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Abstract: Gravity data gaps in mountainous areas are nowadays often filled in with the data from
airborne gravity surveys. Because of the errors caused by the airborne gravimeter sensors, and
because of rough flight conditions, such errors cannot be completely eliminated. The precision
of the gravity disturbances generated by the airborne gravimetry is around 3-5 mgal. A major
obstacle in using airborne gravimetry are the errors caused by the downward continuation. In order
to improve the results the external high-accuracy gravity information e.g., from the surface data
can be used for high frequency correction, while satellite information can be applying for low
frequency correction. Surface data may be used to reduce the systematic errors, while regularization
methods can reduce the random errors in downward continuation. Airborne gravity surveys are
sometimes conducted in mountainous areas and the most extreme area of the world for this type
of survey is the Tibetan Plateau. Since there are no high-accuracy surface gravity data available
for this area, the above error minimization method involving the external gravity data cannot
be used. We propose a semi-parametric downward continuation method in combination with
regularization to suppress the systematic error effect and the random error effect in the Tibetan Plateau;
i.e., without the use of the external high-accuracy gravity data. We use a Louisiana airborne gravity
dataset from the USA National Oceanic and Atmospheric Administration (NOAA) to demonstrate
that the new method works effectively. Furthermore, and for the Tibetan Plateau we show that
the numerical experiment is also successfully conducted using the synthetic Earth Gravitational
Model 2008 (EGMO08)-derived gravity data contaminated with the synthetic errors. The estimated
systematic errors generated by the method are close to the simulated values. In addition, we study
the relationship between the downward continuation altitudes and the error effect. The analysis
results show that the proposed semi-parametric method combined with regularization is efficient to
address such modelling problems.

Keywords: systematic error; random errors; downward continuation; Louisiana; Tibetan Plateau;
semi-parametric; regularization
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1. Introduction

Airborne gravimetry is a cost efficient way of collecting gravity data in mountainous and
uninhabited areas [1-6]. The downward continuation of airborne gravity data from the flight altitude
to the surface is frequently used in the geophysical/geodetic applications, i.e., contemporary geoid
models [3-20]. The mathematical formulation of the upward/downward continuation of potential
fields is based on the Abel-Poisson’s integral generated from a Fredholm integral equation of the first
kind. The downward continuation that inverts the solution of Abel-Poisson’s integral, has become a
standard strategy applied by many authors. Jacobi’s iterations are proposed to compute decomposition
of the inverse Poisson’s integral [14]. The problem was also treated using Tikhonov’s regularization [21].
Other downward continuation methods include least-squares collocation [21].

The downward continuation is an error amplification process. Therefore downward continued
gravity signals using the inverse Poisson’s integral are easily destroyed by the observation errors.
Airborne gravimetry data are affected by all kinds of errors. For instance, air turbulence generates
random errors, and data from gravity sensors contain systematic errors [2,22]. The above factors vary
with the change of regions, sensors and the weather conditions. The air turbulence generates high
frequency systematic and random errors, which can be reduced by the low-pass filtering [2,3,5,6,8,23].
In the actual survey conditions, the errors in the airborne gravity data can be classified as random and
systematic errors. The systematic errors are often removed using the crossover adjustment [2,3,6-8,11].
However, it is not a workable solution in the USA National Geodetic Survey (NGS) Alabama and
Louisiana projects due to an apparent systematic error of the cross lines [14,24] (ftp:/ /ftp.ngs.noaa.
gov/pub/grav-d/CS02/). Sometimes airborne data are collected to offset limitations of the existing
terrestrial gravity database. Therefore we cannot use the terrestrial gravity data for removing the errors
in the airborne data in many mountainous areas like the Tibetan Plateau [7]. We find the effective
noise-removal techniques using the global model for that area. In addition, the flight altitudes of the
airborne gravimetry and, thus, the altitude from which the data are downward continued, can be very
different. For example, the extreme altitude in the USA Gravity for the Redefinition of the American
Vertical Datum program (GRAV-D) is approximately 11 km. That is also the planned flight altitude
for the future Tibetan Plateau airborne gravimetry project to avoid the aviation hazards. Therefore
the relationships between the downward continuation from the flight altitude and the error effects of
random and systematic errors should be analyzed for the Tibetan Plateau.

The problem of the amplification of the random errors by the downward continuation
can be minimized by regularization methods in the space-domain or by the filtering in the
frequency-domain [3,10,11,21]. However, the systematic errors are difficult to remove when there
are no external surface gravity data as is the case for the Tibetan Plateau. We propose to use the
semi-parametric model to estimate and to remove the systematic errors. The semi-parametric method
includes a parametric and a non-parametric component [25-35]. It is a statistical method for systematic
errors, which has been applied in the fields of electrical engineering [36]. However, the “penalized
likehood” allows one to estimate the systematic components without any a priori knowledge.
Fessler presented the rationale behind “the penalized likehood” estimation in [26,27]. To the authors
knowledge, there are no papers dealing with airborne gravimetry that use the semi-parametric model
for the estimation of the systematic errors. The relation between the method proposed in this paper
(the semi-parametric method) and the least-squares collocation as well as a serious study of the pros and
cons of both methods is outside the scope of the present paper. It is, nevertheless, an obvious topic for
future studies. The use of the least-squares—collocation for downward continuation of aerogravity data

7

requires, to the authors” knowledge, a full processing at flight height prior to downward continuation.
The semi-parametric method offers a possibility of direct downward continuation from the flight height
to the surface from the measured data and without the a-priori knowledge of the error characteristics.

