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Abstract: Existing indoor semantic recognition schemes are mostly capable of discovering patterns
through smartphone sensing, but it is hard to recognize rich enough high-level indoor semantics
for map enhancement. In this work we present DeepMap+, an automatical inference system for
recognizing high-level indoor semantics using complex human activities with wrist-worn sensing.
DeepMap+ is the first deep computation system using deep learning (DL) based on a multi-length
window framework to enrich the data source. Furthermore, we propose novel methods of increasing
virtual features and virtual samples for DeepMap+ to better discover hidden patterns of complex
hand gestures. We have performed 23 high-level indoor semantics (including public facilities and
functional zones) and collected wrist-worn data at a Wal-Mart supermarket. The experimental results
show that our proposed methods can effectively improve the classification accuracy.

Keywords: indoor semantic inference; activity recognition; multi-length windows; virtual samples;
virtual features; deep learning

1. Introduction

As people spend the majority of their time in indoor environments [1], indoor environment
inference plays an increasing significant role in pervasive and mobile computing. Indoor location-based
services (LBSs) are developed to greatly impact on human life and enable various novel indoor
applications, such as indoor positioning [2], vehicle navigation [3], user tracking [4] and so on [5].
For the majority of indoor LBSs, the most significant foundation is the indoor map [6–10]. A useful
indoor map contains both spatial information (such as the structure and the size of indoor floor)
as well as crucial landmark map semantics such as emergency exits, elevators, doors, washrooms,
etc. Important indoor semantics can greatly enrich indoor maps and better guide persons to their
destinations. In recent years, indoor semantic recognition has been received much attention from
researchers. For example, Jigsaw [8] achieved the extraction of geometric features of individual
landmarks from images. However, geometric features are the low-level semantics of the indoor
environment, and a complete floor map needs to contain high-level semantic elements. Cheng [9]
presented iMap, a high-level semantic inference system, which can automatically detect four different
indoor semantics: stairs, elevators, elevators and doors. Nevertheless, it could not provide enough
indoor semantics for map enhancement. It is very difficult to recognize abundant high-level semantics
because the researchers can hardly discover most of their patterns with mobile device sensing.
To overcome the problem, authors of [10] designed TransitLabel, which used passengers’ activities
to infer indoor semantics in a digital map, so it can recognize 19 high-level transit station semantics.
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Although TransitLabel has already made a remarkable achievement in indoor semantic recognition, it
is still imperfect and this paper has three overarching challenges as follows:

(1) Due to the large number of indoor semantics in some important indoor public areas such as
supermarket and so on, there inevitably exist similar interaction activities between each user and
different indoor facilities. It is hard to recognize the similar activities for inferring various indoor
semantics. In particular, most of the interaction activities should have much more fine-grained
and complex hand gestures in these indoor public areas than in activities of daily living (ADLs).
For example, the hand gestures of taking a sandwich by using a bread tong are very similar to the
movements of ladling out rice with a measuring cup. The above two activities can be utilized to
infer the bread counter and the rice storage shelf, respectively. Therefore, it is necessary that the
classifier system have an improved discriminating power for the fine hand movements.

(2) To improve the classification accuracy of high-level indoor semantics, an effective way is by
increasing the number of sensors, collected samples or extracted features, but all of them would
burden the power constrained by mobile device and impact user comfort.

(3) TransitLabel [10] enables automatic inference of high-level indoor semantics relying on a tree
structure with some prior knowledge (such as vertical speed threshold and altitude threshold, etc.).
The tree structure of TransitLabel decides that every inference of indoor semantics is dependent.
However, as we know, indoor semantics are being updated and indoor mobile sensing (such as
air pressure, audio and so on) is highly susceptible to wild fluctuations in accuracy when used in
diverse indoor environments. In our opinion, the above prior knowledge is not absolutely reliable
and the tree structure is not beneficial for the dynamic update of the inference system, so it is
necessary to make the inference system more intelligent.

To overcome these challenges, we pay more attention to human gesture recognition since
significant indoor facilities are closely relative to complex human gestures. Firstly, we attempt to bridge
the gap between indoor semantic inference and wearable device sensing. The smart watch is chosen
as data collection device, because wrist-worn sensing is extremely beneficial for capturing human
activities. In addition, we design a high-level indoor semantic inference for recognizing more abundant
high-level indoor semantics than in the literature [8,9]. It is used to infer indoor semantics from
users’ complex activities and users’ location contexts instead of conventional location sensors such
as GPS, Bluetooth beacons and so on. Furthermore, for fine activity recognition, we propose a novel
multi-length window framework instead of the single-length window framework which is widely used
in pattern recognition. Our novel idea is illustrated by experiment 1 described in Section 5.3. There are
two important gains, summarized as follows: (1) The length of the sliding windows can greatly affect
the complex activity recognition. We find that the single-length window framework is enough for
simple activities but may not be sufficient for complex activities such as taking off jackets, putting on
shoes and so on. That is because diverse patterns of various complex activities lie in different-length
windows; and (2) We find out the existing characteristics and correlations between the different-length
windows. By further analysis, we know that there exist different characteristics between the same
features as well as cross correlations between the same classes from different-length windows. Both of
them are beneficial to generate virtual features and samples which could strengthen the activity
recognition ability and further improve the classification accuracy of indoor semantics. In particular,
our proposed methods would not burden the mobile device and the generated virtual features and
samples can effectively improve discriminative ability of our system for high-level indoor semantics.

The outcome of our investigation is DeepMap+—A data-driven system for automatically
recognizing high-level indoor semantics with wrist-worn sensing. It only utilizes three sensors
such as an accelerometer, a gyroscope and an air pressure sensor. DeepMap+ can automatically learn
robust representations by DL algorithm from a new synthetic training dictionary containing virtual
features and samples. These representations are obtained in a dense inter-connected network of units,
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and each unit has a relatively simple function parameterized by whole training data. In summary, this
paper makes the following contributions:

(1) We present DeepMap+, which is the first deep computation model based on the multi-length
window framework for recognizing high-level indoor semantics using complex human activities.
Instead of the conventional single-length window framework, the multi-length window
framework can greatly enrich our data storage. In addition, we design a high-level indoor
semantic inference to infer users’ location contexts and high-level indoor semantics (consisting of
public facilities and functional zones) at a Wal-Mart supermarket.

(2) We discover the characteristics and the correlations between the different-length windows and
find out that their properties are beneficial to human activity classification. Based on this, for
finer grained activity recognition we propose several methods of increasing virtual features and
samples which are helpful to generate a valuable synthetic training dictionary. By integrating the
deep learning (DL) technique, DeepMap+ can learn robust representations from the synthetic
training dictionary.

(3) We implement an Android application for the mobile client and Python program that runs on
the server side. The Android application is developed for wrist-worn sensing, and a deep neural
network (DNN)-based classifier is trained and its parameters are tuned with supervised learning.

