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Abstract: Waveform sets with good correlation and/or stopband properties have received extensive
attention and been widely used in multiple-input multiple-output (MIMO) radar. In this paper, we aim
at designing unimodular waveform sets with good correlation and stopband properties. To formulate
the problem, we construct two criteria to measure the correlation and stopband properties and then
establish an unconstrained problem in the frequency domain. After deducing the phase gradient and
the step size, an efficient gradient-based algorithm with monotonicity is proposed to minimize the
objective function directly. For the design problem without considering the correlation weights, we
develop a simplified algorithm, which only requires a few fast Fourier transform (FFT) operations
and is more efficient. Because both of the algorithms can be implemented via the FFT operations
and the Hadamard product, they are computationally efficient and can be used to design waveform
sets with a large waveform number and waveform length. Numerical experiments show that the
proposed algorithms can provide better performance than the state-of-the-art algorithms in terms of
the computational complexity.

Keywords: multiple-input multiple-output (MIMO) radar; unimodular waveform set; auto- and
cross-correlation; frequency stopband; gradient

1. Introduction

Waveform design has received considerable attention in recent years [1] and been employed in
many applications, including polarimetric radar [2], multiple-input multiple-output (MIMO) radar
[3,4], stealth communications [5] and the code-division multiple-access (CDMA) system. As a category
of the general waveform design research [1], the design of waveform sets (i.e., multidimensional
waveforms) is an important research content of MIMO radar. Generally, waveform sets are desired
to have a good correlation property, which can effectively improve radar resolution, detection
performance, imaging quality, the ability to obtain information and the accuracy of MIMO channel
estimation [6–8]. In recent years, a large number of scholars has been devoted to designing waveform
sets with a good correlation property. The main research covers two aspects: one is the waveform sets
with good auto- and cross-correlation properties [9–16], and the other is the complementary sets of
sequences (CSS) [17–25].

Waveform sets with good auto- and cross-correlation properties, also known as the orthogonal
waveform set (OWS), have low autocorrelation sidelobes and low cross-correlation levels. In the early
stage, the simulated annealing- [9] and cross entropy-based [10] methods were proposed for OWS
design. However, due to the high computational complexity, these methods are not suited to design
long waveforms. To improve the computational efficiency, the CAN (cyclic algorithm-new) algorithm
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[11] based on fast Fourier transform (FFT) is proposed to minimize the autocorrelation sidelobes and
the cross-correlation. This algorithm is computationally efficient and can be used for the design of
long waveforms. As it is impossible to design completely orthogonal (i.e., both the autocorrelation
sidelobes and the cross-correlation are zeroes) waveform sets [11,16], [11] proposes to design the
waveform sets that are orthogonal only at the specified intervals and extends the classical WeCAN
(weighted cyclic algorithm-new) [26] algorithm to MIMO radar. To solve the same problem, [12]
develops the LBFGS (limited-memory Broyden, Fletcher, Goldfarb and Shanno) iterative algorithm,
which is more efficient than the WeCAN algorithm. However, because of the complicated linear
search rule for determining the step size, the LBFGS iterative algorithm is still time consuming.
Recently, the majorization-minimization (MM)-based algorithms (i.e., MM-Corr (MM-correlation) and
MM-WeCorr (MM-weighted correlation)) are proposed in [14]. These two algorithms are also based
on FFT operations and much faster than the CAN and WeCAN algorithms [11].

Another waveform set with a good correlation property is the complementary sets of sequences
(CSS). A waveform set is called CSS if and only if the autocorrelation sum of the waveforms is a delta
function [17]. CSS design is proposed to overcome the difficulty of generating a single unimodular
waveform with ideal (impulse-like) autocorrelation. A common application of the CSS is the pulse
compression [18–20]. In pulse compression radar, the complementary sequences are used to modulate
consecutive pulses in a coherent pulse train. Then, the autocorrelation sidelobes can be reduced via
the coherent [19] or noncoherent [18] accumulation, which can be regarded as the process of obtaining
the autocorrelation sum of the complementary sequences. Moreover, due to the good correlation
property, CSS has been widely applied to the CDMA system [21], ISI (intersymbol interference) channel
estimation [22], orthogonal frequency division multiplexing (OFDM) [23], and many other areas. The
main methods of designing CSS are the analytical construction methods, which have great limitation
in generating long waveforms. To overcome this problem, [24] introduces a computational framework
based on an iterative twisted approximation (ITROX) for periodically complementary sets of sequences
design. Subsequently, [25] extends the CAN algorithm [26] and develops a fast algorithm named
CANARY (CAN complementary). Additionally, [14] applies the MM method to the design of CSS.

In addition to the good correlation property, waveform sets are expected to have a good stopband
property when the radar systems work in a crowded electromagnetic environment. Waveforms with
the stopband property, also known as the sparse frequency waveforms (SFW) in many literature
works, are a kind of waveforms with several frequency stopbands. The applications of SFW include
ultra-wide bandwidth (UWB) systems [27], high frequency surface wave radar (HFSWR) [28,29] and
cognitive radar [30]. By designing waveforms with the stopband property, it can effectively overcome
the narrowband interference in the congested frequency bands. At present, there are many research
works on the design of a single waveform with the stopband property [31–36], but they cannot be used
in MIMO systems. Therefore, [36] proposes an iterative algorithm combined with the steepest descent
(SD) method for MIMO waveform design. By searching along the gradient direction, the convergence
speed of this algorithm is improved. However, the computation of the step size along the gradient
direction is complicated, which makes the algorithm still costly. In order to improve the computational
efficiency, [37] proposes an algorithm named MDISAA-SFW (multi-dimensional iterative spectral
approximation algorithm-SFW) based on alternating projection and phase retrieval.