The objective of this paper is to analyze the effect of systematic and random errors on downward
continuation. We focus on the following issues: (1) the effectiveness of the semi-parametric model
combined with the regularization in removing the errors on the Louisiana-project data; (2) the
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effectiveness of the semi-parametric method in modeling the systematic errors in the Tibetan plateau;
(3) the relationship between the errors and the flight altitude in downward continuation (11 km for the
Louisiana project as well as for the future Tibetan Plateau project). The observed airborne gravity data
in the NGS Louisiana project and the simulated gravity disturbances from the EGMO08 for the Tibetan
Plateau will be used to assess the performance of the above methods on the error reduction.

2. The Semi-Parametric Method Combined with the Regularization

The proposed error handling method is based on the inverse Poisson’s integral where the
systematic errors are removed using the semi-parametric method while the random errors are reduced
using the regularization method.

2.1. The Inverse Poisson’s Integral

Downward continuation can be viewed as the inverse operation of the Poisson’s integral,
which itself is a solution to the first boundary value problem of potential theory. In the spherical
approximation, the upward continuation Poisson’s integral yields:

7 2
R%(r? —R?) /2 [ 0gB(R, ¢, N)
3 B(r,o,;R, ¢/, \)
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where g7 (r, @, A) is the gravity disturbance at a field point with the spherical latitude ¢, the longitude
A, ¥ = R+ h, and h is the flight altitude. R is the mean radius of the Earth. §¢8(R, ¢/, \) is the gravity
disturbance at the variable integration point on the geoid. I(r, ¢, A; R, ¢’, \) is the distance between
the fixed field point and the variable integration point. Gravity disturbance can be generated by
6g = gp — p- gp is the gravity value. The normal gravity vp is calculated by 7p = 978031.85 x
(1+0.005278895 x sin (¢)* + 0.000023462 x sin (¢)*) in NGS GRAV-D general airborne gravity
data use manual [14] (¢ is the geodetic latitude).
The distance between the field point and the source point [ is calculated as follows:

I=1/r2 + R2 —2rRcos ?)

where ¢ is the spherical distance between the two points on the surface of a unit sphere, represented
by (¢, A) and (¢’, ), so that:

cosyp = singsing’ + cos¢cos ¢’ cos(A —A) (3)

Equation (1) is called the Poisson’s integral formula. Normally the discrete Poisson’s integration
is used for the downward continuation. We use the matrix-vector notation for a grid representation of
the Poisson’s integral model which can be written as follows [10-12,21,36]:

5¢"r = Bogs (4)

where 5¢*" is a vector of dimension M of the gravity disturbances in the air. §¢8 is a vector of length N
of the gravity disturbances, containing point disturbances g8 on the ellipsoid, and the M x N matrix
B consists of elements b;; explained below.

The diagonal entries of are given by:

R r; + R i i1 2) RZ)
b = {271 : 1-— R Ao; — R Ac; (5)
47tr; [ T ( (7’1/ 4’0/ j=1 R) ! j 121 ( I/J/R) !
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where Aj is the surface element centered at the jsth geographical node 0;. Nc is the number of data
within the spherical cap of radius 1°, 1y is the radius of the inner zone.
The off-diagonal elements of are given as follows:
R2 (P=R%) A
by =4 TTEUAR) Adj i < Yo (6)
0 Pij > o

2.2. The Semi-Parametric Method

The parametric model only have parameters but the semi-parametric model has two types: the
parameters are modeled using the empirical or mathematical equations; the nonparametric parts
whose relationship with the observations is unknown, are handled by the nonparametric method.

To describe the nonparametric method, initially suppose that the data consist of the n coupled
pairs (t;,y;),i=1,--- ,n, related by the simple model:

yi=f(t) +e ()

where f is a function on the interval (4, b) and the residuals e; have the properties:
E(e;) = 0,var(e;) = E(eiz) = 0%, E(eje)) =0i #j, alli (8)

E is the mathematical expectation. Rather than considering some arbitrarily chosen parametric
form, for example f(t) = a + bt + ct?, the problem considered here is to estimate f(t) by a
nonparametric method.

The nonparametric relation becomes:

Li=blX+s(t;)+A; i=1,---,n )

where L,; is the observation including the errors. X is the estimated value. s(t;) is a systematic error
which is the nonparametric function. A; is a random error vector. We consider as s(t), and as an
approximation to the original systematic error function, the cubic smoothing spline, which for a given

ag > 0, minimizes:
n tn

%Z Pi(L; — bZTX — S(tl‘))z + D(S/ (S//(t))zdi’ = min (10)

i=1 Y

s”(t) is the second order derivative of s(t). We call this the semi-parametric regression model or
“penalized likehood” estimation. The first term of Equation (10) penalizes the lack of goodness of fit of
the function to the data, and the second penalizes the lack of smoothness of the approximating function.
The solution to Equation (10) is unique at every data point t;. More importantly, the semi-parametric
model can estimate the systematic error without the external data, because the “penalized likehood”
estimation allows the data “to speak for itself” without the a priori knowledge [26-28]. The key point
is to use ag to balance the two terms relative to each other. By varying as, the smoothness of s()
is varied. At the extremes, when ag goes to infinity, the left hand side of Equation (10) is forced to
be linear over the whole range of t values and is then the best least squares line through the data.
When ag — 0, y tends to be an interpolating function for the data, fitting every data point exactly. The
generalized cross validation method to calculate «g is used.

