malicious node. In the scenario of cross-layer attack, the parameters of both MAC layer
and network layer will be affected, so the trust value of the malicious node will decrease markedly.
The sinkhole attack will affect the hop count trust value, packet forward trust value, physical trust
value of the malicious node because the malicious node will drop the Route Request (RREQ) packet,
send the RREP packet with small hop count. Actually, the trust value of the malicious node is closely
related to the selection of the attack parameters. In the cross-layer attack, in order to conceive its attack
behavior, the malicious node will reduce the attack strength at the MAC layer and network layer, so in
the simulation, the trust value of the malicious node in the cross-layer attack is slightly higher than
that in the sinkhole attack.
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Figure 4. Trust values under different kinds of attacks.

To get the detection threshold, we simulate false positive and false negative probabilities of our
scheme with different thresholds under different types of attacks. We observe that the false positive
probability curves under different attacks are similar except fluctuations within a small range. This is
because the attacks have little influence on the trust values of unmalicious nodes but greater impact
on those of malicious nodes. The intersection of false positive probability curve and false negative
probability curve is the optimal trust threshold. Under the four attacks, we obtain an optimal detection
threshold at which both false negative and false positive probabilities are minimized. As illustrated in
Figure 5, the optimal detection threshold is about 0.83 at which both false positive and false negative
probabilities are less than 0.05 for all types of attacks. We also obtain the false positive and negative
probabilities according to Equations (22) and (23). Figure 6 shows the theoretical results are consistent
with the simulation results.
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We analyze the influence of the proportion of malicious nodes on the detection probability using
the optimal threshold 0.83, as illustrated in Figure 7. We observe that the detection probability of
sinkhole attack is the highest among the four types of attacks and the detection probability of back-off
manipulation attack is the lowest because in the simulation sinkhole attack influences the trust value
of the malicious node strongly and back-off manipulation attack has the minimal impact on it. If the
proportion of malicious nodes is less than 5%, the detection probability will be more than 97%. If the
proportion of malicious nodes is greater than 5%, the detection probability will decrease obviously,
because with the increase of the number of malicious nodes, the trust value of the unmalicious node
is closer to that of the malicious node, and then it is difficult to distinguish between the unmalicious
node and the malicious node.Sensors 2017, 17, 1227 13 of 19 
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Figure 8 describes the relationship between the false positive probability and the proportion of
malicious nodes. If the proportion of malicious nodes is less than 5%, the false positive probability will
be less than 0.05. It increases rapidly with the increase of the proportion of malicious nodes.
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We compare the detection probability of our scheme with that of the NBBTE [23]. As shown in
Figure 9, the detection probability of the selective forwarding attack and sinkhole attack have been
improved by more than 10% and that of cross-layer attack has been improved by more than 20% as
the proportion of malicious nodes is 2%, because many key parameters of multiple protocol layers
are monitored and the trust values of SNs are calculated more accurately in our scheme. In NBBTE,
the back-off manipulation attack can hardly be detected, because NBBTE only focuses on the node
behaviors at the network layer, but ignores the malicious behaviors at the MAC layer, so it is not
effective to detect the attacks at the MAC layer.

Figure 10 shows that the false positive probability of NBBTE is higher than that of our scheme.
Because we use the deviations of protocol parameters instead of the variations of node behaviors
as NBBTE does for detecting malicious node, the reduction of the trust value caused by the normal
change of the network can be avoided in our scheme. In NBBTE, the false positive probability curves
under different attacks are very similar because the malicious behaviors have little influence on the
trust values of normal nodes according to their algorithm.
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4.3. Analysis of Communication Overhead

In our scheme, each sensor node monitors the key parameters of its neighboring nodes at
each protocol layer and transmits the trust values toward the monitored nodes to its CH, so the
communication overhead of our scheme mainly comes from the packets transmitted from SNs to the
CH. As a result, the communication overhead of our scheme is related to the hop count from SNs
to the CH. In NBBTE, it includes direct evaluation and indirect evaluation. In the direct evaluation,
the monitoring node collects the key parameters of the monitored node and calculates the trust factors
of the corresponding parameters. There is a factor of availability which evaluates the availability
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of the neighboring nodes. To obtain this factor, the monitoring node needs to transmit a HELLO
packet and its neighboring nodes should reply to it with ACK-HELLO packets. In the indirect
evaluation, the neighboring nodes of the monitored node will transmit their trust evaluation results
towards the monitored node to the monitoring node as the indirect recommendation values. Thus,
the communication overhead of NBBTE includes two parts, the HELLO packets for the factor of
availability and the indirect trust evaluation from the recommendation nodes, which are related to the
average number of neighboring nodes in the network.

