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Abstract: This paper presents a traffic sign detection method for signs close to road intersections
and roundabouts, such as stop and yield (give way) signs. The proposed method relies on statistical
templates built using color information for both segmentation and classification. The segmentation
method uses the RGB-normalized (ErEgEb) color space for ROIs (Regions of Interest) generation based
on a chromaticity filter, where templates at 10 scales are applied to the entire image. Templates consider
the mean and standard deviation of normalized color of the traffic signs to build thresholding intervals
where the expected color should lie for a given sign. The classification stage employs the information
of the statistical templates over YCbCr and ErEgEb color spaces, for which the background has
been previously removed by using a probability function that models the probability that the pixel
corresponds to a sign given its chromaticity values. This work includes an analysis of the detection rate
as a function of the distance between the vehicle and the sign. Such information is useful to validate
the robustness of the approach and is often not included in the existing literature. The detection rates,
as a function of distance, are compared to those of the well-known Viola–Jones method. The results
show that for distances less than 48 m, the proposed method achieves a detection rate of 87.5% and
95.4% for yield and stop signs, respectively. For distances less than 30 m, the detection rate is 100%
for both signs. The Viola–Jones approach has detection rates below 20% for distances between 30 and
48 m, and barely improves in the 20–30 m range with detection rates of up to 60%. Thus, the proposed
method provides a robust alternative for intersection detection that relies on statistical color-based
templates instead of shape information. The experiments employed videos of traffic signs taken
in several streets of Santiago, Chile, using a research platform implemented at the Robotics and
Automation Laboratory of PUC to develop driver assistance systems.
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1. Introduction

Traffic accidents are the primary cause of death for young people between 15 and 29 years old.
Between 20 to 50 million people are injured each year, while 1.3 million died due to traffic accidents,
of which 91% take place in low and medium income countries [1–3]. Latin America is a region with
high rates of road traffic accidents [2,4], due to diverse reasons which include driver education and
behavior, law enforcement, and lack of adequate road infrastructure. However, technology can also
play an important role in driver assistance systems that contribute to the alertness of the driver and
better driving behaviors [5,6].
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Most traffic accidents occur in urban areas, especially at road intersections and roundabouts.
Country statistics for traffic accidents show that a significant number happened at road intersections,
for instance, 22% in the USA [7,8], 58.7% in Japan during 1995 [9], 13.75% in Ecuador during
2015 [10], and 9.22% in Chile during 2014 [11]. Thus, the importance of developing systems for
road intersections detection [12], which unlike other aspects such as pedestrian detection, lane-tracking
and driver drowsiness or distraction [5,6] has not received enough attention. Prior work has focused
on pavement segmentation to detect intersections [6] by analyzing the continuity and curvature
of the road boundaries. However, occlusions in urban environments make the analysis of edges
difficult or impossible. Therefore, the implementation of an advanced driving assistance system
(ADAS) [13] requires a module capable of detecting road signs in general, and specifically those found
at intersections.

We propose a traffic sign detection approach based on statistical templates built using normalized
color information. The novelty of the approach lies in the probabilistic model of the sign (or object)
conditioned over the intensity of the normalized color channels instead of using traditional shape
descriptors. The results show that this approach is robust to variations in distance between the car and
the traffic sign, as well as variation in illumination. Unlike deep learning techniques, the results show
that it is possible to implement the proposed traffic sign detection approach with small datasets of
a few hundred images.

This paper is organized as follows. First, the state-of-the-art of traffic sign detection algorithms
is discussed in Section 2. Section 3 describes a new system for traffic sign detection and its modules
based on color information. The experimental results, where an analysis between the detection rate
and the distance is performed to verify the quality of this system, are presented in Section 4. Finally,
Section 5 is devoted to the conclusions and discussion of future work.

2. State-of-the-Art

Traffic sign detection using visible-spectrum cameras may take different approaches. Some works
implement feature classifiers. This means that a sliding-window method is used to compute features
on different overlapping regions, which are then fed to the previously trained classifier [14,15].
The drawback of this strategy is that many positions and scales have to be tested using classifiers that may
need computationally demanding training phases. More recent methods formulate a two-stage strategy,
in which candidate or proposal regions are computed first by some “class-agnostic” segmentation
process, i.e., extracting groups of pixels that share some characteristic without necessarily identifying
whether they truly belong to the same class of object. In a second stage, some classification or decision
process is used to complete the detection deciding whether some classes of objects sought are present
or not. The methods proposed in [16–24] can be found among recent approaches for traffic sign
detection employing regional proposal strategies together with classifiers. The most recent approaches
to segmentation and classification employed in traffic sign detection are discussed next.