Smoothing splines were originally proposed by Whittaker [34], Schoenberg [32], and Reinsch [29].
The analysis of their statistical properties, when s(t) are periodic, appears in Wahba [33] and Rice
and Rosenblatt [30,31]. An analysis of the nonperiodic case appears in Rice and Rosenblatt [31].
The character of the function s minimizing this expression is not clear, although in the case of the
direct observation of X, b! X = f(t;), the solution can be shown to be a natural cubic spline. For the
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natural cubic splines, the specific derivation is given in [10,12,21,28]. The most important relations are

summarized below:
ty

/ (s"(1))%dt = TFG1FTs (11)
fy

where F and G are n x (n —2) and (n —2) x (n — 2) band matrices, respectively.

h;l, i=j
— (bt +nY), i=j+1
Fj = 0 » ) ! (12)
h].H, i=j+2
0 others
1/3(hi1+hi)  i=jj=2---n—1
o 1/6hy  i=j—1,j=2-n—2 13
7 1/6h; i=j+1j=1---n-3

0 others
i=12---,nj=12---,n—-2

where h; = tjy1 —t; (i=1,2,--- ,n —1). According to the Lagrange extreme value, the functions are
constructed as follows:

¢=VIPV +ass"RE+ 2K, (BX +5—-L—V) (14)

where Ry = FG'FT, P is the weight matrix of observations. K, is the Lagrange constant. Adjustment
calculation is omitted. The final results are as follows:

R = (BTP(1— M)B) ' (BTP(I — M)L) (15)

§ = (P+asRs) ' (PL— BTPX) (16)

where M = (P +« SRS)_lP. The generalized cross validation method of the semi-parametric model
was used to calculate the smoothing parameter «g. It is defined as:

vipy

CeVas) = i (H ) /2

(17)

where H = (BTP(I — M)B)leTP(I - M).

2.3. The Regularization Method

The Tikhonov regularization is a classic regularization method. Minimizing the Tikhonov cost
function for the downward continuation yields [10,12,21]:

09duwe = (BTPB +agl) 'BTPL (18)

where ap is the regularization parameter and I is the unit matrix. The regularization parameter in this
study is determined by the generalized cross-validation:

m||BX — L||>

19
(trace(I — Quy ) 19)

KR = argmin
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where argmin means the argument of the minimum. m is the number of measurements and Qq, is

Que = B(B"B+ag?1) BT (20)
2.4. The Semi-Parametric Method Combined with Regularization

For the purpose of dealing with the systematic errors and the random errors we combine the
two methods for the downward continuation: The semi-parametric model is used to estimate the
systematic errors; then we apply the regularization method to suppress the random errors.

The final equation is as follows:

5¢8(R, ¢/, A') = (BTPB + agl)” BTP(5¢"" (r, ¢, A) — &) 1)

where R <r.
The major processing steps are as follows:

R; is generated by the natural cubic splines using Equations (12) and (13).
Rs and the initial value of ag are added into Equation (17) to calculate .
Rs and &g are added into Equation(16) to estimate the systematic error 3.

L.

Airborne gravity disturbances subtract § to get the airborne gravity disturbances without the

systematic errors.

5. The airborne gravity disturbances without the systematic errors are brought into Equation (19) to
calculate ag.

6.  Finally, the ground gravity disturbances are obtained by Equation (21).

3. The Louisiana Project: The Experimental Results

For the purpose of demonstrating that the semi-parametric method can estimate the systematic
observation errors without the external surface gravity data, we show four cases:

Case a: The inverse Poisson’s integral

Case b: The semi-parametric method

Case c: The regularization

Case d: The semi-parametric method combined with regularization

In all these experiments we will downward continue the gravity disturbances from
approximately 11 km to 0 km (sea level). All these downward continuation cases are based on the
remove-compute-restore approach with 360° of the gravity field from EGM2008 [37].

3.1. The Data Description

In 2008 the NGS of the USA National Oceanic and Atmospheric Administration (NOAA) launched
the GRAV-D project for the airborne gravity surveys for the geoid determination. The data from the
Louisiana block survey was released in 2013. The block is 430 km by 460 km, located in the Gulf of
Mexico, covering the coastal areas of Louisiana and the ocean areas from 200 to 300 km offshore. The
area is defined by the latitude between 27° and 31° and the longitude between 269° and 273.5° [7,14].

There was an apparent bias (Figure 1 and Table 1) in the Louisiana survey results, so an additional
correction was applied before the crossover analysis to adjust the mean gravity value of each line to the
mean gravity value of EGMO08 (up to 2190°) along this line. The way to estimate the absolute bias of
the Louisiana data can use the independent satellite global gravity models (GGMs). The mean values
of the difference between EGMO8, satellite GGMs and the Louisiana air gravity disturbances are about
2-3 mgal in Table 2. The DIR-R5 [38] model and TIM-R5 [39] model used are 220°. And GOCOO05C [40]
model used is 720°. Table 1 shows a bias of 2-3 mgal in the overall data set.
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Figure 1. The distribution of the bias from EGMO08 of the airborne gravimetry lines in Louisiana
(the North-South lines are the survey lines, the West-East lines are the cross lines with the
significant errors).

Table 1. Difference between GGMs derived values and the airborne gravity disturbances of the
Louisiana gravity project (mgal).