(4) We conduct performance validation with an exhaustive experimental study consisting of wrist-worn
data collection of 23 high-level indoor semantics by two users at a Wal-Mart supermarket.

The rest of this paper is organized as follows. Section 3 presents the system overview of DeepMap+
and a high-level indoor semantic inference. We introduce the novel methods of increasing virtual
features and samples in Section 4. Section 5 presents detailed experimental evaluation and validation
of DeepMap+. Finally, Section 6 concludes this work with a discussion on future works.

2. The Related Work

In recent years, map semantic inference has received much attention from researchers.
For example, Map++ [11] automatically identified different road semantics to enrich digital maps.
However, this is an out-door map semantics-identified system. Jigsaw [8] was presented as a in-door
floor plan reconstruction system through leveraging crowd-sensed data from mobile users. It achieved
in extracting geometric features of individual landmarks from images. However, geometric features
are the low-level semantic of the indoor environment, and a complete floor map needs to contain
high-level semantic elements such as doors, washroom, escalator, stairs, etc. Then, Cheng [9] presented
iMap, which was a high-level semantic inference system for automatically annotating the indoor
maps. It detected four different indoor semantics: stairs, elevators, escalators and doors. Nevertheless,
a useful indoor map needs rich enough high-level fine-grained semantics. Elhamshary et al. [10]
designed TransitLabel, which used passengers’ activities to infer indoor semantics on a digital map,
and it can recognize 19 high-level transit station semantics. TransitLabel has already made a remarkable
achievement in indoor semantic recognition, but these authors [10] have not performed further research
on human activities; it may have a negative influence on the recognition accuracy of indoor semantics.

Most of existing works on indoor activity recognition focus on in-home elderly healthcare
problems [12,13] and physical activity monitoring problems [14,15]. They always perform the research
of ADLs recognition, but the complexity of ADLs is seriously limited in the range of human daily
life. Yan et al. [16] designed a 2-tier activity extraction framework to detect six activities at home and
six activities at the office. Wang et al. [17] proposed CARM, which is a human activity recognition
and monitoring system with a channel state information (CSI) signal. Its advantage was device-free
for users, but it only recognized nine simple activities such as running, walking and sitting down,
etc. Similarly, the studies [14,15,18] did not pay enough attention to this problem. As wearable device
sensing is increasingly applicable for activity recognition [19], the problem is alleviated gradually.
De et al. [12] utilized several wearable sensors on multiple body positions to recognize 19 fine-grained
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in-home activities. Now, the number of indoor activities for classification has increased greatly, but
it cannot fundamentally improve with respect to the complexity of activities such as lying, sitting,
walking and so on.

Recently, as a new direction developed rapidly, the deep neural network (DNN) has promoted a
speedy advance in many fields such as speech recognition [20], visual object recognition [21], object
detection [22] and so on [23,24]. Its main characteristic is deep structured learning through leveraging
large-scale datasets. As we know, A-Wristocracy [13] is the first deep learning neural network-based
activity classifier, and it is able to recognize fine-grained 22 daily activities with high average test
accuracy. Unfortunately, the complexity of above daily activities is also limited by human basic
daily actions.

Inevitably, there always exist complex interaction activities between users and significant indoor
infrastructures in real life. In our opinion, we should strengthen human gesture recognition because
the complex interaction activities should have rich hand movements. In this paper, we try to
bridge the gap between indoor semantic inference and the wrist-worn sensing, and we hold that
the self-learning ability of DL can motivate the field of indoor semantic recognition. In addition, we
note that recent studies [9,10,12] have utilized more and more environmental sensors like temperature
sensors, humidity sensors, magnitude sensors and other location sensors. Undoubtedly, more sensors
can efficiently improve the classification accuracy of indoor semantics, but it is easy to put additional
burdens on the measurement device. Unlike earlier works, this paper attempts to recognize high-level
indoor semantics and simultaneously tries to enhance hand gesture recognition for avoiding the
utilization of unnecessary sensors.

3. The DeepMap+ System

In this section we firstly introduce the architecture of DeepMap+, and then present the feature
extraction and the deep learning model of DeepMap+. In the end of the section, we further illustrate
our designed high-level indoor semantic inference for DeepMap+ at a Wal-Mart supermarket.

3.1. Overview

DeepMap+ is designed for automatically recognizing high-level indoor semantics with users’
wrist-worn sensing at a Wal-Mart supermarket. Figure 1 presents the DeepMap+ architecture which
consists of four parts. In the first part, we develop an Android application for: (1) stopping and starting
the wrist-worn data collection; (2) manually inputting the ground truth information with proper
timestamp; and (3) uploading the collected data and labels. In the second part, multi-length sliding
windows of 4, 6, 8, 10, 12 and 14 s are generated using raw data. Meanwhile, their corresponding
training dictionaries are obtained and stored in the data storage. Our proposed methods preprocess
above training dictionaries of multi-length windows and transform them into virtual features and
virtual samples, which are stored for generating virtual feature matrix and virtual sample matrix.
The third part of DeepMap+ is DL [23] with a new synthetic training dictionary for complex activity
classification. The new synthetic training dictionary is utilized by DNN for automatically learning
more robust representations compare to the original training dictionary, because it contains not only
the original training dictionary but also the generated virtual feature matrix and virtual sample matrix.
Our proposed methods for generating the virtual feature matrix, the virtual sample matrix and the
synthetic training dictionary are discussed in details in the next section. The last part is a high-level
indoor semantic inference with complex human activities for the Wal-Mart supermarket.

3.2. Feature Extraction

DeepMap+ attempts to not damage the user-friendliness of the measurement device, so we
drop the advanced multi-modal sensing [10,12,25] to free the mobile device from overloaded sensors
although multi-sensors can bring us useful environment contexts. For easing the burden of mobile
device, we just utilize inertial sensors such as an accelerometer, a gyroscope and an air pressure
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sensor to recognize complex activities. The accelerometer and gyroscope features are designed as
in [13] and sampled at 100 Hz, including six accelerometer features and six gyroscope features.
These accelerometer and gyroscope features are designed as follows: mean and variance of resultant

acceleration (
√

a2
x + a2

y + a2
z where ax, ay and az are the three axis of acceleration), mean and variance

of resultant angular speed (
√

b2
x + b2

y + b2
z where bx, by and bz are the three axis of angular speed),

mean and variance of first derivative of resultant acceleration, mean and variance of first derivative of
resultant angular speed, mean and variance of second derivative of resultant acceleration, and mean
and variance of second derivative of resultant angular speed. In addition, the air pressure sensor
is applied to sample the atmospheric pressure at 5 Hz for recognizing the escalators and the stairs.
The atmospheric pressure feature is the variance of per second data for air pressure sensor.

Figure 1. The DeepMap+ system architecture. DNN: Deep neural network.