In this paper, we consider the problem of designing unimodular waveform sets with good
correlation and stopband properties and propose a gradient-based algorithm, i.e., Gra-WeCorr-SFW
(gradient-weighted correlation-SFW). By using the relationship between the correlation function and
the power spectrum density (PSD), the design problem is formulated as an unconstrained minimization
problem in the frequency domain. Then, the phase gradient is deduced, and its matrix form is given.
In order to avoid searching the step size, we use the Taylor series expansion to derive the step size,
which is more efficient than the traditional searching methods. Since both the gradient and the step
size can be implemented via the FFT operations and the Hadamard product, the proposed algorithm
has high computational efficiency. We also deduce the simplified algorithm named Gra-Corr-SFW
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(gradient-correlation-SFW), which is faster than the Gra-WeCorr-SFW, for the design problem without
considering the correlation weights.

The rest of the paper is organized as follows. In Section 2, the design problem is formulated. In
Section 3, we develop a gradient-based algorithm by deducing the phase gradient and the step size and
then summarize the algorithm. In Section 4, the simplified algorithm for the design problem without
considering the correlation weights is derived. Section 5 provides several numerical experiments to
verify the effectiveness of the proposed algorithms. Finally, Section 6 gives the conclusions.

Notation: Boldface upper case letters denote matrices, while boldface lower case letters denote
column vectors. (·)∗, (·)T and (·)H denote the complex conjugate, transpose and conjugate transpose,
respectively. ‖·‖ and ‖·‖F denote the Euclidean norm and the Frobenius norm. Re(·) and Im(·) denote
the real and imaginary part, respectively. Diag(x) denotes a diagonal matrix formed with the column
vector x. ◦ denotes the Hadamard product. x(m) denotes the m-th element of the vector x. xl is the
l-th iteration of x. 1N is the all-one vectors of length N. IN denotes the N × N identity matrix. F (x)
and F−1(x) denote the 2N-point FFT and IFFT (inverse FFT) operations of x, respectively. Fc(X)
and F−1

c (X) represent the FFT and IFFT of each column of the matrix X, respectively. In the (I)FFT
operations, if the length of x is less than 2N, x is padded with trailing zeros to length 2N. e(·) is the
exponent arithmetic applied to the scalar, vector or matrix.

2. Problem Formulation

As mentioned in the Introduction, this paper focuses on the problem of designing waveform
sets with good correlation and stopband properties. Therefore, we first establish two criteria in
the frequency domain to measure the correlation and stopband properties and then formulate the
waveform set design problem.

2.1. The Criterion for Good Correlation Property

Let {xm}M
m=1 be the complex waveform set to be designed. The vector form of each waveform can

be expressed as:
xm = [xm(1), xm(2), ..., xm(N)]T , m = 1, ..., M, (1)

where N is the waveform length and M denotes the number of the waveforms. Then, the correlation
function of xi and xj is defined as:

rij(k) =
N
∑

n=k+1
xi(n)x∗j (n− k) = r∗ji(−k), i, j = 1, ..., M, k = 1− N, ..., N − 1. (2)

Here, we consider the design problems of complementary sets of sequences and waveform sets
with both good auto- and cross-correlation properties. For the complementary set of sequences, the
common criterion is the complementary integrated sidelobe level (CISL) metric [14,25], which is
defined as:

CISL =
N−1

∑
k=1−N

k 6=0

∣∣∣∣∣ M

∑
m=1

rmm(k)

∣∣∣∣∣
2

. (3)

for the waveform sets with both good auto- and cross-correlation properties, we consider the following
more general weighted measure [14]:

ψ =
M

∑
i=1

M

∑
j=1

N−1

∑
k=1−N

wt(k)
∣∣rij(k)

∣∣2 − wt(0)MN2, (4)

where wt(k) = wt(−k) ≥ 0, k = 0, ..., N− 1 denote the weights assigned to different time lags. In those
specified intervals that are expected to have as low as possible sidelobes, wt(k) = 1, else wt(k) = 0.
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Let:

rij =
[
rij(0), rij(1), ..., rij(N − 1), 0, rij(1− N), ..., rij(−1)

]T ,

wt = [wt(0), wt(1), ..., wt(N − 1), 1, wt(1− N), ..., wt (−1)]T
(5)

be the correlation vector and the corresponding correlation weight vector, respectively. The Fourier
transform of the correlation function rij (i.e., power spectrum density (PSD)) can be written as:

pij = F
(
rij
)
= Frij,

rij = F−1 (pij
)
=

1
2N

FHpij,
(6)

where F is the 2N × 2N discrete Fourier transform (DFT) matrix with the following expression:

F(m, n) = e−j 2mnπ
2N , 1 ≤ m, n ≤ 2N. (7)

According to (5) and (6), (4) can be expressed in the frequency domain as:

ψ =
M

∑
i=1

M

∑
j=1

rH
ij Dtrij − wt(0)MN2 =

1
4N2

M

∑
i=1

M

∑
j=1

pH
ij FDtFHpij − wt(0)MN2, (8)

where Dt = Diag (wt). It is worth noting that the value of the N + 1-th element of wt has no effect on the
objective function. In order to facilitate the derivation below, the N + 1-th element of wt is set to be one.

Actually, when wt(k) = 1, k = 1− N, ..., N − 1 (i.e., the correlation weights are not taken into
account), Criterion (8) is equivalent to Criterion (3) (see Appendix A), which means that Criterion (3)
is a special case of Criterion (8). Thus, here, we just consider Criterion (8). By ignoring the constant
term in (8), the criterion related to the correlation property is given by:

JCF =
1

4N2

M

∑
i=1

M

∑
j=1

pH
ij FDtFHpij. (9)

2.2. The Criterion for the Good Stopband Property

The waveform set with a good stopband property means that the PSD of each waveform has
several frequency stopbands. Without loss of generality, we consider that the frequency is normalized.
Define the set of frequency stopbands as:

Ω f =
ns∪

k=1
( fk1, fk2) ⊂ [0, 1], (10)

where ( fk1, fk2) denotes one stopband and ns denotes the number of the stopbands. Considering the
2N-point FFT operations, the corresponding point set of the stopband set Ω f can be expressed as:

Ω f =
ns∪

k=1
(2N fk1, 2N fk2) ⊂ [0, 2N]. (11)

Define the frequency weight vector as:

w f =
[
w f (1), w f (2), ..., w f (2N)

]T
,

w f (p) =

{
1, p ∈ Ω f
0, otherwise

.
(12)
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As the PSD of each waveform is nonnegative, the criterion related to the stopband property (or
PSD) can be formulated as:

JPSD =
M

∑
i=1

∥∥∥w f ◦ pii

∥∥∥2
=

M

∑
i=1

pH
ii D f pii, (13)

where D f = Diag
(

w f

)
.