EGMO08 DIR-R5 TIM-R5 GOCO 05C
Mean Std Mean Std Mean Std Mean Std
North-South lines —2.474 0.445 —2.339 4.940 —-2.381 4.872 —2.434 1.651
West-East lines —2.873 1.668 —3.018 5.486 -3.077 5.459 —2.893 2.258

Table 2. Statistics of crossover error analysis in Louisiana.

Items Values
Altitude (m) 11 088
Number of Crossovers 361
RMS of Residuls (mgal) 1.8
Std of Resduals (mgal) 1.8
Mean Crossover Difference (mgal) -0.19
RMS Error (mgal) 1.28

The bias-corrected difference between the cross line gravity values and the main N-S data lines
gravity values are the residuals. The root mean square (RMS) of the residuals yields the total RMS
error. The result of the crossover analysis is shown in Table 2.

3.2. The Test Results and the Analysis

The error in the aerogravimetric surveys can adequately described as a linear combination of a
random error, the bias, the linear drift and the periodic error [11]. Therefore the simulated drifts and
periodic errors are added to the observations to ensure that all error types are present in the numerical
experiment and to illustrate the effectiveness of the semi-parametric method in dealing with all kinds of
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the systematic errors. We use a drift rate of 0.002 mgal/s. The frequency of the periodic error (a sine
function) is 0.003 Hz and the amplitude is 6 mgal. These parameters are quoted in [11] based on the
analysis of relationship between the gravity measurement system and the systematic errors.

Next we design the numerical experiment consisting of four tests (see Section 2.4) The gravity
disturbances at sea level are calculated from EGMO08 as the control data (the “original values”) keeping
in mind the high accuracy of EGMO08 in North America.

The inverse Poisson’s integral, was found to yield the downward continued gravity disturbances
containing large random and systematic errors in Table 3 and Figure 2. The results (Figure 3) of purely
semi-parametric method seem to have less systematic errors, but the effect of random noise are large
(see Figure 2b). It is concluded that the semi-parametric model without the external high-accuracy
gravity data works effectively to reduce the systematic errors.

Table 3. Statistics of the differences between the downward continued values and the original values
in the Louisiana Gravity Project (mgal).

Max Min Mean RMS
The inverse Poisson’s integral 117.154 —57.081 6.858 19.331
The semi-parametric model 64.589 —61.587 0.141 14.167
The regularization 18.543 —8.554 4.255 6.060
The semi-parametric method
combined with the regularization 9.689 —9.722 0.110 2922
-93' 92 91" -90° -89  93° -92° _91' -90° -89'  -93° -G2' 91" -90° -89’ 93 -92° _91° Q0" 89’

. vw‘@&-“r
PR AR AV A
: :,.-er‘,a-

-8 -4 -8 -4 —8 —4 4 8 -8 -4 0 4 8
mGaI mGaI) (mGaI) (mGal)

Figure 2. The distribution and the histograms of the differences between the downward continued
values and the original values in the Louisiana Gravity Project (a) The inverse Poisson’s integral;
(b) The semi-parametric method; (c) The regularization; (d) The semi-parametric method combined
with the regularization.

-93° -92° -91° -90" -89° -93° -92° -91° -90" -89° -93° -92° -91° -90" -89° -93° -92° -91° -90" -89°
——— I, — ——— L 31 — — IR, — ———) "

Figure 3. The distribution of the downward continued values in Louisiana Gravity Project
(a) The inverse Poisson’s integral; (b) The semi-parametric method; (c) The regularization; (d) The
semi-parametric method combined with regularization.
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For the regularization method (see Figure 2c,d), the random errors are reduced significantly.
However the semi-parametric method combined with the regularization is more efficient than the
regularization method alone and the semi-parametric method alone respectively. The results illustrate
that the regularization method can reduce most of the random errors as seen in Figure 2a—c and in
Figure 2b—d. We also see that the semi-parametric method eliminates the systematic errors effectively,
as seen in Figure 2a,b and in Figure 2¢,d. The smoothing parameter is 1.007 and the regularization
parameter is 0.504.

4. The Tibetan Plateau Experimental Results

4.1. Data Description

As for the Tibetan Plateau, where the surface gravity data are not available, the airborne gravity
disturbances and the ground gravity disturbances are obtained using EGM2008. This is just to have a
rough approximation of the true field which, nevertheless, is consistent both at the topography and at
the flight height. EGM2008 is of course not a perfect approximation of the true field for the Tibetan
Plateau. However, the purpose of this numerical experiment is the noise suppression in downward
continuation for the extreme but known topography of the Tibetan Plateau. If the EGM2008 model
will be included in the future Tibetan Plateau aerogravity project, the errors of EGM2008 should
also be included. The simulated error data consist of the random errors and the systematic errors.
The standard deviation of the random errors is 2 mgal and the simulated systematic errors contain
the bias (3 mgal), the drift and the periodic errors. The rate of drift is 0.002 mgal/s. The frequency of
the periodic error is 0.003 Hz, and the amplitude is 6 mgal. The sine function is used to represent the
periodic function. The statistics are shown in Table 4 and Figure 4.

Table 4. The statistics of the systematic errors in the Tibetan Plateau (mgal).

Max Min Mean Std

Simulated values 13.713 —2.436 5.621 4.598
Estimated values 13.789 —1.548 5.751 4.478
Differences 1.612 —1.506 —0.129 0.558

Vallue1 I 30 mGal

] —-— Value 2 L 20 mGal

N F 0 mGal

0 500 1000 1500
number

Figure 4. The systematic errors in the Tibetan Plateau (Value 1: The simulated systematic error; Value 2:
The estimated systematic error from the semi-parametric model).