For DeepMap+, the air pressure sensor is enabled which is for two reasons: (1) the escalators
and the stairs are significant indoor semantics; and (2) it fails to recognize them only with human
activity features because the activities (walking and standing) are too common in the escalators and the
stairs so that the atmospheric pressure feature should be sampled. Therefore, the air pressure sensor
is indispensable as are the accelerometer sensor and the gyroscope sensor. We insist that DeepMap+
only enables the sensors which are indispensable for the recognized targets. For example, if we utilize
a temperature feature sampled by the temperature sensor, it is easy to distinguish indoor semantics
like a one-door soda fountain, a two-door upright freezer or a horizontal freezer from other indoor
semantics in normal temperature, but we can also recognize above complex human activities without
temperature sampling and finally infer the above three indoor semantics. From this point of view, we
have made an attempt to make other environmental sensors like the temperature sensor, humidity
sensor, and magnitude sensor unnecessary and disable them to save more time and resources, but a
fewer number of sensors proposes a higher requirement for finely recognizing users’ hand gestures.
Similarly to increasing sensors, increasing features should also add more burdens to low-power
wearable devices [13]. DeepMap+ is also designed to not increase the number of samples and features
collected from accelerometer and gyroscope sensors on the measurement device. However, we still
need more information about the users’ hand gestures. We found that the multi-length window
framework can retain much more important information compared to the conventional single-length
window framework. Therefore, we built a data storage of multi-length windows for our system as
illustrated in Figure 1. For better utilization of the data source of multi-length windows, we design
several methods to obtain virtual samples and features for DeepMap+ to finely distinguish the hand
gestures. Our designed methods are described in the next section.
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3.3. Deep Learning-Based Activity Recognition

For classification-oriented problems, such as the complex activity recognition, the appropriate
features are very significant for recognition accuracy [26]. Designing acceptable hand-crafted features
requires expert knowledge and extensive experiments. The designed accelerometer features and
gyroscope features by [13] are low-level features, and it is hard to discriminate human complex
activities with low-level features. Therefore, high-level feature extraction is indispensable for
DeepMap+. As an advanced feature extraction algorithm, deep learning has been applied in many
fields of pattern recognition. As shown in Figure 1, DeepMap+ is the first deep computation model
based on multi-length windows. In DeepMap+, a stacked autoencoder [27,28] is selected as our DL
algorithm for complex human activity recognition. The stacked autoencoder is a neural network
consisting of multiple layers of autoencoder (AE) [29].

The architecture of the basic AE is illustrated in Figure 2. The input data of the AE is the
training dictionary D = [x(1), x(2), ..., x(N)]T which consists of N training samples, and each training
sample is represented as an m-dimensional feature vector x. It is above low-level features about
acceleration, angular speed and atmospheric pressure of user’s wrist. Therefore, we can get the
encoder h(1) = f (x) = s f (W(1)x + b f ), where the parameters W(1) ∈ Rn×m and b f ∈ Rn. m is the
dimensionality of the input x and n is the number of the units of the hidden layer. Then, the output
of the encoder h(1) is used as the input of the decoder x̂ = g(h(1)) = sg(W(1)T

h(1) + bg), where the
parameters W(1)T ∈ Rm×n and bg ∈ Rm. Here s f and sg are ReLU activation functions of the encoder
and the decoder respectively. For retaining the most information about input data, the AE aims
to minimize the reconstruction error through finding the optimal W(1), W(1)T

, b f , bg and it is given
as follows:

min
W(1),W(1)T ,b f ,bg

∑
x∈D

L(x, x̂) (1)

Here the reconstruction error is the squared error L(x, x̂) =‖ x− x̂ ‖2.

Figure 2. The architecture of the basic autoencoder.

Figure 3 shows the architecture of the stacked autoencoder (SAE) in DeepMap+. This SAE consists
of two hidden layers and represents the two-layer AE. For simplicity, we have not shown the decoder
parts of each AE in Figure 3. In a manner similar to AE, after training the parameters of the first
hidden layer, the output h(1) of the first hidden layer is the input of second hidden layer. The deeper
layers progressively represent the inputs in a more abstract way, so more higher-level features can
be extracted than the input data. In the output layer, the softmax classifier (SMC) [30] is utilized so
that the DNN-based complex activity classifier is constructed. DeepMap+ uses the greedy layer-wise
training [31] to obtain good parameters of each unit of the multi-layers; the training procedure includes
the three steps as follows:



Sensors 2017, 17, 1214 7 of 23

First, the SAE is applied to learn primary representation(high-level features I) h(1)(x) from the
low-level features x by adjusting the weight W(1) and the bias bx;

Second, above primary representation h(1)(x) is used as the input to the other autoencoder to
learn the secondary representation (high-level features II) h(2)(x) on the primary representation by
adjusting the weight W(2) and the bias bh(1) ;

At last, the secondary representation h(2)(x) is treated as the input to the SMC, and it is trained to
map h(2)(x) to digitally label y by adjusting the weight W(3) which is the parameter of the SMC model.

Figure 3. The architecture of the stacked autoencoder used in DeepMap+.

To get better parameters, DeepMap+ utilizes fine-tuning [24] which is based on the backpropagation
algorithm during model training. Fine-tuning can improve the results by tuning the parameters of above
all layers which are changed at the same time. Therefore, DeepMap+ can recognize complex human
activities using higher-level features h(2) which are learned by the stacked autoencoder. From above
deep learning process, we can find that the parameters of above all layers may be more appropriate,
benefiting from the increased samples in the training process. Furthermore, we add more useful
information to raw input data such as increasing the dimensionality (feature number) of the input data
x, which is also of benefit to obtain a robust representation of the wrist-worn data for complex activity
recognition in DeepMap+. Therefore, the multi-length window framework is applied to an extent in
our dataset and we propose lots of methods for increasing some virtual samples and features based on
this framework in Section 4.

3.4. High-Level Indoor Semantic Inference

In this subsection, we design a high-level indoor semantic inference which makes sure that
DeepMap+ can recognize abundant high-level indoor semantics at the Wal-Mart supermarket. As the
indoor semantics are inferred by human complex activities in the fourth part of DeepMap+ as shown
in Figure 1, DeepMap+ greatly extends the scope of indoor semantic recognition compared to [8,9].
Furthermore, the high-level indoor semantics for DeepMap+ include not only the public facilities but
also the location contexts such as functional zones. We find out the public facilities of Wal-Mart are
closely related to users’ activities and functional zones. At first, we exact significant functional zones
and separate facilities of Wal-Mart illustrated in Figure 4a. They are important location contexts of the
recognized targets for the users, and they themselves also are crucial indoor semantics of Wal-Mart.
Then, we select several typical facilities as our recognized targets which are important indoor semantics.
In Figure 4a, every functional zone has at least a significant facility so that each functional zones can be
inferred by at least one recognized target. In addition, we make a correlation rule which can ensure the
one to one mapping relationship between the facilities and the activities, as shown in Table 1. Table 1
also introduces the detailed description of each of the complex activities, respectively.
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Table 1. The detailed description of complex activities.