2.3. The Minimization Problem

In order to obtain good correlation and stopband properties, both JCF and JPSD should be
minimized. Thus, the waveform design problem can be regarded as a multi-objective optimization
(also known as Pareto optimization) problem, i.e., finding the Pareto optimal solutions that satisfy
the constraints. Here, we apply the traditional weighting method to solve the problem and, thus,
formulate a single-objective function as follows:

JT = λJPSD + (1− λ) JCF =
M

∑
i=1

pH
ii Qpii +

M

∑
i=1

M

∑
j=1

pH
ij Q′pij, (14)

where λ ∈ [0, 1] is a weight coefficient by which we can balance the relative weight between JCF and
JPSD, and:

Q = λD f , Q′ =
1

4N2 (1− λ)FDtFH. (15)

When λ = 0, (14) is the criterion for designing waveform sets with a good correlation property.
Additionally, when λ ∈ (0, 1], (14) becomes the criterion for SFW design. Generally, for maximizing the
transmitter efficiency and reducing the requirement to the hardware, the unimodular constraint [38] is
required in the waveform design. Therefore, the design problem can be formulated as the following
minimization problem:

min
{xm}M

m=1

JT

s.t. |xm(n)| = 1, n = 1, ..., N, m = 1, ..., M.
(16)

Let φm denote the phase vector of xm, i.e., xm =
[
ejφm(1), ejφm(2), ..., ejφm(N)

]T
. Then, the problem

(16) can be reformulated as the following unconstrained problem with regard to {φm}M
m=1:

min
{φm}M

m=1

JT =
M

∑
i=1

pH
ii Qpii +

M

∑
i=1

M

∑
j=1

pH
ij Q′pij. (17)

3. Problem Optimization via the Gradient Method

In this section, we optimize Problem (17) by using the gradient-based algorithm, which is able to
guarantee that the objective function is monotonically decreasing at each iteration. In the following,
we first derive the phase gradient and the step size and then briefly summarize the algorithm.

3.1. Phase Gradient

To facilitate the derivation, let φm(n) = φmn. Before deriving the phase gradient ∇φm
JT , we first

deduce the derivative of JT with respect to the phase φmn:
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∂JT
∂φmn

= ∂

(
M

∑
i=1

pH
ii Qpii +

M

∑
i=1

M

∑
j=1

pH
ij Q′pij

)/
∂φmn

= ∂
(

pH
mm
(
Q + Q′

)
pmm

)/
∂φmn + ∂

 M

∑
j=1
j 6=m

pH
mjQ

′pmj

M

∑
i=1
i 6=m

pH
imQ′pim

/∂φmn.

(18)

Since
M
∑
i=1
i 6=m

pH
imQ′pim =

M
∑
i=1
i 6=m

pH
miQ

′∗pmi (see Appendix B), (18) can be rewritten as:

∂JT
∂φmn

= ∂
(

pH
mm
(
Q + Q′

)
pmm

)/
∂φmn + 2

M

∑
i=1
i 6=m

∂
(

pH
miRe

(
Q′
)

pmi

)/
∂φmn. (19)

The first term in (19) can be simplified as:

∂
(
pH

mm (Q + Q′)pmm
)

∂φmn
=

∂
(
pT

mm (Q + Q′)pmm
)

∂φmn

=
∂pT

mm
∂φmn

((
Q + Q′

)
+
(
Q + Q′

)T
)

pmm

= 2
∂pT

mm
∂φmn

Re
(
Q + Q′

)
pmm,

(20)

where the third equality follows from the fact (Q + Q′)T = (Q + Q′)∗. Let:

ymm = Re (Q)pmm

y′mi = Re
(
Q′
)

pmi, i = 1, ..., M,
(21)

then (20) can be expressed as:

∂
(
pH

mm (Q + Q′)pmm
)

∂φmn
= 2

∂pT
mm

∂φmn

(
ymm + y′mm

)
= 2

2N

∑
k=1

∂ (pmm(k))
∂φmn

(
ymm(k) + y′mm(k)

)
.

(22)

According to (A4) and (A5), we can deduce the derivative ∂ (pmm(k))
/

∂φmn as follows:

∂ (pmm(k))
∂φmn

=
∂ ( fm(k) f ∗m(k))

∂φmn
= 2Re

(
∂ f ∗m(k)
∂φmn

fm(k)
)
= 2Re

(
−jx∗m(n)e

j 2π
2N nk fm(k)

)
. (23)

By substituting (23) into (22), we have:

∂
(
pH

mm (Q + Q′)pmm
)

∂φmn
= 4Re

(
−jx∗m(n)

2N

∑
k=1

fm(k)
(
ymm(k) + y′mm(k)

)
ej 2π

2N nk

)
. (24)

To compute the second term of (19), we first deduce ∂
(
pH

miRe (Q′)pmi
)/

∂φmn(i 6= m):

∂
(
pH

miRe (Q′)pmi
)

∂φmn
= 2Re

(
∂
(
pH

mi
)

∂φmn
Re
(
Q′
)

pmi

)
= 2Re

(
2N

∑
k=1

∂
(

p∗mi(k)
)