4.2. Test Results and the Analysis

The semi-parametric method combined with the regularization generates again a better downward
continuation results than any other method (Table 5). The inverse Poisson’s integral method, as expected,
could not remove the effect of errors, and the RMS of the differences between the downward continued
values and the original values is the biggest. The regularization could reduce the random error effect
effectively but the bias couldn’t be eliminated. This can be seen from the mean values of the differences.
The semi-parametric method combined with the regularization proposed in this paper could suppress
both the systematic errors and random errors - as seen from the RMS of differences between the
downward continued values and the original values (Figure 5c). In other words, the maximal value of
the difference is reduced significantly when comparing the statistics of the inverse Poisson’s integral
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and the semi-parametric method combined with the regularization. To make sure that the proposed
method can estimate the systematic errors effectively, we compare the estimated values and the original
EGMO8 values (Figure 6). The statistics of the simulated systematic errors and the estimated values are
very close. The RMS of the difference is about 0.5 mgal which is much smaller than the current airborne
gravimetry error level. The smoothing parameter is 0.020 and regularization parameter is 2.529.

Table 5. Statistics of the differences between the downward continued values and the original EGM08
values in the Tibetan Plateau (mgal).

Max Min Mean RMS

The inverse Poisson’s integral 143.684 —53.674  6.212 22.908
The semi-parametric model 70838  —56.561 —0.440  19.223
The regularization 73519  —-53.697  1.686 20.002

The semi-parametric method combined with the regularization =~ 70.939  —56.596 —0.429  19.139

31§

30°

29"

28"

27° b

R e UCEINR  — L= —— mGal
-60 -30 0 30 60 -60 -30 0 30 60 -60 -30 0 30 60
20 % 20 % 20 %
b 0 % 0 % 0%
-40 -20 0 20 40 -40 -20 0 20 40 -40 -20 O 20 40
(mGal) (mGal) (mGal)

Figure 5. Distributions and histograms of differences between the downward continued values and
the original values in the Tibetan Plateau (a) 11.5 km to 5.5 km; (b) 5.5 km to 0 km; (c) 11.5 to 0 km.
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Figure 6. The topography profiles and the roughness of the topography in the Tibetan Plateau (a) profile
altitudes at different longitudes, the blue ellipse in Figures 6a and 6b the areas analyzed; (b) the
topography of the computation area, the different color straight lines are located in different longitudes

as well as Figure 6a; (c) the overview of the topography of the Tibetan Plateau, the black rectangle is
the boundary of the computation area.
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4.3. Test and Analysis of the Influence of the Flight Altitude

Compared to the Louisiana project in Section 3, the RMS of the differences in the Tibetan Plateau
area are larger. The maximum difference of the new method in Tibet is 70.939 mgal, compared to
9.689 mgal in Louisiana. The errors of downward continuation results in the Tibetan Plateau are
significantly larger than in Louisiana. The reason is obviously connected with the large topographic
effect in Tibet, see [7]. To confirm that the downward continuation errors of our experiment for the
Tibetan Plateau experiment is caused by the severe terrain roughness, we show the topography profiles
in this area (Figure 6). The areas where the topography is rough co-locate with the areas where the
errors of the semi-parametric method combined with the regularization are the largest (Figure 5), see
the area marked by the blue ellipse on Figure 6.

We conclude that the downward continued errors are mainly caused by the roughness of the
topography. It is further confirmed by observing that the errors in the northern part of the area where
the topography is smooth are not significant. To further study the flight altitude effect on downward
continuation we also make a test with the downward continuation altitude to half the altitude (11.5 km
to 5.5 km and 5.5 km to 0 km). The 11.5 km to 5.5 km results (Table 6) show much less errors than the
5.5 km to 0 km results (Table 7). The reason is most probably that the topographical heights in Tibet are
about 5000 m. Therefore, the topography effect on the downward continuation in 11.5 km to 5.5 km
almost disappears, and the systematic error effect and the random error effects in the two cases are
also smaller than the 11.5 to 0 km. In conclusion, the lower downward continuation flight altitude is
more suitable in the Tibetan Plateau in order to reduce the error caused by the topography.

Table 6. The statistics of the differences between the downward continued values (from 11.5 km to
5.5 km) and the original values in the Tibetan Plateau (mgal).

Max Min Mean RMS

The inverse Poisson’s integral 27832  —19.121 4.364 8.366
The semi-parametric model combined with the regularization 24913  —-19.865 —0.022 6.428

Table 7. The statistics of the differences between the downward continued values (from 5.5 km to 0 km)
and the original values in the Tibetan Plateau (mgal).

Max Min Mean RMS

The inverse Poisson’s integral 59.829 44107  4.466 16.673
The semi-parametric model combined with the regularization 56.830 —47.562 —0.157  15.669

5. Analysis of the Relationship between the Downward Continuation Errors and the Flight
Altitudes of the Tibetan Plateau

The flight altitudes change in different airborne survey projects. In the Tibetan Plateau, the high
flight altitude is unavoidable. Therefore, the relationship between the error effect on the downward
continuation result and the flight altitude is discussed here. In general, the theoretical derivations of
the relationships depend on the error propagation theory.