ID Layer-1: Complex Activity Layer-2: Public Facility Layer-3: Functional Zone The Detailed Description of the Activity

1 Opening a one-door soda fountain A one-door soda fountain The food area Subject opens the door of the soda fountain with
one hand, then removes the goods and closes the door.

2 Grabbing a cling wrap A cling wrap supply shelf The food area Subject grabs a cling wrap, then pulls it out
and tears it off from the shelf.

3 Bagging bulk food A bulk food display shelf The food area Subject picks up the bulk food with a hand and puts them
into a freshness packet which is grasped by another hand.

4 Opening a two-door upright freezer A two-door upright freezer The bread section Subject opens the doors of the upright freezer with two
hands, then picks up the goods and closes the door.

5 Taking a bread or sandwich with a food clip A cake counter The bread section Subject pulls out the drawer of bread counter, then picks
up the bread with a clip and finally pushes back the drawer.

6 Opening a horizontal freezer A horizontal freezer The meat section Subject pushes the freezer door open with the palm of the hand downward,
then picks up the meat and pulls back the door until it is closed.

7 Selecting a bottle of wine A wine cabinet The wines section Subject grasps the bottleneck with one hand and holds the bottom
of the bottle with the other hand, then rotates the bottle body.

8 Filling rice into storage bag with a measured cup A rice display shelf The mixed grain rice section Subject picks a measured cup and
ladles a cup of rice into a storage bag.

9 Picking over an apple A fruit and vegetable storage shelf The section of fruits and vegetables Subject picks up the fruit and the wrist rotates
so that his palm turns from downward to upward.

10 Trying on a trousers A fitting room The trousers section Subject takes off his trousers, and then puts another pair of trousers on.

11 Trying on a shoe A shoe display shelf The shoes section Subject bends down to untie the shoelace, then takes off the shoe,
next puts on another shoe and ties the shoelace.

12 Trying on a jacket A jacket display shelf The clothes section Subject takes off his jacket, and then puts another jacket on.

13 Getting a cup of water from a drinking fountain A drinking fountain The drinking fountain Subject takes a cup at the front of the machine, then presses
down the button and waits 2–3 s, finally takes away the cup.

14 Touching a cotton goods like mattress A bedding articles display shelf The area of living goods Subject lightly touches and beats the cotton
goods with a hand to feel the softness of it.

15 Browsing a book or notebook A book display shelf The area of cultural and sports goods Subject holds a book or a notebook with both hands and flips through its pages.
16 Writing A pen display shelf The area of cultural and sports goods Subject picks up a pen and writes several characters.

17 Examining a drum washing machine A drum washing machine The Electrical area Subject bends over and opens the door of drum washing machine from the upper
right, then examines the internal structure and closes the door.

18 Putting goods on the checkout counter A checkout counter The checkout counter Subject picks up the goods from the shopping basket
and puts them on the checkout counter.

19 Opening a door of emergency exit A emergency exit The emergency exit Subject pushes forward the pole of the emergency exit and opens the door.

20 Heating food with a microwave oven A utilizable microwave oven The service counter Subject presses down the door open button, then takes into the foods and closes
the door, next spins the button to turn on the heat.

21 Washing hands A tap The rest room Subject turns on the tap, and scrubs his hands repeatedly.
22 Standing in an escalator An escalator The escalator Subject holds the handrail of escalator and stands motionless.
23 Walking in the stairs A stairs The stairs Subject walks in the stairs.
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As shown in Figure 4b, DeepMap+ infers the final high-level indoor semantics of Wal-Mart with
the high-level indoor semantic inference. The first layer is the complex activity recognition with
supervised DL. The second layer is the public facility inference based on complex activities and the
third is the location context inference based on typical facilities in accordance with the correlation rule
in Table 1. To some extent, the third layer infers users’ location contexts instead of location sensors
such as GPS, Bluetooth beacons and so on. Therefore, the final high-level indoor semantic is equal to a
public facility at the functional zone. For example, DeepMap+ recognizes a customer’s activity such
as trying on the shoes, meanwhile it can infer a shoe cabinet in the shoes section of the clothing area
in Wal-Mart.

(a) (b)

Figure 4. (a) The functional zones and separate facilities of the Wal-Mart supermarket; (b) high-level
indoor semantic inference.

It should be noted that the inference of each high-level indoor semantics is independent without
prior knowledge due to the DL process, and we only need to update Table 1 if any indoor semantics are
changed at Wal-Mart. Furthermore, our biggest challenge is shifted from high-level indoor semantic
inference to complex activity recognition, and most of the complex activities have several fine-grained
hand movements as shown in Table 1. Especially, some hand gestures of them are very similar, such
as filling cereal food into a storage bag and bagging bulk food in the food area, etc. To solve above
problems, the number of features and samples is particularly significant when the number of sensors
is not changed.

4. The Description of Our Proposed Methods

To strengthen the fine-grained recognition of complex activities, this section describes how
we generate virtual features and virtual samples based on the training dictionaries of multi-length
windows from the data storage of DeepMap+. Let k denote the number of activity classes
(k is equal to 23 in this paper) and ni denote the number of training samples from i-th class,
i ∈ [1, 2, ..., k]. Each training sample is represented as an m-dimensional feature vector (m is equal
to 13 in this paper). We arrange the ni training samples from class i as rows of a data matrix
Di = [xi,1, xi,2, ..., xi,ni ]

T ∈ Rni×m. In this paper, D4s, D6s, D8s and D10s represent 4-, 6-, 8-, and
10-s window training dictionaries, respectively. In the conventional single-length window framework,
D4s is the original training dictionary if it adopts the sliding windows with a length of 4 s, D6s is the
original training dictionary when adopting the sliding windows with a length of 6 s, and so on. In
our designed multi-length window framework, the above training dictionaries are generated with
50% overlapped sliding windows which are derived from the same data source sampled by users per
second as described in Section 3.2. Each of the training dictionaries have the same dimensionality
m, and the features of them are arranged in the same order. However, the training dictionaries have
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different numbers of rows because the different lengths of the sliding windows result in the different
number of total samples. For enhancing the original training dictionary, we design lots of methods
to add virtual features or virtual samples with a supplemental dictionary from the data source of
multi-length windows. For better description of our proposed methods, we firstly illustrate the process
of data preparation in the data storage of DeepMap+.