2.1. Segmentation for ROI Generation

In the context of traffic sign detection, blob generation and color analysis are the main techniques
employed to segment regions of interest. Special efforts have been placed on making the color-based
segmentation robust to large variations in illumination and weather conditions. Greenhalgh et al. [16]
transform RGB into grayscale images using the red and the blue components and experimentally
obtained thresholds to generate ROIs. Salti et al. [17] employ three color spaces derived from the
RGB, the first to highlight road signs with a predominance of blue and red colors, the second one is
for signs with intense red and the third one for the bright blue. Li et al. [18] have built the Gaussian
space (EEλEλλ), where objects dominated by the green-red and blue-yellow colors are highlighted.
The preselected regions are in turn transformed to normalized values Cλ = Eλ/E and Cλλ = Eλλ/E,
which are fed to a k-means clustering [25] to generate the ROIs. Zaklouta et al. [19] implement two
RGB-based chromatic filters for ROIS generation, one for signs that have a red color prevalence, and
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another filter for red-yellow predominance; in both cases, thresholds are defined in terms of mean and
variance. Lillo et al. [26] have used the L∗a∗b∗ space to detect signs in which the blue, green, yellow
and red colors dominate. Based on the k-means clustering algorithm, the authors build a classifier
that employs the a∗ and b∗ components. Fleyeh et al. [23] use the H and S components of the HSV
space to train a classifier and implement the color segmentation that yields ROIs. More recently,
Han et al. [24] have used the H component of the HSI space, in which the traffic signs are highlighted
in order to build a grayscale image where a set of ROIs is generated. Keser et al. [27] have used the
HSV filter intervals to generate a set of ROIs. Finally, Zhu et al. [28] employ three different object
proposal strategies (Selective Search, Edge Boxes and BING) and convolutional neural networks for
classification, achieving an accuracy of 88% on average.

2.2. Recognition

The recognition stage typically employs feature classifiers, and therefore requires a feature
descriptor and a classification algorithm. One of the most popular feature descriptors is the histogram of
oriented gradients (HOG) [15], which provides information about objects’ shape. Recent works in traffic
sign detection that employ the HOG descriptor include [16,17,19,29]. Li et al. [18] employ the PHOG
descriptor, a variant of the HOG descriptor. Other descriptors are based upon the discrete Fourier
transform [26], the Hough transform [23], the SURF method [30], the values of the neighboring pixels in
a ROI [31], or predefined contour descriptors for basic shapes (circular, triangular, or rectangular) [27].

Concerning classifiers, most of the recent work in traffic sign detection employs SVM (support
vector machine) classifiers [25]; see for example [16–19,26]. Another popular classification approach
relies on artificial neural networks (NN). For example, recent work by Huang et al. [29] combines
an NN-classifier with ELM (Extreme Learning Machine), and Pérez et al. [32] relies on MLPs
(MultiLayer Perceptrons). The simpler k-NN (k-nearest neighbors) algorithm [25] is employed in
the traffic sign detection method proposed in [24]. Recently, Deep Learning techniques are being used
for simultaneous detection and recognition of traffic signs. CNN (Convolutional Neural Networks)
is also employed in many of the most recent papers—Lau et al. [31], Jung et al. [33], Zeng et al. [34],
Zhu et al. [28]—which propose new architectures for automatic sign detection. Other strategies, such as
the one employed by Li and Yang [35] rely on a combination of DBM (Deep Boltzmann Machine) and
CCA (Canonical Correlation Analysis) for feature extraction and classification. Lau et al. [31] have also
experimented with RBNN (Radial Basis Neural Networks) for classification.

2.3. Databases

The main traffic sign databases correspond to the following countries: Germany [17,19,20,29,32],
United Kingdom [16], Spain [22,26], Japan [36], China [28] or Malaysia [31]. Each country has its own
regulations and standards concerning traffic signs, divided in regulatory, prevention and information
categories [17,23,26,28,36]. Generally, they do not follow the Vienna Convention-Complaint for traffic
signs [37].

Thus country-specific databases are required for the development of traffic sign detection systems.
However, there is a lack of databases with traffic signs in Latin America. Therefore, another goal of
this work is to contribute to the development of traffic sign detection systems that can be validated
also on traffic signs of the Latin American region.