The basic formula of mixed (systematic and random errors) is:

QO=A+s=L—-1L (22)

A is the random error, s is the systematic error and L is the observation vector. L is the estimated
observation vector. The sum of the random errors and the systematic errors is the difference between
the original values and the observed values. The comprehensive variance Dj of the observed values
mixed systematic errors and random errors is calculated as follows:

Dip = MSE(L) = E(L — L)* = E(Q) = 0? + 52 (23)
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The estimated value mean square error (MSE) formulas are derived according to the law of the
error propagation assuming that the random and systematic errors are uncorrelated:

Ripr = (BTPB) BT Psgr (24)

set ] = (BTPB) 'BTP.
MSE of the estimated value is calculated by the following equation:

MSE(X) = E(X — X)"(X - X)) (25)

It can be expressed as follows:

MSE(X) = tr(D(X)) + tr[(E(X) — X)(E(X) — X)}T (26)
Then the inverse Poisson’s integral MSE(Xp;) yields:
MSE(Xypr) = o3tr(JQJT) + tr(JssTJT) 27)

Therefore, it is clear that MSE(X 1p1) consist of two terms according to the Equation (27). For
ogtr(JQJT), it is the random error contribution to the MSE while tr(Jss’]) is the systematic error
contribution to the MSE. Since the RMS is generated from MSE. Thus, RMS of the difference between
the downward continued values and the original values can be divided into random error effect (REE)
and the systematic error effect (SEE):

REE = \/a2tr(JQJT) /¢ (28)

SEE = y/tr(JssTJT)/t (29)

where ¢t is the number of the estimated parameters.

In order to analyze REE and SEE quantitatively some tests with simulated error values are carried
out. The standard deviation of the random error in the test is 2 mgal or 4 mgal. And the statistics of
the systematic error in the test are as the same as the original values shown in Table 5 and Figure 7.

15—

mgal

km

Figure 7. The Relationship between Errors Effect and Downward Continuation Altitude in Tibetan
Plateau (Red line: REE-Std 2 mgal, green line: REE-Std 4 mgal, black line: SEE).

The results are shown in Table 8. The REE and SEE increase as the flight altitude increase.
The effect for the flight altitude of 11,500 m is nearly twice as big as the effect for the flight altitude of
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6500 m. In conclusion, REE and SEE are both increasing for increasing flight altitude. And REE does
not change at the same rate as SEE. Therefore, it is necessary to deal with REE and SEE separately.

Table 8. Errors Effect and downward continuation altitude in Tibetan Plateau (mgal).

Altitude (m) REE SEE
2 mgal (Std) 4 mgal (Std)
6500 2.495 4.991 7.873
9000 3.618 7.236 11.108
11,500 4.013 8.027 13.726

6. Summary and Concluding Remarks

In this paper we have analyzed different methods for suppressing the systematic errors and the
random errors in downward continuation. The numerical tests were done for two areas, Louisiana,
(USA) and the Tibetan Plateau (China). In the analysis we have assumed the simulated airborne survey
errors on both real survey data (Louisiana) and the simulated survey data (Tibet).

1. We have used four different methods for solving the inverse Poisson’s integral, and found that
the semi-parametric method combined with the regularization is the best. The RMS of the
difference between the signals downward continued from the flight altitude compared to the
ground original EGMO08 values is smallest.

2. The airborne gravity data in Louisiana and the simulated data for the Tibetan Plateau both prove
that the proposed method works effectively. In addition, the proposed method is not only best for
the downward continuation of the measured aero gravimetric data, but also could improve the
airborne gravity data accuracy for the parts of the airborne surveys which are poorly determined.

In the future, we can expect improvements in the airborne gravimetry using the Strapdown
Inertial Navigation System and the Unmanned Aerial Vehicle airborne gravity surveys at different
altitudes, although such systems will often have systematic errors and random errors, e.g., due to
accelerometer and gyro drifts. More detailed future studies should include test the areas which
are mountainous and where the surface gravity is known. The proposed concept of downward
continuation could be very useful for such applications.

Acknowledgments: We are grateful to René Forsberg of DTU for discussing and designing the experiments.
This study was funded by the China Scholarship Council, the National Key Basic Research Program of China
No. 2013CB733302, the Major International (Regional) Joint Research Project (grant No. 41210006), the National
High Technology Research and Development Program No. 2013AA122502 and the Project of National Natural
Science Fund No. 41374022. We thank the two anonymous reviewers for their comments and suggestions for
future work.

Author Contributions: Qilong Zhao and Xiong Pan conceived and designed the experiments; Qilong Zhao
performed the experiments and wrote the main manuscript text; Xiong Pan and Jiancheng Li provided the initial
idea and concept for this contribution. Xinyu Xu analyzed the data; Gabriel Strykowski helped with the writing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Forsberg, R.; Olesen, A.V.; Alshamsi, A.; Gidskehaug, A ; Ses, S.; Kadir, M.; Peter, B. Airborne Gravimetry
Survey for the Marine Area of the United Arab Emirates. Mar. Geod. 2012, 35, 221-232. [CrossRef]

2. Hwang, CW,; Hsiao, Y.S.; Shih, H.C.; Yang, M.; Chen, K.H.; Forsberg, R.; Olesen, A.V. Geodetic and
geophysical results from a Taiwan airborne gravity survey: Data reduction and accuracy assessment.
J. Geophys. Res. Solid Earth 2007, 112, 1-14. [CrossRef]