4.1. The Preprocess of the Supplemental Dictionary

This subsection introduces the important details about how to preprocess the supplementary
dictionary in the process of data preparation. As we described in the beginning of this section, the
training dictionaries D4s, D6s, D8s and D10s have the same number of columns but a different number
of rows. Obviously, we can see CD4s > CD6s > CD8s > CD10s , and CD4s denotes the sample number of
D4s. This is one of significant reasons why we choose the training dictionary of shorter-length windows
as the supplementary dictionary for the original training dictionary and there is no need to worry about
the lack of the supplementary data. The other advantages of this method are illustrated in the following
Section 4.5. As shown in the Figure 5, we list a simple example for the preprocess of the supplemental
dictionary. In the preprocess, we transform the supplemental dictionary to achieve two targets: (1) the
structure of the supplemental dictionary is as the same as the original training dictionary; and (2) the
property of the supplemental dictionary is close to the original training dictionary. At first, all entries
of each classes of the original training dictionary and the supplemental dictionary are sorted by their
timestamp in descending order. For the original training dictionary in the Figure 5, the entries 11′, 12′

denote the first samples of the first feature and the second feature respectively, and they are labeled as
class ‘1’. We can see that the entries 11, 12 of the supplemental dictionary should be related with the
entries 11′, 12′ of the original training dictionary in the time domain because they are labeled as the
same class and derived from the same data source in the similar period. Similarly, the other entries of
the original training dictionary also have the related entries in the supplemental dictionary. In Figure 5,
the entries 21’, 22’, 31’, 32’, 41’, 42’, 51’, 52’, 61’, 62’ of the original training dictionary correspond to
the entries 21, 22, 41, 42, 51, 52, 71, 72, 81, 82 of the supplemental dictionary, respectively. In addition,
we need to remove the redundant samples of each class of the supplemental dictionary. It is easy
to perform because we just need to remove the rows of the redundant samples. Respectively, the
third, sixth and ninth rows of the supplemental dictionary are redundant for class ‘1’, class ‘2’ and
class ‘3’ corresponding to the original training dictionary. Therefore, the third, sixth and ninth rows
of the supplemental dictionary are deleted. Finally, the structure of the original training dictionary
and the structure of the supplemental dictionary are the same totally due to their same dimensionality
m and their same order of features arrangement. In all examples of this section, the sample number
of the original training dictionary and its supplemental dictionary is six and the number of classes is
three for convenience. Actually, the number of real samples is much higher than six and the number
of classes is 23 in this paper. Now, we continue to introduce each of our proposed methods in the
following sections.

Figure 5. The preprocess of the supplemental dictionary.
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4.2. The Methods of Increasing Features

The methods of increasing features are used to add diversity of discriminative features which
can better characterize the hidden patterns of hand gesture. For example, a 4-s window feature and

a 6-s window feature (such as mean of resultant acceleration
√

a2
x + a2

y + a2
z) could be regarded as

two different features that seize the various characters in their own windows. Although the training
dictionary D6s and its supplemental dictionary D4s are correlated in time-domain, there still exist
some different characteristics between the 4-s window features and 6-s window features. The different
characteristics are derived from the different lengths of windows and confirmed in our experiment 1
described in Section 5.3, and we use the characteristics to generate the virtual features.

4.2.1. The Method of Double-Length Window Features

The core idea of this method is utilizing an original training dictionary and an additional dictionary
based on shorter length windows to double the number of features for better capturing the essence
of activities. For example, we can view an 8-s window training dictionary D8s as a supplementary
of the original training dictionary D10s and concatenate them horizontally. Figure 6 shows a simple
example of this method: the feature ’1’ of the original training dictionary Dorigin and the feature ’1’ of
its supplemental dictionary Dsupply are viewed as two different features, and we finally obtain a new
synthetic training dictionary Dsynthetic which has a double dimensionality than the original training
dictionary Dorigin.

Figure 6. The method of double-length window features.

Similarly, the methods of increasing virtual features are designed to double the dimensionality of
the training dictionary as the method of double-length window features, but they generate a virtual
feature matrix instead of the supplemental dictionary. The advantage is that the virtual feature matrix
inherits various properties of multi-length windows, and we try to utilize the above properties for
boosting the classification ability of DeepMap+. Now, we continue to introduce the methods of
increasing virtual features.

4.2.2. Increasing Virtual Features Based on Double-Length Windows

This method is also based on an original training dictionary and its supplemental dictionary from
double-length windows (e.g., 10-s windows and 8-s windows). A simple example of the method is
illustrated in Figure 7a,b, the main steps could be summarized as follows.

Step 1: Converting the original training dictionary Dorigin and its supplemental dictionary Dsupply

to the vectors v1 and v2, respectively. Due to the same structure of Dorigin and Dsupply, the lengths of
v1 and v2 should be same.

Step 2: Using the gradient descent algorithm to obtain a virtual feature matrix F and horizontally
concatenate it with Dorigin to generate a new synthetic training dictionary Dsynthetic.
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(a) (b)

Figure 7. The method of increasing virtual features based on double-length windows. (a) Step 1:
converting the original training dictionary and its supplemental dictionary to the vectors; (b) Step 2:
obtaining virtual feature matrix F by gradient descent and horizontally concatenating it with the
original training dictionary.

As shown in Figure 7a, let v1 and v2 represent the vector of Dsupply and Dorigin, respectively.
The goal of our method is to obtain a virtual feature matrix F instead of the supplemental dictionary
Dsupply and F can inherit various properties of Dorigin and Dsupply. Obviously, the vector form of F
is approximately equal to v1 and v2. Therefore, we choose the gradient descent algorithm to update
above v1 and v2, and v0

1 and v0
2 denote their initial values. The gradient descent function f (x) is:

xt+1 = xt − α5 f (xt) (2)

where α denotes the learning rate, and xt represents the value of x at time t. The minimum value
of f (x) and the corresponding optimal value of x can be efficiently solved by the gradient descent
algorithm. Then, our problem could be formulated as a simple function L(v1, v2) =‖ v1 − v2 ‖2

2, and
L(v1, v2) reaches its minimum value which means that we get approximately equal v1 and v2. It is
easy to get5v1 L(v1, v2) = 2(v1 − v2) and5v2 L(v1, v2) = 2(v2 − v1). To iteratively update v1 and v2,
the functions are:

vt+1
1 = vt

1 − α(vt
1 − vt

2) (3)

vt+1
2 = vt

2 − α(vt
2 − vt

1) (4)

where t is the number of iterations, α = λ
t and λ is a positive constant. As we know, the solution

would achieve convergence as α decreases with the increase of t. Therefore, the optimal vector vt
1 or

vt
2 is converted to the virtual feature matrix F which has the same structure as the original training

dictionary. Finally, we could concatenate the original training dictionary Dorigin with virtual feature
matrix F to obtain the final synthetic training dictionary Dsynthetic.