∂φmn
y′mi(k)

)
. (25)
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Similarly to the derivation of (23), it is easy to obtain that:

∂ (pmi(k))
∂φmn

= jxm(n)e−j 2π
2N nk f ∗i (k), i 6= m. (26)

On the basis of (25) and (26), ∂
(
pH

miRe (Q′)pmi
)/

∂φmn can be further denoted as

∂
(
pH

miRe (Q′)pmi
)

∂φmn
= 2Re

(
−jx∗m(n)

2N

∑
k=1

fi(k)y′mi(k)e
j 2π

2N nk

)
. (27)

By substituting (24) and (27) into (19), ∂JT
/

∂φmn can be simplified as:

∂JT
∂φmn

= 4Re

(
−jx∗m(n)

2N

∑
k=1

(
fm(k)ymm(k) +

M

∑
i=1

fi(k)y′mi(k)

)
ej 2π

2N nk

)
. (28)

Let zm be the inverse FFT (IFFT) of fm ◦ ymm +
M
∑

i=1
fi ◦ y′mi, i.e.,

zm = F−1

(
fm ◦ ymm +

M

∑
i=1

fi ◦ y′mi

)

zm(n) =
1

2N

2N

∑
k=1

(
fm(k)ymm(k) +

M

∑
i=1

fi(k)y′mi(k)

)
ej 2π

2N nk,

(29)

then ∂JT
/

∂φmn in (28) becomes:

∂JT
∂φmn

= 8NRe (−jx∗m(n)zm(n)) . (30)

By stacking (30) in a vector, the phase gradient ∇φm
JT is given by:

∇φm
JT =

[
∂JT
/

∂φm1, ..., ∂JT
/

∂φmN
]T

= 8NRe (−jx∗m ◦ zm(1 : N)) , (31)

where zm(1 : N) denotes the first N elements of zm. It is worth noting that ymm and y′mi defined in (21)
can be calculated by the Hadamard product and the FFT operations:

ymm = λD f pmm = λwt ◦ pmm,

y′mi = Re
(

1
4N2 (1− λ) FDtFH

)
pmi

=
1

8N2 (1− λ)
(

FDtFH + FHDtF
)

pmi

=
1

4N
(1− λ)

(
F
(

wt ◦ F−1 (pmi)
)
+F−1 (wt ◦ F (pmi))

)
.

(32)

From the derivation above, it is easy to see that the calculation of the phase gradient is a little bit
cumbersome. In order to make the calculation process concise, we write the gradient in the form of
matrix. Let X = [x1, ..., xM] and Φ = [φ1, ..., φM] denote the matrix of waveform set and the corresponding
phase matrix, respectively. Then, the spectrum matrix of X is S = Fc(X) = [f1, ..., fM]. Define:

Y = [y11, ..., yMM] = λ
(

w f 1T
M

)
◦ S ◦ S∗,

Y1 =

[
M

∑
i=1

fi ◦ y′1i, ...,
M

∑
i=1

fi ◦ y′Mi

]
,

(33)
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then the matrix form of (29) is given by:

Z = [z1, ..., zM] = F−1
c (S ◦Y + Y1) . (34)

Thus, according to (31), the matrix of phase gradient G can be expressed as:

G =
[
∇φ1

JT , ...,∇φM
JT
]
= 8NRe (−jX∗ ◦ Z(1 : N, :)) , (35)

where Z(1 : N, :) denotes the submatrix formed with the first N rows of Z. By defining Y and Y1,
we can easily calculate the gradient matrix. However, it is still hard to calculate Y1 directly by (33).
To efficiently calculate Y1, define:

Y′ =

 y′11 · · · y′1M
...

. . .
...

y′M1 · · · y′MM

 ∈ C2NM×M, Srep =

 S
...
S


2NM×M

. (36)

Then it is easy to verify that: (
Srep ◦ Y′

)
1M = vec (Y1) , (37)

where vec (Y1) denotes the column vector consisting of all of the columns of Y1. Thus, we can obtain
Y1 via the inverse operation of vec (·), i.e.,

Y1 = vec−1 ((Srep ◦ Y′
)

1M
)

, (38)

where Y′ can be calculated by (32). It is easy to see that y′mi can be implemented by four FFT (IFFT)
operations. Since y′mi = y′∗im, the calculation of Y′ takes 4 M(M+1)

2 = 2M2 + 2M FFT (IFFT) operations.

3.2. Step Size Calculation via Taylor Series Expansion

The traditional methods for obtaining the step size are the linear search methods, which require
many iterations and thus are quite time consuming. To reduce the computing expense, here we propose
to calculate the step size directly. Assume that Φl is the phase matrix of the present iteration point
Xl =

[
xl

1, ..., xl
M

]
= ejΦl

, and Dl =
[
dl

1, ..., dl
M

]
is the descent direction. Then, the new iteration point

can be denoted as:

Φl+1 = Φl + µDl ,

Xl+1 = ejΦl+1
= Xl ◦ ejµDl

,
(39)

i.e.,
xl+1

i = xl
i ◦ ejµdl

i , i = 1, ..., M, (40)

where µ is the step size. Thus, the linear search problem can be formulated as the following
minimization problem:

min
µ>0

h(µ) = JT

(
Xl+1

)
=

M

∑
i=1

(
pl+1

ii

)H
Qpl+1

ii +
M

∑
i=1

M

∑
j=1

(
pl+1

ij

)H
Q′pl+1

ij . (41)

By taking the derivative of (41), we have:

∂h
∂µ

= 2Re

 M

∑
i=1

∂
(

pl+1
ii

)H

∂µ
Qpl+1

ii +
M

∑
i=1

M

∑
j=1

∂
(

pl+1
ij

)H

∂µ
Q′pl+1

ij

 . (42)
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To simplify (41) and (42), we first deduce pl+1
ij . By using the Taylor series expansion, pl+1

ij can be
approximated as (see Appendix C):

pl+1
ij ≈ fi ◦ f∗j + j

(
f′ i ◦ f∗j − fi ◦ f′∗j

)
µ− 1

2

(
f′′ i ◦ f∗j + fi ◦ f′′∗j − 2f′ i ◦ f′∗j

)
µ2, (43)

where:
fi = F

(
xl

i

)
, f′ i = F

(
xl

i ◦ dl
i

)
, f′′ i = F

(
xl

i ◦ dl
i ◦ dl

i

)
. (44)

Let

pl
ij = fi ◦ f∗j ,

cij = j
(

f′ i ◦ f∗j − fi ◦ f′∗j
)

,

c′ ij = −
1
2

(
f′′ i ◦ f∗j + fi ◦ f′′∗j − 2f′ i ◦ f′∗j

)
,

(45)

then (43) can be rewritten as:
pl+1

ij ≈ pl
ij + cijµ + c′ ijµ2 = p̄l+1

ij . (46)

By replacing pl+1
ij with p̄l+1

ij , the approximate function of h(µ) in (41) can be denoted as:

h1(µ) =
M

∑
i=1

(
p̄l+1

ii

)H
Qp̄l+1

ii +
M

∑
i=1

M

∑
j=1

(
p̄l+1

ij

)H
Q′p̄l+1

ij . (47)

Since pl+1
ij = p̄l+1

ij holds when µ = 0, it is easy to verify that:

h(0) = h1(0),
∂h
∂µ

∣∣∣∣
µ=0

=
∂h1

∂µ

∣∣∣∣
µ=0

, (48)

which indicates that h(µ) and h1(µ) have the same function value and slope at µ = 0. As Dl is the
descent direction, the slopes of these two functions are less than zero. Thus, these two functions have
at least one minimum point greater than zero. Since h(µ) is sensitive to the waveform phases, the
optimal step size of h(µ) is very small and close to zero. Consequently, we can use the minimum point
of h1(µ) to approximate the optimal step size.

To calculate the minimum point of h1(µ), we replace pl+1
ij in (42) with p̄l+1

ij , then the derivative of
h1(µ) with respective to µ is given by:

∂h1

∂µ
= 2Re

(
M

∑
i=1

(
cH

ii + 2c′Hii µ
)

Q
(

pl
ii + ciiµ + c′ iiµ2

)
+

M

∑
i=1

M

∑
j=1

(
cH

ij + 2c′Hij µ
)

Q′
(

pl
ij + cijµ + c′ ijµ2

))
= aµ3 + bµ2 + cµ + d,

(49)

where:
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a = 2Re

(
2

M

∑
i=1

c′Hii Qc′ ii + 2
M

∑
i=1

M

∑
j=1

c′Hij Q′c′ ij

)
,

b = 2Re

(
M

∑
i=1

(
2c′Hii Qcii + cH

ii Qc′ ii
)
+

M

∑
i=1

M

∑
j=1

(
2c′Hij Q′cij + cH

ij Q′c′ ij
))

,

c = 2Re

(
M

∑
i=1

(
2c′Hii Qpl

ii + cH
ii Qcii

)
+

M

∑
i=1

M

∑
j=1

(
2c′Hij Q′pl

ij + cH
ij Q′cij

))
,

d = 2Re

(
M

∑
i=1

cH
ii Qpl

ii +
M

∑
i=1

M

∑
j=1

cH
ij Q′pl

ij

)
.

(50)

To simplify the calculation, let:

hij = F−1 (cij
)
=

1
2N

FHcij,

h′ ij = F−1 (c′ ij) = 1
2N

FHc′ ij.
(51)

Then (50) can be rewritten as:

a = 4Re

(
λwT

f

M

∑
i=1

(
c′∗ii ◦ c′ ii

)
+ (1− λ)wT

t

M

∑
i=1

M

∑
j=1

(
h′∗ij ◦ h′ ij

))
,

b = 2Re

(
λwT

f

M

∑
i=1

(
2c′∗ii ◦ cii + c∗ii ◦ c′ ii

)
+ (1− λ)wT

t

M

∑
i=1

M

∑
j=1

(
2h′∗ij ◦ hij + h∗ij ◦ h′ ij

))
,

c = 2Re

(
λwT

f

M

∑
i=1

(
2c′∗ii ◦ pl

ii + c∗ii ◦ cii

)
+ (1− λ)wT

t

M

∑
i=1

M

∑
j=1

(
2h′∗ij ◦ rl

ij + h∗ij ◦ hij

))
,

d = 2Re

(
λwT

f

M

∑
i=1

(
c∗ii ◦ pl

ii

)
+ (1− λ)wT

t

M

∑
i=1

M

∑
j=1

(
h∗ij ◦ rl

ij

))
,

(52)

where the first term of each equality follows from the fact aHQb = λaHD f b = wT
f (a
∗ ◦ b)

(a, b are the arbitrary vectors), and the second term of each equality follows from the fact
aHQ′b = 1

4N2 (1− λ) aHFDtFHb = (1− λ)wT
t

((
F−1(a)

)∗ ◦ F−1(b)
)

. Let ∂h1
∂µ = 0, then the

minimum point of h1(µ) can be obtained by solving the following cubic equation:

aµ3 + bµ2 + cµ + d = 0 (53)

It is well known that a cubic equation with real coefficients has three roots, in which there is
at least a real root. Therefore, we can choose the positive root that is closest to zero as the precise
estimation of the step size.