3.  Forsberg, R.; Olesen, A.; Bastos, L.; Gidskehaug, A.; Meyer, U.; Timmen, L. Airborne geoid determination.
Earth Planets Space 2000, 52, 863-866. [CrossRef]


http://dx.doi.org/10.1080/01490419.2012.672874
http://dx.doi.org/10.1029/2005JB004220
http://dx.doi.org/10.1186/BF03352296

Sensors 2017, 17, 1205 14 of 15

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Bell, RE.; Blankenship, D.D.; Finn, C.A; Morse, D.L.; Scambos, T.A.; Brozena, ].M.; Hodge, S.M. Influence of
Subglacial Geology on the Onset of a West Antarctic Ice Stream from Aerogeophysical Observations. Nature
1998, 394, 58-62. [CrossRef]

Schwarz, K.; Li, Y.C. What can airborne gravimetry contribute to geoid determination? J. Geophys. Res.
Solid Earth 1996, 101, 17873-17881. [CrossRef]

Brozena, ].M. A Preliminary-Analysis of the Nrl Airborne Gravimetry System. Geophysics 1984, 49, 1060-1069.
[CrossRef]

Huang, C.H.; Hwang, C.; Hsiao, Y.S.; Wang, Y.M.; Roman, D.R. Analysis of Alabama Airborne Gravity at
Three Altitudes: Expected Accuracy and Spatial Resolution from a Future Tibetan Airborne Gravity Survey.
Terr. Atmos. Ocean. Sci. 2013, 24, 551-563. [CrossRef]

Hwang, C.W.; Hsiao, Y.S.; Shih, H.C. Data reduction in scalar airborne gravimetry: Theory, software and
case study in Taiwan. Comput. Geosci. UK 2006, 32, 1573-1584. [CrossRef]

Hofmann-Wellenhof, B.; Moritz, H. Physical Geodesy; Springer: Berlin, Germany, 2006.

Wang, X.T.; Xia, Z.R.; Shi, P; Sun, Z.M. A comparison of different downward continuation methods for
airborne gravity data. Chin. |. Geophys. 2004, 47, 1017-1022. [CrossRef]

Sun, Z. Theory, Methods and Applications of Airborne Gravimetry. Ph.D. Thesis, Information Engineering
University, Zhengzhou, China, 2004.

Martinec, Z. Stability investigations of a discrete downward continuation problem for geoid determination
in the Canadian Rocky Mountains. J. Geod. 1996, 70, 805-828. [CrossRef]

Tscherning, C.C. Advanced Physical Geodesy. Eos Trans. Am. Geophys. Union 1982, 63, 514. [CrossRef]
Carly, W,; Theresa, D. NGS_GRAV-D_Data_Block_CS01_User Manual. 2012. Available online: ftp://ftp.ngs.
noaa.gov/pub/grav-d/CS01/ (accessed on 24 May 2017).

Sans O, F,; Sideris, M.G. The Downward Continuation Approach: A Long-Lasting Misunderstanding in
Physical Geodesy. In Geodetic Boundary Value Problem: The Equivalence between Molodensky’s and Helmert's
Solutions; Springer: Berlin, Germany, 2017; pp. 39-46.

Vanicek, P.; Novak, P; Sheng, M.; Kingdon, R.; Jandk, J.; Foroughi, I.; Martinec, Z.; Santos, M. Does Poisson’s
downward continuation give physically meaningful results? Stud. Geophys. Geod. 2017, 1-18. [CrossRef]
Sampietro, D.; Capponi, M.; Mansi, A.H.; Gatti, A.; Marchetti, P.; Sanso, F. Space-Wise approach for airborne
gravity data modelling. J. Geod. 2017, 91, 535-545. [CrossRef]

Bolkas, D.; Fotopoulos, G.; Braun, A. On the impact of airborne gravity data to fused gravity field models.
J. Geod. 2016, 90, 561-571. [CrossRef]

Jiang, T.; Wang, Y.M. On the spectral combination of satellite gravity model, terrestrial and airborne gravity
data for local gravimetric geoid computation. J. Geod. 2016, 90, 1405-1418. [CrossRef]

Smith, D.A.; Holmes, S.A.; Li, X,; Guillaume, S.E.B.; Wang, Y.M.; Biirki, B.; Roman, D.R.; Damiani, T.M.
Confirming regional 1 cm differential geoid accuracy from airborne gravimetry: The Geoid Slope Validation
Survey of 2011. J. Geod. 2013, 87, 885-907. [CrossRef]

Wang, X.; Shi, P; Zhu, F Regularization Methods and Spectral Decomposition for the Downward
Continuation of Airborne Gravity Data. Acta Geod. Cartogr. Sin. 2004, 1, 6.

Becker, D.; Nielsen, ].E.; Ayres-Sampaio, D.; Forsberg, R.; Becker, M.; Bastos, L. Drift reduction in strapdown
airborne gravimetry using a simple thermal correction. J. Geod. 2015, 89, 1133-1144. [CrossRef]

Wei, M.; Schwarz, K.P. Flight test results from a strapdown airborne gravity system. J. Geod. 1998, 72, 323-332.
[CrossRef]

Carly, W.; Theresa, D. NGS_GRAV-D_Data_Block_CS02_User Manual. 2012. Available online: ftp://ftp.ngs.
noaa.gov/pub/grav-d/CS02/ (accessed on 24 May 2017).