3. Proposed Approach for Segmentation and Recognition of Traffic Signs at Road Intersections
and Roundabouts

The proposed computational strategy for detecting signs found at road intersections and
roundabouts is composed of two parts. The first part generates ROIs in which traffic signs could
be found calculating and analyzing color statistics in the normalized RGB space. The second part solves
the recognition of signs in ROIs using a statistical template matching strategy using templates also in
the normalized RGB space.
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The detection must be done at the furthest possible distance, so that the driver has enough time
to react and to stop in time. Examples of typical testing scenarios for the proposed approach are
presented in Figure 1, which shows a distant stop sign and a yield (give way) sign.

Figure 1. Examples of testing scenarios showing stop (Left) and yield (Right) signs near a road
intersection and a roundabout.

3.1. Chromaticity Filter for the Selection of ROIs

Under adequate illumination conditions, such as daylight or artificial lighting, the color of traffic
signs is a feature that can be used to generate ROIs. Comparing the histograms of traffic signs in four
color spaces, RGB, HSV, YCbCr and ErEgEb (the normalized RGB space) [38,39], it possible to observe
in Figure 2 that some of the color spaces provide better discrimination capability between traffic signs
and the image backgrounds. In Figure 2, the histograms labeled RPOS correspond to histograms of the
stop sign, while the curves labeled RNEG correspond to the histograms of backgrounds or scenes that
do not contain traffic signs.

(a) Histogram of red channel. (b) Histogram of green channel. (c) Histogram of blue channel.

(d) Histogram of Y channel. (e) Histogram of Cr channel. (f) Histogram of Cb channel.

Figure 2. Cont.
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(g) Histogram of H channel. (h) Histogram of S channel. (i) Histogram of V channel.

(j) Histogram of Er channel. (k) Histogram of Eg channel. (l) Histogram of Eb channel.

Figure 2. Histograms of the average Stop sign images (cPOS) and their background (cNEG) for each
channel c in the RGB, YCrCb, HSV and ErEgEb color spaces.

The color space that shows the smaller overlap between the histograms of positives (signs) and
negatives (non-sign) is the ErEgEb space, where in particular the Er channel shows a clear separation
between the two classes. The Eg channel histograms have a small intersection, but likewise it serves to
discard a significant portion of negatives. Finally, the Eb does not provide considerable information,
but will be considered a part of the classification strategy, see Figure 2j–l. A similar analysis was
conducted for the yield sign and the results allow to conclude that the ErEgEb space, and in particular
Er and Eg channels provide a better discrimination capability.

Therefore, the candidate regions of interest can be detected using a chromaticity filter, i.e., a filter
that works on the variables that define color hue (dominant wavelength) and color purity or saturation
(difference between the intensity of the dominant wavelength with respect to white, grey or black)
regardless of luminance (magnitude of the color components vector) or psychological perception of
illumination brightness or intensity (as an average of the components of the color vector). In other
words, a chromaticity filter only requires two variables that describe dominant wavelengths regardless
of the total energy by mapping the components of the thrichromacy color model into a subspace
of two normalized values. Assuming a normal distribution of the chromaticity channels Er and Eg,
the selection thresholds for extracting ROIs can be defined as intervals [µc − ασc, µc + ασc], c = Er, Eg,
where µc and σc are the mean and standard deviation of the channel c computed over a set of positives
(images with traffic signs) according to:

µi,c =
∑p Ii,c[p]

NP
, (1a)

µc =
∑i µi,c

NI
, (1b)

σ2
c =

∑i(µi,c − µc)2

NI
. (1c)
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where Ii,c[p] is the value of channel c at the pixel location p within the traffic sign of the i-th reference
image (positive), i = 1, 2, . . . , NI , NI is the number of positive images, NP is the number of pixels
within the reference traffic sign area, µi,c is the mean value of channel c for the i-th image, µc is mean
value of channel c across the ensemble of NI images, and µ2

c is the variance of the mean values µi,c,
i = 1, 2, . . . , NI . The value α is set to minimize false positives and false negatives that will be passed
to the recognition stage. A practical value that ensures the lowest amount of false positives while
preventing misdetections was found to be α = 2. It is to be noted that using the so-called summed
integral area tables or integral images [14,40] is possible to reduce the computation time of the average
values on N × N sliding blocks. Two examples showing the generation of preliminary candidates for
ROIs using windows sizes of 50× 50 and 10× 10 pixels are shown in Figure 3 for values of α = 2, 3.