In order to facilitate the calculation, we write the above derivation in the form of matrix. Define:

S = [f1, ..., fM] , S′ =
[
f′1, ..., f′M

]
, S′′ =

[
f′′1, ..., f′′M

]
, (54)

then according to (44) we have:

S = Fc

(
Xl
)

, S′ = Fc

(
Xl ◦Dl

)
, S′′ = Fc

(
Xl ◦Dl ◦Dl

)
. (55)
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Let:

P =
[
pl

11, ..., pl
M1, pl

12, ..., pl
M2, ......, pl

1M, ..., pl
MM

]
,

C = [c11, ..., cM1, c12, ..., cM2, ......, c1M, ..., cMM] ,

C′ =
[
c′11, ..., c′M1, c′12, ..., c′M2, ......, c′1M, ..., c′MM

]
,

Pd =
[
pl

11, pl
22, ..., pl

MM

]
,

Cd = [c11, c22, ..., cMM] ,

C′d =
[
c′11, c′22, ..., c′MM

]
,

(56)

Then the inverse Fourier transforms of P, C, C′ can be denoted as:

R = F−1
c (P) , H = F−1

c (C) , H′ = F−1
c
(
C′
)

. (57)

According to (52), (56) and (57), the coefficients of the cubic equation can be reformulated as:

a = 4Re
(

λwT
f

(
C′∗d ◦C′d

)
1M + (1− λ)wT

t

(
H′∗ ◦H′

)
1M2

)
,

b = 2Re
(

λwT
f

(
2C′∗d ◦Cd + C∗d ◦C′d

)
1M + (1− λ)wT

t

(
2H′∗ ◦H + H∗ ◦H′

)
1M2

)
,

c = 2Re
(

λwT
f

(
2C′∗d ◦ Pd + C∗d ◦Cd

)
1M + (1− λ)wT

t

(
2H′∗ ◦R + H∗ ◦H

)
1M2

)
,

d = 2Re
(

λwT
f (C

∗
d ◦ Pd) 1M + (1− λ)wT

t (H∗ ◦R) 1M2

)
.

(58)

3.3. Algorithm Summary

After deducing the phase gradient and the step size, it is easy to solve the unconstrained
problem (17) by using the conjugate gradient algorithm (CGA). Here, we apply the classical
Polak–Ribiere–Polyak CGA (PRP-CGA) to deal with the waveform design problem. The searching
direction of the PRP-CGA can be expressed as:

dl+1 = −gl+1 +

(
gl+1 − gl

)T
gl+1∥∥gl

∥∥2 dl , (59)

where gl and dl are the gradient vector and the direction vector, respectively. For the problem here, gl

and dl are defined as:

gl =

[(
gl

1

)T
, ...,

(
gl

M

)T
]T

, dl =

[(
dl

1

)T
, ...,

(
dl

M

)T
]T

, (60)

where gl
m = ∇φm JT

(
Xl
)

, m = 1, ..., M. Since the step size is an approximate value,
(

gl+1
)T

dl is not

equal to zero. Thus, dl+1 may not be descendent, i.e.,

(
gl+1

)T
dl+1 = −

∥∥∥gl+1
∥∥∥2

+

(
gl+1 − gl

)T
gl+1∥∥gl

∥∥2

(
gl+1

)T
dl < 0 (61)

is not always satisfied. For guaranteeing that the searching direction is descendant, we adopt the
following modified direction:
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d̃l+1 = −gl+1 +

(
gl+1 − gl

)T
gl+1∥∥gl

∥∥2 dl ,

dl+1 =

 d̃l+1,
(

gl+1
)T

d̃l+1 < 0

−gl+1,
(

gl+1
)T

d̃l+1 ≥ 0
.

(62)

Actually, (59) can also be expressed as:

Dl+1 = −Gl+1 +

(
gl+1 − gl

)T
gl+1∥∥gl

∥∥2 Dl . (63)

Since ∥∥∥gl
∥∥∥2

=
M

∑
m=1

∥∥∥gl
m

∥∥∥2
=
∥∥∥Gl

∥∥∥2

F
,(

gl+1 − gl
)T

gl+1 =
∥∥∥Gl+1

∥∥∥2

F
− 1T

N

(
Gl+1 ◦Gl

)
1M,

(64)

and (63) can be rewritten as:

Dl+1 = −Gl+1 +

∥∥∥Gl+1
∥∥∥2

F
− 1T

N

(
Gl+1 ◦Gl

)
1M∥∥Gl

∥∥2
F

Dl . (65)

Thus, (62) can be expressed as the following matrix form:

D̃l+1 = −Gl+1 +

∥∥∥Gl+1
∥∥∥2

F
− 1T

N

(
Gl+1 ◦Gl

)
1M∥∥Gl

∥∥2
F

Dl ,

Dl+1 =

 D̃l+1,1T
N

(
Gl+1 ◦ D̃l+1

)
1M < 0

−Gl+1,1T
N

(
Gl+1 ◦ D̃l+1

)
1M ≥ 0

.

(66)

On the basis of the above derivation, the gradient-based algorithm, which we call
Gra-WeCorr-SFW, is summarized in Algorithm 1.

4. Simplified Algorithm for the Design Problem without Considering the Correlation Weights

In Section 3, we present a gradient-based algorithm to handle Problem (17). From (9), we can
see that the criterion JCF can be simplified when wt(k) = 1, k = 1− N, ..., N − 1 (i.e., the correlation
weights are not taken into account). Thus, in this section, we derive a simplified algorithm for the
design problem without considering the correlation weights. Let wt(k) = 1, k = 1− N, ..., N − 1, then
the criterion JCF can be simplified as:

JCF =
1

2N

M

∑
i=1

M

∑
j=1

pH
ij pij =

1
2N

M

∑
i=1

M

∑
j=1

pH
ii pjj =

1
2N

M

∑
i=1

pH
ii

M

∑
j=1

pjj. (67)
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Thus we can rewrite the problem (17) as:

JT = λ
M

∑
i=1

pH
ii D f pii + λ1

M

∑
i=1

pH
ii

M

∑
j=1

pjj, (68)

where λ1 = 1−λ
2N . Like the derivation in Section 3, we deduce the gradient and the step size.

Algorithm 1: Gra-WeCorr-SFW.