Xiong, P. Semiparametric model and its application in survey data processing. Surv. Rev. 2006, 38, 406—411.
[CrossRef]

Fessler, ].A. Nonparametric Fixed-Interval Smoothing of Nonlinear Vector-Valued Measurements. IEEE Trans.
Signal Process. 1991, 39, 907-913. [CrossRef]

Fessler, ].A. Nonparametric Fixed-Interval Smoothing with Vector Splines. IEEE Trans. Signal Process. 1991,
39, 852-859. [CrossRef]

Green, PJ. Penalized likelihood for general semi-parametric regression models. Int. Stat. Rev. 1987, 55,
245-259. [CrossRef]

Reinsch, C.H. Smoothing by spline functions. Numer. Math. 1967, 10, 177-183. [CrossRef]


http://dx.doi.org/10.1038/27883
http://dx.doi.org/10.1029/96JB00819
http://dx.doi.org/10.1190/1.1441721
http://dx.doi.org/10.3319/TAO.2012.10.30.01(TibXS)
http://dx.doi.org/10.1016/j.cageo.2006.02.015
http://dx.doi.org/10.1002/cjg2.599
http://dx.doi.org/10.1007/BF00867158
http://dx.doi.org/10.1029/EO063i021p00514-03
ftp://ftp.ngs.noaa.gov/pub/grav-d/CS01/
ftp://ftp.ngs.noaa.gov/pub/grav-d/CS01/
http://dx.doi.org/10.1007/s11200-016-1167-z
http://dx.doi.org/10.1007/s00190-016-0981-y
http://dx.doi.org/10.1007/s00190-016-0893-x
http://dx.doi.org/10.1007/s00190-016-0932-7
http://dx.doi.org/10.1007/s00190-013-0653-0
http://dx.doi.org/10.1007/s00190-015-0839-8
http://dx.doi.org/10.1007/s001900050171
ftp://ftp.ngs.noaa.gov/pub/grav-d/CS02/
ftp://ftp.ngs.noaa.gov/pub/grav-d/CS02/
http://dx.doi.org/10.1179/sre.2006.38.299.406
http://dx.doi.org/10.1109/78.80913
http://dx.doi.org/10.1109/78.80907
http://dx.doi.org/10.2307/1403404
http://dx.doi.org/10.1007/BF02162161

Sensors 2017, 17, 1205 15 of 15

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Rice, J.; Rosenblatt, M. Integrated mean squared error of a smoothing spline. |. Approx. Theory 1981, 33,
353-369. [CrossRef]

Rice, J.; Rosenblatt, M. Smoothing splines: Regression, derivatives and deconvolution. Ann. Stat. 1983, 11,
141-156. [CrossRef]

Schoenberg, .]. Spline functions and the problem of graduation. Proc. Natl. Acad. Sci. USA 1964, 52, 947-950.
[CrossRef] [PubMed]

Wahba, G. Smoothing noisy data with spline functions. Numer. Math. 1975, 24, 383-393. [CrossRef]
Whittaker, E.T. On a new method of graduation. Proc. Edinburgh Math. Soc. 1922, 41, 63-75.

Engle, R.F,; Granger, C.W.; Rice, ].; Weiss, A. Semiparametric estimates of the relation between weather and
electricity sales. J. Am. Stat. Assoc. 1986, 81, 310-320. [CrossRef]

Jian-cheng, L.; Jun-yong, C.; Jin-sheng, N.; Ding-Bo, C. The Earth’Gravity Field Approximation Theory and
China’s 2000 Quasi-Geoid Determination; Wuhan University Press: Wuhan, China, 2003.

Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, ] K. The development and evaluation of the Earth
Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117. [CrossRef]

Bruinsma, S.L.; Forste, C.; Abrikosov, O.; Lemoine, ].; Marty, J.; Mulet, S.; Rio, M.; Bonvalot, S. ESA’s
satellite-only gravity field model via the direct approach based on all GOCE data. Geophys. Res. Lett. 2014,
41,7508-7514. [CrossRef]

Gilardoni, M.; Reguzzoni, M.; Sampietro, D. GECO: A global gravity model by locally combining GOCE
data and EGM2008. Stud. Geophys. Geod. 2016, 60, 228-247. [CrossRef]

Fecher, T; Pail, R.; Gruber, T.; GOCO Consortium. GOCO05c: A New Combined Gravity Field Model Based
on Full Normal Equations and Regionally Varying Weighting. Surv. Geophys. 2017, 38, 571-590. [CrossRef]

® © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1016/0021-9045(81)90066-6
http://dx.doi.org/10.1214/aos/1176346065
http://dx.doi.org/10.1073/pnas.52.4.947
http://www.ncbi.nlm.nih.gov/pubmed/16591233
http://dx.doi.org/10.1007/BF01437407
http://dx.doi.org/10.1080/01621459.1986.10478274
http://dx.doi.org/10.1029/2011JB008916
http://dx.doi.org/10.1002/2014GL062045
http://dx.doi.org/10.1007/s11200-015-1114-4
http://dx.doi.org/10.1007/s10712-016-9406-y
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Semi-Parametric Method Combined with the Regularization 
	The Inverse Poisson’s Integral 
	The Semi-Parametric Method 
	The Regularization Method 
	The Semi-Parametric Method Combined with Regularization 

	The Louisiana Project: The Experimental Results 
	The Data Description 
	The Test Results and the Analysis 

	The Tibetan Plateau Experimental Results 
	Data Description 
	Test Results and the Analysis 
	Test and Analysis of the Influence of the Flight Altitude 

	Analysis of the Relationship between the Downward Continuation Errors and the Flight Altitudes of the Tibetan Plateau 
	Summary and Concluding Remarks 