(a) Original image. (b) 50× 50,±2σ (1507 pre-candidates). (c) 50× 50,±3σ (7843 pre-candidates).

(d) Original image. (e) 10× 10,±2σ (768 pre-candidates). (f) 10× 10,±3σ (33,589 pre-candidates).

Figure 3. Examples of ROI (regions of interest) candidates generated for the stop sign using the
chromaticity filter before region merging.

The last step for the final proposal of ROIs is to eliminate the overpopulation of candidates.
To this end, all the candidates that are contained within or are a sub-window of another candidate are
discarded, so that only the largest block remains. Next, windows whose mean value is closest to µc in
each neighborhood are selected so that there is only one candidate per neighborhood. Figure 4 shows
the final ROI proposal obtained using 10 window sizes ranging from 10× 10 to 50× 50 in geometric
progression, with a fixed scaling factor between each size. The number of preliminary candidates
satisfying the chromaticity filter threshold was 32, 849. This number is reduced to only 9 after the
pre-candidate selection and merging step.
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Figure 4. Example of ROIs obtained after removal/merging of overlapping pre-candidates selected
with the chromaticity filter.

3.2. Recognition of Traffic Signs Based on Statistical Templates

The second stage of the proposed traffic sign detection approach is responsible for solving the
identification of ROIs as traffic signs of a given type. To this end, a set of images is employed to
create two statistical models, one with the mean intensity and the other with its standard deviation
for each pixel belonging to the traffic sign. Testing on a sliding block for the percentage of pixels that
fall within the expected intensity range for a given location provides a discriminator to detect traffic
signs from background and non-traffic sign objects. A flow diagram of the proposed method is shown
in Figure 5. The corresponding pseudocode of the algorithm is presented in Algorithm 1. The most
effective recognition of traffic signs is achieved applying the algorithm to the Er and Eb channels of the
ErEgEb color space. Only two channels conveying the chromaticity information are sufficient because
the magnitude normalization satisfies Er + Eg + Eb = 1, making the third channel dependent on the
other two (Eg = 1− Er− Eb). The probabilistic model that defines the discrimination thresholds is
discussed next.

In order to develop the probabilistic template matching model to recognize traffic signs, it is first
convenient to introduce the following notation:

• I , {I[k], k = 1, .., n} is a block or subwindow composed of pixel values I[k],
• I[k] is a vector with the pixel chromaticity components Er and Eb, k = 1, .., n,
• O , {O[k], k = 1, .., n} is the object (sign) class label of subwindow I,
• O[k]: the object (sign) class label at every pixel k, k = 1, .., n in the subwindow I.

The probability that a window corresponds to a particular object (sign) is:

P
(
O | I

)
= 1− P

(
O | I[1], I[2], ..., I[n]

)
,

= 1−
n

∏
k=1

P
(
O[k] | I[k]

)
, (2)

= 1−
n

∏
k=1

[
1− P

(
O[k] | I[k]

)]
,
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where O is the complement of O and P(O[k] | I[1], .., I[n]) = P(O[k] | I[k]) is obtained by assuming
independence between O[k] and I[j], for all j 6= k. This is possible in view of the fact that O and I are
random samples [41,42]. Also, this means that the probability of a pixel not belonging to an object only
depends on the pixel value and not its neighborhood. In other words, the background (non-sign) pixels
are assumed to be conditionally independent with respect to their neighborhood. This assumption is
not entirely true in every area of the background, but simplifies the probability computation.

Figure 5. Flow chart of the recognition stage based on statistical templates.
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Algorithm 1: Traffic sign recognition algorithm based on statistical templates
Input: Ic: candidate image block,
α: pixel acceptance amplitude parameter,
λσ: background pixels discard threshold,
λdet: minimal amount of pixels threshold for detection.
Output: Zdet: binary detection output.
// Loading pre-trained masks
AM = LoadAverageMask();
σM = LoadStandardDeviationMask();
// Pixel mask discarding corresponding to the background
BM = σMY < λσ;
// Minimum and maximum accepted masks
MAX = AM + α× σM;
MIN = AM − α× σM;
// Pixel mask accepted
PM = (MIN ≤ Ic ≤ MAX)× BM;
// Final decision
if SumPixels(PM)/SumPixels(BM)≥ λdet then

Zdet = true;
else

Zdet = f alse;
end

In order to compute the posterior probability P
(
O[k] | I[k]

)
that a pixel k has label O[k] given its

chromaticity value I[k], Bayes’ theorem is used

P
(
O[k] | I[k]

)
= P

(
I[k] | O[k]

)P
(
O[k]

)
P
(

I[k]
) (3)

to express the posterior probability in terms of the measurement model P
(

I[k] | O[k]
)
.