Initialization: l = 0, λ, M, N, wt, w f , X0 =
[
x0

1, ..., x0
M
]

,

S = Fc
(
X0) , G0, D0 = −G0.

Repeat

1: S′ = Fc

(
Xl ◦Dl

)
, S′′ = Fc

(
Xl ◦Dl ◦Dl

)
.

2: Compute P, C, C′, Pd, Cd, C′d according to (45).

3: R = F−1
c (P) , H = F−1

c (C) , H′ = F−1
c (C′) .

4: Compute coefficients a, b, c, d according to (58).

5: Solve the cubic equation (53), and then choose the

positive root that is closest to zero as the step size µl .

6: Xl+1 = Xl ◦ ejµlDl
, S = Fc(Xl+1).

7: Y = λ
(

w f 1T
M

)
◦ S ◦ S∗.

8: Compute Y′ according to (32).

9: Srep =
[
ST , ..., ST]T

2NM×M , Y1 = vec−1 ((Srep ◦ Y′
)

1M
)

.

10: Z = F−1
c (S ◦ Y + Y1) .

11: Gl+1 = 8NRe
(
−j
(

Xl+1
)∗
◦ Z(1 : N, :)

)
.

12: Compute the searching direction Dl+1 according to (66).

13: l = l + 1.

Until convergence

4.1. Phase Gradient

According to (68), we deduce the derivative ∂JT
/

∂φmn as:

∂JT
∂φmn

= 2Re

(
∂pH

mm
∂φmn

(
λw f ◦ pmm + λ1

M

∑
j=1

pjj

))
. (69)

Let:

y′′m = λw f ◦ pmm + λ1

M

∑
j=1

pjj, (70)

then according to (23), (69) can be rewritten as:

∂JT
∂φmn

= 2Re

(
2N

∑
k=1

∂ (p∗mm(k))
∂φmn

y′′m(k)

)
= 4Re

(
−jx∗mm

2N

∑
k=1

fm(k)y′′m(k)e
j 2π

2N nk

)
. (71)

By stacking (71) in a vector, the gradient is given by:

∇φm
JT = 8NRe

(
−jx∗m ◦ z′m (1 : N)

)
, (72)
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where z′m = F−1(fm ◦ y′′m). Define Y2 = [y′′1, ..., y′′M] , Z1 = [z′1, ..., z′M], then it is easy to verify that:

Y2 = λ
(

w f 1T
M

)
◦ S ◦ S∗ + λ1 (S ◦ S∗) 1M1T

M,

Z1 = F−1
c (S ◦ Y2) .

(73)

Thus, the gradient matrix can be expressed as:

G = 8NRe (−jX∗ ◦ Z1 (1 : N, :)) . (74)

4.2. Step Size

Similarly to (41), the linear search problem here can be denoted as:

min
µ>0

h(µ) = λ
M

∑
i=1

(
pl+1

ii

)H
D f pl+1

ii + λ1

M

∑
i=1

(
pl+1

ii

)H M

∑
j=1

pl+1
jj . (75)

By taking the derivative of h(µ), we have:

∂h
∂µ

= 2Re

λ
M

∑
i=1

(
∂pl+1

ii
∂µ

)H

D f pl+1
ii + λ1

(
M

∑
i=1

∂pl+1
ii

∂µ

)H M

∑
j=1

pl+1
jj

 . (76)

Then, the approximate derivative can be obtained by replacing pl+1
pq with p̄l+1

pq defined in (46):

∂h
∂µ
≈2Re

(
λ

M

∑
i=1

(
cii + 2c′ iiµ

)HD f

(
pl

ii + ciiµ + c′ iiµ2
)

+ λ1

M

∑
i=1

(
cii + 2c′ iiµ

)H
M

∑
j=1

(
pl

jj + cjjµ + c′ jjµ2
))

.

(77)

According the definition (56), we have:

M

∑
i=1

pl
ii = Pd1M,

M

∑
i=1

cii = Cd1M,
M

∑
i=1

c′ ii = C′d1M, (78)

where Pd , Cd and C′d can be expressed as the following equalities according to (45):

Pd = S ◦ S∗, Cd = −2Im
(
S′ ◦ S∗

)
, C′d = −

(
Re
(
S′′ ◦ S∗

)
− S′ ◦ S′∗

)
. (79)

Thus, (77) can be written more compactly as:

∂h
∂µ
≈ a1µ3 + b1µ2 + c1µ + d1, (80)

where:

a1 = 4Re
(

λwT
f

(
C′∗d ◦C′d

)
1M + λ1

(
C′d1M

)H (C′d1M
))

,

b1 = 2Re
(

λwT
f

(
2C′∗d ◦Cd + C∗d ◦C′d

)
1M + λ1

(
2
(
C′d1M

)H
(Cd1M) + (Cd1M)H (C′d1M

)))
,

c1 = 2Re
(

λwT
f

(
2C′∗d ◦ Pd + C∗d ◦Cd

)
1M + λ1

(
2
(
C′d1M

)H
(Pd1M) + (Cd1M)H (Cd1M)

))
,

d1 = 2Re
(

λwT
f (C

∗
d ◦ Pd) 1M + λ1(Cd1M)H (Pd1M)

)
.

(81)

By solving the cubic equation a1µ3 + b1µ2 + c1µ + d1 = 0, the step size can be easily obtained.
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4.3. Algorithm Summary

In the previous two subsections, the gradient and step size for Problem (68) are derived. Then,
the simplified algorithm (which we call Gra-Corr-SFW) for the design problem without considering
the correlation weights is summarized in Algorithm 2. It is easy to observe that both Algorithm 1
and Algorithm 2 can be easily implemented by the (I)FFT operations and the Hadamard product.
Since the Hadamard product is more efficient than the (I)FFT operation, we mainly use the number of
(I)FFT operations to measure the time complexity of the algorithms. From Section 3, we know that the
calculation of Y′ needs 2M2 + 2M (I)FFT operations. Thus, the Gra-WeCorr-SFW requires 5M2 + 6M
(I)FFT operations at each iteration. Compared to the Gra-WeCorr-SFW, the Gra-Corr-SFW is simpler
and only needs 4M (I)FFT operations at each iteration. It is worth noting that the calculation of the
cubic function is very simple and needs only a small amount of computation.