4.2.3. Increasing Virtual Features Based on Multi-Length Windows

In an attempt to catch more useful information from multi-length windows, we regard each
features of all training dictionaries as independent individuals. From this opinion, we extend the
utilized range of supplemental dictionaries and propose a method of increasing virtual features based
on multi-length windows. Therefore, its advantage is that it has several supplemental dictionaries and
the methods based on double-length windows only have one supplemental dictionary. For example,
we select the 10-s window training dictionary as the original training dictionary, and all of the 4-, 6-,
and 8-s window training dictionaries become its supplemental dictionaries in this method. Figure 8
presents this example of the method, and we summarize the main steps as follows:
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Step 1: Concatenating Dorigin with its supplemental dictionaries which based on shorter length
windows to obtain a initial hybrid matrix.

Step 2: Recombining the hybrid matrix by PCA that could automatically discover the cross
correlations which characterize the activity difference.

Step 3: Extracting the first K PCA components and discarding the rest to remove the poor quality
features, and the first K PCA components constitute our synthetic training dictionary Dsynthetic.

Before performing Step 1, the column of atmospheric pressure feature is removed in all dictionaries
at first. After performing the Step 3, we add the column of atmospheric pressure feature of Dorigin

to Dsynthetic so that it ensures the synthetic training dictionary Dsynthetic containing an atmospheric
pressure feature. At last, the final dimensionality of the synthetic training dictionary Dsynthetic is equal
to K + 1.

Figure 8. The method of increasing virtual features based on multi-length windows.

4.3. The Method of Increasing Virtual Samples

The method of increasing virtual samples confirms that cross correlation exists between the same
classes from double-length windows (e.g., 10-s windows and 8-s windows), and the cross correlation
is utilized to generate virtual samples for enlarging the number of the training samples. For instance,
a sample of the original training dictionary Dorigin and a virtual sample could be regarded as two
samples for a class when both of them are labeled the same class. To better utilize the cross correlation,
increasing virtual samples is based on double-length windows. Step 1 and Step 2 of this method are
illustrated in Figures 7a and 9 respectively, and the main steps could be summarized as follows.

Step 1: Converting the original training dictionary Dorigin and its supplemental dictionary Dsupply to
the vectors in the same way as the method of increasing virtual features based on double-length windows.

Step 2: Using the gradient descent algorithm to obtain a virtual sample matrix S and vertically
concatenate it with Dorigin to generate a new synthetic training dictionary Dsynthetic.

We should note that this method adds the virtual samples for every activity classes, and the
virtual sample matrix S has a same structure as Dorigin including the same arrangement of their features.
In addition, the way of obtaining the virtual sample matrix S is the same as the way of generating
the virtual feature matrix F in the method of increasing virtual features based on double-length
windows, because they both aim to search a virtual dictionary matrix which inherits the properties
of double-length windows. However, the core ideas of them are entirely different. The method of
increasing features attaches importance to the different characterizes between the same features but the
method of increasing samples confirms the similarities between the same classes from double-length
windows. Therefore, as can be seen in the Step 2 of two methods, the original training dictionary
Dorigin is concatenated with the new synthetic dictionary Dsynthetic horizontally in the former method
but vertically in the latter method.
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Figure 9. The method of increasing virtual samples: Step 2.

4.4. The Method of Increasing Features and Virtual Samples

Finally, we seek an effective solution for the combination of the method of increasing features
and the method of increasing virtual samples. Undoubtedly, all of above methods of increasing
features could be utilized in this solution. After a comprehensive consideration from performance
and convenience of them (described in Section 5.3), we selected the method of double-length window
features among them. Therefore, the key of this solution is in how to utilize the similarity to build
a virtual dictionary for a training dictionary of double-length windows, which are generated by the
method of double-length window features. Figures 7a and 10 illustrate Step 1 and Steps 2–4 of the
method respectively, and the main steps are described as follows:

Figure 10. The method of increasing features and virtual samples: Steps 2–4.

Step 1: Converting the original training dictionary Dorigin and its supplemental dictionary Dsupply

to the vectors v1 and v2 as shown in the Figure 7a.
Step 2: Concatenating Dorigin with Dsupply horizontally to obtain a training dictionary of

double-length windows.
Step 3: Using gradient descent algorithm to obtain a virtual sample matrix S and a virtual feature

matrix F with above two vectors v1 and v2, and concatenating the virtual sample matrix S with the
virtual feature matrix F horizontally to generate a virtual training dictionary of double-length windows
corresponding to above training dictionary of double-length windows.
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Step 4: Concatenating the training dictionary of double-length windows with the virtual
training dictionary of double-length windows vertically to generate the final synthetic training
dictionary Dsynthetic.

In this method, the virtual sample matrix S and the virtual feature matrix F are approximately
equal to Dorigin and Dsupply, respectively, so the virtual training dictionary of double-length windows
is approximately close to the training dictionary of double-length windows. Lastly, the final Dsynthetic

would be very helpful for complex activity classification.

4.5. Analysis and Advantages of the Proposed Methods

In this subsection, we provide the analysis and advantages of above our proposed methods.
Because multi-training dictionaries (e.g., D4s, D6s, D8s and D10s) are derived from the same data source
which is sampled by users per second as shown in Figure 1, these training dictionaries are correlated
with each other in the time domain. Meanwhile, they own individual characteristics due to the
different window lengths. The illustration of our experiment 1 described in Section 5.3, also confirms
this phenomenon. For complex activity recognition, the effective training samples are very valuable,
but sampling too many features would be time- and resource-consuming [12,13]. Therefore, we regard
all features of two training dictionaries as different features and utilize their individual characteristics
to generate virtual features, so we horizontally concatenate the original training dictionary with another
training dictionary or a virtual feature matrix in the above increasing feature methods. In addition, for
utilizing the temporal correlation to generate virtual samples, we vertically concatenate the original
training dictionary with a virtual sample matrix in the above increasing sample methods. Due to
the strong expressive power of the deep learning of DeepMap+, the increased virtual features and
samples are beneficial to learn a good representation of the new synthetic training dictionary Dsynthetic

for complex activity recognition.
In summary, our proposed methods have several advantages, as follows. Firstly, all of them are

simple and easy to perform. Secondly, the methods do not merely increase the similarities between the
same classes but also enhance the difference between different classes from multi-length windows.
Furthermore, the methods are beneficial to obtain more detailed information on human hand gestures.
Last but not least, our proposed methods are not limited to complex activity recognition, and it can
also be applicable to other pattern recognition problems.

5. Model Robustness and Comparisons

In this section, we perform the following experiments that investigate the benefit of our proposed
methods to DeepMap+ for recognizing high-level indoor semantics with collected large datasets from
two users at Wal-Mart.