The measurement model P
(

I[k]|O[k]
)

can be obtained assuming that the pixel values of the object
(sign) of interest follow a normal distribution N(µEx, σEx), x = r, b, with mean chromaticity µEx and
standard deviation σEx obtained from a set of reference images, see the last row of Figure 2.

The likelihood or conditional probability that the measured chromaticity values (Er[k], Eg[k]) at
pixel k take some value in the interval [Ex[k]− βσEx[k], Ex[k] + βσEx[k]], x = r, g, given object class,
is then given by:

P
(

I[k] = (Er[k], Eb[k]) | O[k]
)

= ∏
x=r,b

2√
π

Ex [k]+βσEx [k]−µEx [k]
σEx [k]

√
2∫

0

e−t2
dt

= ∏
x=r,b

erf

(
Ex[k] + βσEx[k]− µEx[k]

σEx[k]
√

2

)
(4)

The prior probability P
(
O[k]

)
of finding the object (sign) in an image can be obtained

experimentally from the set of reference images as:

P
(
O[k]

)
=

TP
TP + FP

, (5)

where TP is the true positive rate and FP is the false positive rate for the object (sign) of class (type) O.
This ratio is known as a positive predictive value and it describes the probability of traffic signs being
correctly detected [43].
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Finally, the probability of the occurrence of chromaticity values P(I[k] = (Er, Eb)) can be obtained
empirically or analytically. The empirical approach would require constructing the histograms for the
Er and Eb channels using a representative set of training data and normalizing the histograms to obtain
the ratio between the number of pixels with the given chromaticity levels with respect to the the total
amount of pixels. Analytically, a cumulative density function for the values of each channel can be
deduced under the assumption that RGB values distribute according to a uniform distribution within
a window block that contains both object and background pixels (see appendix for calculations details).
The cumulative function for the chromaticity values under the uniform distribution assumption is
given by:

F(y) =



0 y ≤ 0
y

1− y
0 < y ≤ 1

3

−21y3 + 27y2 − 9y + 1
6y2(1− y)

1
3 < y ≤ 1

2

5y2 + 2y− 1
6y2

1
2 < y < 1

1 y ≥ 1

, (6)

The probability density function f (y) associated to the cumulative distribution of the chromaticity
values I[k] = (Er, Eb) is easily obtained from (6) by deriving F(y) with respect to y. Figure 6 depicts
the cumulative and density functions. The density function f (y) reaches a maximum at y ∼ 0.36,
which is the most likely background value without prior knowledge of the object (sign) class. Thus,
it is desirable that the objects of interest have their chromaticity levels far away from this value.

The analysis thus far provides enough tools to compute the probability that a window corresponds
to the object of interest using (2) and the statistical templates for the mean and standard deviation
µEx[k], σEx[k] over the window block k = 1, 2, . . . , n. However, these templates consider both the pixels
of the object of interest and the background; therefore, to improve discrimination, it is convenient to
discard background pixels.

(a) (b)

Figure 6. Background probability model, cumulative density function F(y) (a), and probability
density function f (y) (b), for ErEgEb space, considering that each channel of RGB space follows
a uniform distribution.
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Figure 7. Representative points of a stop sign template obtained by averaging reference samples in the
ErEgEb space.

To this end, Figure 7 presents the representative points to the comparison of histograms of the
pixels corresponding to the background and to the object of interest presented in Figure 8 reveals
that the luminance channel Y spreads over the entire range of possible values for background objects.
Hence, the standard deviation of the luminance channel is a good indicator to determine whether the
pixel is part of the object of interest or part of the background. Figure 9 shows the mean and standard
deviation for the luminance channel Y. It is clear that the template built using the variance provides
higher contrast between background and foreground than using the mean value of the luminance to
create a mask for discarding background regions.

(a) RGB-top background at (20,20). (b) YCrCb-top background at (20,20). (c) ErEgEb-top background at (20,20).