In our scheme, all SNs transmit their evaluation results to their CH once in an observation period.
Assuming there are n SNs in a cluster and the average hop count to the CH is Nh, the communication
overhead of our scheme, COp in an observation period can be expressed as COp = nNh. As for the
NBBTE, all SNs broadcast HELLO packets and reply to the HELLO packets of their neighboring
nodes once in an observation period. Meanwhile, the neighboring nodes of each SN will send their
recommendation values once in an observation period. Assuming the number of SNs is n, and the
average number of neighboring nodes of a SN is Na, the communication overhead of NBBTE, CON in
an observation period can be denoted by CON = n(2Na + 1). We then analyze the communication
overhead of the two schemes quantitatively in a network with 50 SNs and 1 CH under the circumstance
that the two schemes have the same observation period ∆t.

Figure 11 shows the comparison of the communication overhead of the two schemes under
different number of neighbor nodes in the case that the average hop count Nh in the network is 6.
The communication overhead of the proposed scheme is not related to the number of neighboring
nodes. If the average number of neighboring nodes is less than or equal to 2, the communication
overhead of the NBBTE is less than that of our scheme. However, if the average number of neighboring
nodes is greater than or equal to 3, the communication overhead of the NBBTE will be greater than
that of our scheme.
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Figure 12 shows the comparison of the communication overhead of the two schemes under
different average of hop count in the case that the average number of neighboring nodes Na in the
network is 3. The communication overhead of our scheme will increase with increasing of the average
hop count to the CH. If the average hop count to the CH is greater than 7, the communication overhead
of our scheme will be greater than that of the NBBTE.

As described above, if the number of average neighboring nodes in a network is relatively large,
the communication overhead of the NBBTE is greater than that of our scheme. If the hop count to
the CH is relatively large, the communication overhead of our scheme is greater than that of the
NBBTE. As a result, our scheme is more applicable to the network with less hop count. Moreover,
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from the angle of computation complexity, the calculation of trust value and the decision approach in
the NBBTE are more complex than those in our scheme.
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5. Conclusions

Wireless sensor networks are vulnerable to variety of attacks at different protocol layers. In the
existing trust-based intrusion detection schemes, there is no unified standard to select trust factors,
and cross-layer attacks are seldom considered. In order to identify malicious nodes more efficiently,
we have proposed a protocol layer trust-based intrusion detection scheme for WSNs. In our scheme,
the key parameters of different protocol layers are monitored and the trust values of sensor nodes
can be calculated according to the deviations of parameters. By comparing the trust value with a
predefined threshold, we can decide whether the sensor node is compromised or not. It can describe
the trust values of sensor nodes more accurately by considering the deviations of parameters of
multiple layers, hence our proposed scheme is effective for detecting cross-layer attacks. We utilized
the t-distribution and simulation to analyze the detection probability and false positive probability of
our scheme. The results indicate that there exists an optimal trust threshold at which both false positive
and false negative probabilities are minimized. Our proposed scheme outperforms the NBBTE scheme
in terms of the detection probability and false positive probability. The weakness of our scheme is the
communication overhead will increase with the increasing of the hop count to the CH. Our scheme is
extendable, the selection of the trust factors at different protocol layers can be adjusted according to
the requirements of a system, and it is applicable to both clustered WSNs and flat WSNs. As for future
works, we will analyze the attacks initiated at the transport layer and application layer, as well as
MAC-Transport cross-layer attack, Network-Application cross-layer attack and their influence on the
protocol parameters to further optimize our scheme. In addition, we will perform experiments to test
the performance of our scheme on a real WSN testbed to assess its real-life performance.
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