5.1. Data Collection

To validate our proposed methods conveniently, smartphones are used as wearable devices
and equipped on the wrists of users for collecting wrist-worn data. Each user carried a Samsung
Galaxy S4 smartphone (Samsung Electronics, Suwon, Korea). In our experiments, two users both are
forced to use 23 indoor semantics at a Wal-Mart supermarket, and all of indoor semantics and the
corresponding activities are illustrated in detail in Table 1. Then, we note that the different durations
of indoor semantics utilized by two users result in the difference of sampling number. User 1’s series
consist of about 110 min of sensor data collection, and User 2’s series merely consist of about 80 min.
Thus, we have received 6691 and 4813 records from sensors on the wrist location of the two users,
respectively. The records containing calculated feature streams are broken up into successive sliding
windows respectively and there is a 50% overlap. This data has been appended with the corresponding
label, and then we made a 75%–25% uniform random split of it to form the train and test datasets
for each user respectively. An advanced activity recognition system A-Wristocracy [13] can also
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be utilized for inferring indoor semantics with our proposed high-level indoor semantic inference.
A-Wristocracy is built on single-length windows (such as 2-s or 4-s windows) and trained with an
original training dictionary, and DeepMap+ is built on multi-length windows and trained with a new
synthetic training dictionary generated by our proposed methods. In this section, A-Wristocracy is
denoted by single-length window method. To validate the performance of our proposed methods in
DeepMap+, we compare DeepMap+ using our proposed methods with A-Wristocracy and evaluate
the effect of varying the lengths (4, 6, 8, 10, 12, 14 s) of windows in various scenarios.

5.2. Experimental Setup

The training procedure of DNN in DeepMap+ is implemented in Python and leans upon the
Theano deep learning library. We use a multi-layer feed forward artificial neural network, which is
learned with stochastic gradient descent relying on back-propagation with two hidden layers. During
experiments, we set the training epochs to 1000, learning rate to 0.2, and batch size to 10. The data of
all windows is normalized because input normalization greatly impacts the performance of the DL
model. In particular, we adopt two techniques to improve DNN fine-tuning. The first technique is the
choice of activation functions, we try the ReLU function which has higher convergence speed than the
other often used functions (sigmoid, Hyperbolic tangent, etc.). The second is the dropout technique [32]
used as a regularization method to address over-fitting during the training process of DL.

Table 2 provides the architecture of DNN in DeepMap+. In these experiments, we do not try
to figure out the approximately required number of units in each of the two hidden layer because
different training dictionaries give rise to different approximately required numbers. This is not
our research objective. The number of units in two hidden layers is set to 100 and 300, respectively.
In particular, our experimental sets can protect the fairness of simulation absolutely so that the
setup of A-Wristocracy is as the same as DeepMap+. In order to report accurate experiment results,
all experiments are using 5-fold cross-validation in this paper.

Table 2. DNN architecture.

Total Layers Hidden Layers Units in the First Hidden Layer Units in the Second Hidden Layer

4 2 100 300

5.3. High-Level Indoor Semantic Classification

Experiment 1 is performed for explaining why we have an innovation idea to enhance complex
activity classification in this paper. We perform the baseline model [13] trained and tested with different
training dictionaries based on single-length windows (4, 6, 8, 10 s) respectively. From User 2’s dataset,
we randomly select eight types of indoor semantics to classify. Figure 11a shows the tested accuracy of
the baseline model. A notable finding is that the tested accuracy is varied as we train and test the model
with different training dictionaries, because different lengths of windows have a significant influence
on the complex activity recognition which could affect the final results of high-level indoor semantic
inference. Figure 12 illustrates the confusion matrices of test predictions with different lengths of
windows. Examining the confusion matrices, we also observe that each different-length window has its
specific characteristics. The model may have stronger identification ability for some activities but have
lower accuracy for the same activities as the length of windows varies, and similarly the model may
have lower identification ability for other activities but have higher accuracy for the same activities
as the length of windows changes. For example, the model can achieve a higher accuracy with 100%
using the training dictionary based on 6-s windows than the one have a accuracy with 74% based on
8-s windows for the 7th indoor semantic recognition but the exact reverse is the case for the 8th indoor
semantic. Meanwhile, there exist strong correlations between the different lengths of windows in the
time domain as the model with windows of different lengths achieves all good or poor performance
for some specific indoor semantics such as 2nd and 1st indoor semantic, etc. Reasonably utilizing
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above characteristics and cross correlations is particularly beneficial for DeepMap+ to discover hidden
patterns of high-level complex activities. Therefore, it is important to explain that we have the idea of
strengthening DeepMap+’s recognizability through: (1) utilizing the multi-length window framework
instead of the conventional single-length window framework; and (2) proposing several methods to
utilize the characteristics and cross correlations for increasing virtual features and samples.

(a) (b)

Figure 11. (a) Accuracy of the baseline model tested with different training dictionaries from four
single-length windows; (b) The impact of the length K of features set on classification accuracy of our
system using the method of increasing virtual features based on multi-length windows.

Figure 12. Confusion matrices vs. different lengths of windows.

The Experiment 2 is illustrated the impact of the dimensionality K of the synthetic training
dictionary generated by the method of increasing virtual features based on multi-length windows
for classification accuracy of our system, and DeepMap+ recognizes 23 high-level indoor semantics
described in the Table 1. As we describe this method in Section 4.2.3, the length of each features set
denotes the number of virtual features generated by PCA. A new synthetic training dictionary is a
features set, and we select four different lengths of K (10, 12, 24, 32) of the features set randomly.
In Figure 11b, we plot the tested accuracy of DeepMap+ which is trained with new synthetic training
dictionaries of K of four different dimensionalities. We can see that the longer length of features set
is a double-edged sword. That is because each single-length windows have own characteristic, and
the synthetic training dictionary obtained by this method blends all characteristics of multi-length
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windows and recombines them to extract a new virtual features set, and it may cause data inconsistency
even against complex activity recognition and the indoor semantic inference. Therefore, it affirms that
the set of virtual features is a significant prior knowledge to this method.

All of the following experiments are performed to validate the performance of our proposed
methods in DeepMap+ and recognize 23 high-level indoor semantics. Figure 13a,b illustrates the
tested accuracy of A-Wristocracy and DeepMap+. A-Wristocracy is trained with an original training
dictionary based on single-length windows and DeepMap+ is trained with new synthetic training
dictionaries generated by the method of double-length window features, the method of increasing
virtual features based on double-length windows, and the method of increasing virtual features based
on multi-length windows. A first observation is that the classification accuracy is more or less improved
by above methods through increasing features compared to single-length windows [13] for User 1 and
User 2. The reason is that the synthetic training dictionary obtained by above methods of increasing
features can better represent the characteristics of complex hand gestures and help DeepMap+ to
distinguish the indoor semantics compared to an original training dictionary. The second significant
observation is that the performance leaders are the method of double-length window features and
the method of increasing virtual features based on double-length windows, respectively. Therefore,
considering the performances and applications of above increasing feature methods, the method of
double-length window features and the method of increasing virtual features based on double-length
windows are the better schemes since neither of them would need any prior knowledge.