(d)RGB-bottom background at (180,180). (e)YCrCb-bottom background at (180,180).(f)ErEgEb-bottom background at (180,180).

Figure 8. Cont.
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(g) RGB-sign’s red at (50,50). (h) YCrCb-sign’s red at (50,50). (i) ErEgEb-sign’s red at (50,50).

(j) RGB-sign’s white at (22,84). (k) YCrCb-sign’s white at (22,84). (l) ErEgEb-sign’s white at (22,84).

Figure 8. Histograms in three color spaces for pixels in the reference areas of Figure 7.

(a) (b)

Figure 9. Scaled images of the mean µY (a) and standard deviation σY (b) of the Y channel.

To create a mask for discarding background pixels, an adequate thresholding value for the
standard deviation template is σY = 60 as may be observed in Figure 10 since it allows to retain most
of the pixels of the object of interest and discard all of the background. Assuming the luminance Y
would distribute Gaussianly, σY > 60 would imply that 95% of the samples would fall within ±120
intensity levels, thus it would cover a range of 240 levels, which would be almost the full range for
an 8-bit image with 255 levels. Thus, higher values for the threshold on σY are not convenient, while
lower values cause part of the object to be labeled as background, as shown in Figure 10a with σY = 55.

(a) (b) (c)

Figure 10. Discarding the background in the Y channel with different thresholds: (a) σY = 55; (b) σY = 60;
and (c) σY = 65.
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By the foregoing, the channels to be used in the recognition stage have the luminance to remove
the background and the chromaticity values Er and Eb to confirm the ROIs are of a given traffic sign,
ensuring robustness to illumination variations.

4. Testing Methodology and Experimental Results

4.1. Perception and Processing Systems

The vehicle shown in Figure 11a was employed as a testing platform for the experiments.
The system comprises several cameras (visible spectrum, IR, catadioptric), an IMU and a RTK GPS;
see [6] for further details. For the experiments presented here, only one camera from Imaging Source,
model DFK31BF03 model (see Figure 11b) was used together with the RTK GPS from Navcom
Technology, model SF-2050, with decimeter positioning accuracy (see Figure 11c). The camera has
a resolution of 1024 × 768 pixels and delivers images at 30 fps, while the GPS sampling rate is 10 Hz.
Thus, the GPS data was interpolated to match the sampling instants of the camera. Registering the
position is important in order to compute detection rates as a distance function. The processing of the
images was carried out on a PC with an Intel Core 2 Duo processor with a 2.0 GHz frequency, and
3.5 GB of RAM. All the algorithms were implemented in C++ using the OpenCV version 2.2 library.

Figure 11. Experimental platform, vehicle (a); camera (b); and GPS (c).

4.2. Training and Validation Dataset

The training dataset contains 2567 negative examples, 122 images containing stops signs and 80
images containing yield signs. The positive samples were randomly rotated, scaled and translated in
order to produce 7000 positive examples; see Figure 12. The validation dataset contains 273 stop signs
and 447 yield signs captured in six different driving runs.

The datasets consider a sequence of signs as the car approaches different intersections in the
city of Santiago, Chile. Both datasets contain traffic signs in real driving conditions, under varying
illumination and partial occlusion.

The database has been made available at RAL [44] to contribute to the making of new studies and
the development of ADAS.
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Typical traffic signs of road intersections and roundabouts in Chile: stop and yield signs;
under different lighting conditions (sunny (a,b), normal (c,d) and dark (e,f)) and observer positions.

4.3. Experiments Employing the Viola–Jones Method and the Proposed Statistical Template Approach

In this section, the proposed traffic sign detection approach based on statistical templates is tested
and compared to the well-know Viola–Jones method [45].

4.3.1. Viola–Jones Method:

The detection rates of the Viola–Jones approach for the stop and yield signs are summarized in
Table 1 as a function of distance. The detection rate for stop signs is 100% when distances are 20 m
or less. However, the detection rate rapidly falls to 0% for distances above 35 m. On the other hand,
less that 3.1% of the yield signs was detected for distances below 20 m. For distances above 20 m,
it was not possible to detect any yield sign. This is attributed, in part, to the fact that some samples
in the dataset contained signs with marks and graffiti on it. These results show that the Viola–Jones
approach is highly sensitive to possible modifications in the signs sought. The false alarm rates of the
Viola–Jones approach for the stop and yield signs were practically 0%, as shown in Table 2.

Table 1. Detection rate based on the Viola–Jones method.

Distance to the Intersection [mt] Yield % Stop %

>62 0.0% 0.0%
62–55 0.0% 0.0%
55–48 0.0% 0.0%
48–41 0.0% 0.0%
41–34 0.0% 6.5%
34–27 0.0% 21.0%
27–20 0.0% 57.6%
<20 3.1% 100.0%
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Table 2. False alarm rate per frame.

Method Yield Stop

Viola–Jones 0.006 0.0
Statistical template 0.036 0.069

4.3.2. Statistical Template Method:

The proposed algorithm was executed employing eight different templates sized from 14× 14 to
50× 50 pixels in geometric progression. The detection rates presented in Table 3 show that a high rate
of success was achieved for distances up to 37 m in the case of the stop sign and 35 in the case of the
yield sign. Detection rates fall to 0% for distances above 52 m in the case of the stop sign and 48 m in
the case of the yield sign. Unlike the Viola–Jones approach, false alarm rates were between 3.6% and
6.9% as shown in Table 2. A comparison of the detection rate performance of the proposed method
with the Viola–Jones approach is presented in Figure 13. This figure shows the effectiveness of the
proposed approach at detecting traffic signs earlier than the Viola–Jones method does.

Tables 1 and 3 were constructed with approximately 430 images for each distance class.
In terms of the computational effort, the Viola–Jones method required 450 ms per frame while

the proposed approach required 950 ms per frame. This amount could be decreased for real-time
operation using dedicated graphic processing units (GPUs).

Figure 13. Comparison of detection rates versus distance between the Viola–Jones method and the
statistical templates method for the stop and yield signs.

Table 3. Detection rate based on the statistical template method.

Distance to the Intersection [mt] Yield % Stop %

>62 0.0% 0.0%
62–55 0.0% 5.2%
55–48 8.5% 28.1%
48–41 50.0% 82.2%
41–34 87.3% 94.7%
34–27 100.0% 100.0%
27–20 100.0% 100.0%
<20 100.0% 100.0%

Finally, Figure 14 presents an extended example of the proposed system, in real driving conditions
during the day, for both stop and yield signs.
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Figure 14. Example of the proposed system in different instants of time, in daytime conditions. Stop
sign (Top) and Yield sign (Bottom), where blue indicates the ROIs and red shows the true sign.

5. Conclusions

This paper presented an approach based on statistical templates computed from chromaticity and
luminance values for traffic sign detection near road intersections and roundabouts. The approach
is evaluated using a dataset of stop and yield (give way) signs from Chile and compared to the
well-known Viola–Jones classification method.

The proposed approach is divided into two stages. The first stage is a segmentation stage based on
the chromaticity filter applied to the Er and Eg channels of the ErEgEb color space (the normalized RGB
color space). In the second stage, the chromaticity filter returns candidate regions that are responsible
for the recognition of traffic signs and which must be tested. The selection of the Er and Eg channels is
based on the analysis of the histograms of the color components in four color spaces (RGB, YCrCB, HSV
and ErEgEb), which shows that the ErEgEb provides greater capacity to discriminate candidate traffic
signs. The segmentation stage employs a selection threshold that can be computed automatically from
a reference dataset. The recognition stage is based on a statistical template built with information of the
Er and Eb chromaticity channels and the Y luminance channel. The luminance channel is employed
to create a traffic sign mask from the variance of pixels that allows background regions within a ROI
to be discarded. The Er and Eb channels are used to compute a statistical template that provides the
sign selection thresholds. A probabilistic model and probability distribution function were derived to
construct a recognition process based on Bayesian inference.

The results obtained show that the proposed approach has higher detection rates than the
Viola–Jones method. The experiments considered the evaluation of the detection rate at different
distances as the vehicle approaches a traffic sign. On average, the proposed approach exhibits a detection
rate of 87.5% for yield signs and 95.4% for stop signs at distances below 48 m.