(a) (b)

Figure 13. The tested accuracy of the baseline model trained with an original dictionary and our system
trained with new synthetic training dictionaries generated by three types of increasing feature methods.
(a) User 1; (b) User 2.

Figure 14a,b shows the tested accuracy of A-Wristocracy [13] and DeepMap+. A-Wristocracy
is trained with an original training dictionary based on single-length windows and DeepMap+ is
trained with new synthetic training dictionaries generated by using the method of increasing virtual
samples and the method of increasing virtual features based on double-length windows respectively.
From Figure 14a,b, it is evident that both of our proposed methods outperform the baseline method.
Furthermore, for User 1 and User 2, the results of increasing virtual samples are better than increasing
virtual features in some cases, but in other cases the results are in contrast. Therefore, we also draw
an additional conclusion that increased virtual samples and increased virtual features respectively
derived from cross correlations between the same classes and different characteristics between the
same features from double-length windows are both beneficial for complex activity recognition, and it
would be hard to decide which is the better one for high-level indoor semantic inference.
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(a) (b)

Figure 14. The tested accuracy of the baseline model trained with an original dictionary and our system
trained with new synthetic training dictionaries generated by the method of increasing virtual features
and the method of increasing virtual samples. (a) User 1; (b) User 2.

Finally, we investigate the effect of combining the method of increasing features with the method
of increasing virtual samples in our DeepMap+. To evaluate the performance of this combined method
in DeepMap+, we take it compared with A-Wristocracy [13], DeepMap+ only using the method of
increasing virtual samples, and merely using the method of increasing virtual features. Figure 15a,b
illustrates the tested accuracy of them for 23 high-level indoor semantic classification. DeepMap+
with the method of increasing features and virtual samples achieves the highest discrimination
accuracy at all lengths of windows for User 1 and User 2. Figure 16a,b shows the confusion matrices
associated to DeepMap+, which is trained with the new synthetic training dictionary obtained by the
method of increasing features and virtual samples based on the double-length {10 s, 8 s} windows.
The experiment confirms that the method of increasing features and the method of increasing virtual
samples can have a good co-cooperation effect in the field of high-level indoor semantic inference, and
DeepMap+ with it achieves the high accuracy 99.6% and 97.52% for User 1 and User 2, respectively.

(a) (b)

Figure 15. The tested accuracy of the baseline model trained with an original dictionary and our system
trained with new synthetic training dictionaries generated by the method of increasing features and
virtual samples, the method of increasing virtual features, and the method of increasing virtual samples.
(a) User 1; (b) User 2.

Above experiments are performed for verifying the classification performance of DeepMap+ with
our proposed methods. All of Figures 13–16 can confirm the significance of the number of the effective
features and samples. Because total samples of all activities and the samples of each activity for User
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1 are more abundant than for User 2, we can notice that DeepMap+ and A-Wristocracy [13] have
achieved higher recognition accuracies for User 1 than for User 2 in all experiments. Furthermore,
DeepMap+ with all of our proposed methods can outperform A-Wristocracy [13] due to the extra
virtual features and samples.

(a) (b)

Figure 16. Confusion matrices of test predictions by our system trained with the new synthetic training
dictionary generated by the method of increasing features and virtual samples with {10 s, 8 s}windows.
(a) User 1; (b) User 2.

5.4. System Efficiency

We now report a series of experiments that demonstrates the efficiency of our proposed methods
applied in DeepMap+. We perform the simulations for User 1 and User 2 on a desktop equipped with
an Intel Core i7-4770 running at 3.4 GHz and 16-GB RAM. In Figure 17a,b, we plot the training time
characteristics for DeepMap+ using our proposed methods and A-Wristocracy [13] using single-length
windows. As can be seen, the time cost of the supervised training process may be more or less increased
by our proposed methods. The training time of DeepMap+ with the method of increasing virtual
samples or the method of increasing features and virtual samples nearly doubles the cost time of
A-Wristocracy, and DeepMap+ using the method of double-length window features and the method of
increasing virtual features only spends a little more time than A-Wristocracy. Therefore, the above two
methods of increasing virtual samples have the lowest execution speed because a greater number of
samples puts heavy computation burdens on the learning process of DNN algorithm. This opinion can
be also confirmed by comparing the Figure 17a,b, and we notice that DeepMap+ and A-Wristocracy
need to learn more samples result in their lower execution speed for User 1. Another important
observation is that above increasing feature methods still retain high efficiency compared to above
increasing sample methods, although the dimensionality of the training dictionary is added for DNN
learning. Figure 18a,b plots the classification time characteristics for DeepMap+ using our proposed
methods and A-Wristocracy using single-length windows. We note that the difference of efficiency is
minor using above five methods because the tested samples are not big data. Overall, the efficiency of
them is enough satisfied to run in real-time when the tested data is not large.

In conclusion, complex indoor activity classification and high-level indoor semantic inference are
advanced by DeepMap+ using our proposed methods, although the execution time of our system may
be improved more or less. However, we think that the loss of time is negligible for building DeepMap+
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which has the offline self-learning capability. Furthermore, DeepMap+ has the optimal efficiency when
utilizing the method of increasing virtual features based on double-length windows, and it has the
best classification performance when equipping with the method of increasing features and virtual
samples based on double-length windows.

(a) (b)

Figure 17. Training time of DNN: the baseline method vs. our proposed methods. (a) User 1; (b) User 2.

(a) (b)

Figure 18. Classification time of DNN: the baseline method vs. our proposed methods. (a) User 1;
(b) User 2.

6. Conclusions

In this work we proposed the DeepMap+, an automatical inference system based on DL with
wrist-worn device sensing for recognizing abundant high-level indoor semantics using complex human
activities. In addition, we presented a multi-length window framework instead of the conventional
single-length window framework to greatly enrich the training dictionary source of DeepMap+. In our
opinion, the multi-length window framework has an overwhelming advantage because there exist cross
correlations between the same classes and the characteristics between the same features from windows
of different lengths. We found that the correlations and the characteristics are beneficial to increase
virtual samples and features for finely capturing hand gestures. Based on this, we designed several
methods about increasing virtual samples and features to generate a synthetic training dictionary
which can contain more robust representations learned by DeepMap+. We believed that our proposed
methods based on the multi-length window framework can be also applied to recognition of other
patterns. Finally, DeepMap+ has been shown to classify 23 high-level indoor semantics for two users
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at a Wal-Mart supermarket. The experimental results validated that DeepMap+ with our proposed
methods had higher average tested accuracy compared to A-Wristocracy [13]. The next phase of
our studies is to exploit the popular WiFi signals for recognizing complex human activities and
high-level indoor semantics. The best advantage is that it is device-free for all users if we apply
channel state information (CSI) measurements to the fields of human activity recognition and indoor
semantic inference.
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