The two main advantages of the proposed approach are summarized in that it does not require
a computationally expensive training or calibration stage, and it is not sensitive to changes in
illumination, partial occlusion or marks drawn on the traffic sign. Future work will consider extending
the proposed approach to the detection of traffic lights at road junctions and crosswalks, as well as to
the detection of other signs not necessarily found at road intersections. Ongoing research is considering
joint analysis of lane geometry analysis and edge continuity together with traffic sign detection to
improve the detection of road intersections. The main limitation of this model is the computing time,
which is about 950 ms per frame. As a future work, we will work to reduce this processing time.
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Appendix A. Deduction of the Background Probability Distribution

To derive the cumulative density function of chromaticity values for any pixel F(y) in Equation (6),
it is assumed that each channel of the RGB color spaces follows a uniform distribution. Thus,
three random variables X1, X2 and X3 representing each channel are defined according to the
uniform distribution:

X1, X2, X3 ∼ U(0, S) ⇒ f (x) =

{
0 x < 0∨ x ≥ S
1
S 0 ≤ x < S

, (A1)

The cumulative distribution function of the chromaticity channel EX1 = X1/(X1 + X2 + X3),
given by:

F(y) = P
(
Y ≤ y

)
= P

(
X1

X1 + X2 + X3
≤ y

)
, (A2)

is calculated as follows. The procedure for EX2 or EX3 is exactly the same.
In finding a closed-form expression for (A2), the following cases are considered:

• Case y = 0:

F(0) = P
(

X1

X1 + X2 + X3
≤ 0

)
= P (X1 ≤ 0) = 0. (A3)

• Case y = 1:

F(1) = P
(

X1

X1 + X2 + X3
≤ 1

)
= P (X2 + X3 ≥ 0)) = 1. (A4)

• Case 0 < y < 1:

F(y) = P
(

X1

X1 + X2 + X3
≤ y

)
= P

(
X1 ≤

y
1− y

(X2 + X3)

)
. (A5)

The last case amounts to solving the following integral:

F(y) =
S∫

0

f (x3)

S∫
0

f (x2)

y
1−y (x2+x3)∫

0

f (x1)dx1dx2dx3. (A6)

The inner integral of f (x1) must consider that if y
1−y (x2 + x3) ≥ S, then density function f (x1) =

1
S

is integrated up to S, while if y
1−y (x2 + x3) < S, then the integral is computed for x1 ∈ [0, y

1−y (x2 + x3)].
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For the latter to be fulfilled throughout the non-zero domain of f (x2) and f (x3), the following must
be satisfied:

y
1− y

(x2 + x3) ≤ S ∀x2, x3 ∈ [0, S]⇒ y ≤ 1
3

(A7)

Similarly, when analyzing the limits of integration for the integrals over x2 and X3, so that the
non-null parts are integrated and the result is continuous over the range of integration, the following
intervals are obtained for y: (0, 1

3 ], (
1
3 , 1

2 ] and ( 1
2 , 1).

For 0 < y ≤ 1
3 :

F(y) =
S∫

0

1
S

S∫
0

1
S

y
1−y (x2+x3)∫

0

1
S

dx1dx2dx3 =
y

1− y
, (A8)

For 1
3 < y ≤ 1

2 , the integral is calculated as follows:

F(y) =

1−y
y S−S∫
0

1
S

S∫
0

1
S

y
1−y (x2+x3)∫

0

1
S

dx1dx2dx3

+

S∫
1−y

y S−S

1
S

1−y
y S−x3∫

0

1
S

y
1−y (x2+x3)∫

0

1
S

dx1dx2dx3

+

S∫
1−y

y S−S

1
S

S∫
1−y

y S−x3

1
S

S∫
0

1
S

dx1dx2dx3

=
−21y3 + 27y2 − 9y + 1

6y2(1− y)
, (A9)

Finally, for 1
2 < y < 1, the integral is computed as follows:

F(y) =

1−y
y S∫

0

1
S

1−y
y S−x3∫

0

1
S

y
1−y (x2+x3)∫

0

1
S

dx1dx2dx3

+

1−y
y S∫

0

1
S

S∫
1−y

y S−x3

1
S

S∫
0

1
S

dx1dx2dx3

+

S∫
1−y

y S

1
S

S∫
0

1
S

S∫
0

1
S

dx1dx2dx3

=
5y2 + 2y− 1

6y2 . (A10)

The above results in the cumulative distribution presented in Equation (6).

Appendix B. Traffic Sign Detection by Using the Viola–Jones Method

The Viola–Jones object recognition approach [14,40] has been used in multiple computer vision
applications [45–47]. In this work, it has been used to build a traffic signs detector, trained for stop and
yield signs. Figure A1 shows the first and second convolution masks based on Haar-like features for
each of the traffic signs considered in this work.
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Figure A1. First and second Haar-like convolution masks for stop and yield signs employed in this work.
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