Algorithm 2: Gra-Corr-SFW.

Initialization: l = 0, λ, λ1, M, N, wt, w f , X0 =
[
x0

1, ..., x0
M
]

,

S = Fc
(
X0) , G0, D0 = −G0.

Repeat

1: S′ = Fc

(
Xl ◦Dl

)
, S′′ = Fc

(
Xl ◦Dl ◦Dl

)
.

2: Pd = S ◦ S∗, Cd = −2Im (S′ ◦ S∗) , C′d = −
(
Re (S′′ ◦ S∗)− S′ ◦ S′∗

)
.

3: Compute the coefficients a1, b1, c1, d1 according to (81).

4: Solve the cubic equation (80), and then choose the positive root

which is closest to zero as the step size µl .

5: Xl+1 = Xl ◦ ejµlDl
, S = Fc

(
Xl+1

)
6: Y2 = λ

(
w f 1T

M

)
◦ S ◦ S∗ + λ1 (S ◦ S∗) 1M1T

M.

7: Z1 = F−1
c (S ◦ Y2) .

8: Gl+1 = 8NRe
(
−j
(

Xl+1
)∗
◦ Z1 (1 : N, :)

)
.

9: Compute the searching direction Dl+1 according to (66).

10: l = l + 1.

Until convergence

Table 1. The per iteration computational complexities of different algorithms.

Algorithm Number of (I)FFT Complexity

MM-WeCorr-acc 6M2 + 8M O((12M + 16)MN log 2N)
MM-Corr-acc 4M O(8MN log 2N)

MDISAA-SFW 3M O(6MN log 2N)
Gra-WeCorr-SFW 5M2 + 6M O((10M + 12)MN log 2N)

Gra-Corr-SFW 4M O(8MN log 2N)

To analyze the convergence speed, Table 1 presents the per iteration computational complexities
of the proposed and existing algorithms. As shown in Table 1, the proposed Gra-WeCorr-SFW
requires fewer (I)FFT operations than the MM-WeCorr-acc (MM-WeCorr-acceleration) at each iteration.
Compared to these two algorithms, the per iteration computational complexities of the rest of the three
algorithms (MM-Corr-acc (MM-Corr-acceleration), MDISAA-SFW and Gra-Corr-SFW), which do not
consider the correlation weights, are much smaller. In addition to the per iteration computational
complexity, the iteration number is also an important factor affecting the convergence speed. Thus, it is
difficult to compare the convergence performance of the algorithms via the per iteration computational



Sensors 2017, 17, 999 16 of 28

complexity. In the following section, several numerical experiments are provided to show the
convergence performance of the proposed algorithms.

5. Numerical Experiments

To illustrate the effectiveness and superiority of the proposed algorithms, several numerical
experiments are presented in this section. We first validate the monotonicity of the proposed algorithms
and then assess the performance of the algorithms by designing three different waveform sets. The
proposed algorithms are compared with the MM-Corr-acc [14], MM-WeCorr-acc [14] and MDISAA-SFW
[37] algorithms, where MM-Corr-acc and MM-WeCorr-acc are the state-of-the-art algorithms for
designing waveform sets with a good correlation property, and MDISAA-SFW is the state-of-the-art
algorithm for designing the orthogonal waveform set (OWS) with the stopband constraint.

All of the experiments are performed on a PC with a 3.60-GHz i7-4790 CPU and 8GB RAM. The
software environment is MATLAB 2012b. In the following experiments, all of the algorithms are
initialized by the unimodular waveform sets with random phases.

5.1. Verification of The Monotonicity

In this subsection, we investigate the monotonicity of the proposed algorithms in three different
waveform design problems, which are respectively complementary sets of sequences (CSS) design,
waveform set design with zero correlation zone and orthogonal waveform set (OWS) design with the
stopband constraint. In order to measure the monotonicity, define the relative error of the l-th iteration
as follows:

εl
r =

h(µl)− h(µ̇l)

h(0)− h(µ̇l)
, (82)

where µl denotes the approximate step size of the l-th iteration, which is obtained via the Taylor series
expansion, and µ̇l denotes the optimal step size obtained by the searching method. The smaller the
value of εl

r is, the closer the approximate step size is to the optimal step size. Thus, εl
r can be used to

express the accuracy of the approximate step size. When εl
r < 1, we have h(µl) < h(0), which means

the objective function is decreasing at the l-th iteration. Therefore, we can measure the monotonicity of
the algorithms by using the following peak relative error Pre:

Pre = max
(

εl
r, l = 1, ..., NI

)
, (83)

where NI is the iteration number.

Table 2. Simulation parameters of different design problems.

λ Correlation weights {wk}N−1
k=1−N Stopband Ω f

Case 1a 0 wk = 1, k = 1− N, ..., N − 1

Case 2b 0 wk =


1, k = 0
1, k ∈ [−80,−51] ∪ [51, 80]
0, otherwise

Case 3c 0.9 wk = 1, k = 1− N, ..., N − 1
(0.04, 0.21), (0.23, 0.25), (0.28, 0.37),
(0.39, 0.49), (0.52, 0.56)

a: CSS design; b: waveform design with zero correlation zone; c: OWS design with stopband constraint.

To simulate εl
r and Pre, we use the Gra-WeCorr-SFW to design waveform sets with M = 3 waveforms

and each waveform of length N = 256. The simulation parameters of different design problems are
shown in Table 2. Additionally, we stop the algorithm after 200 iterations. Figure 1 shows the evolution
curves of the relative error with respect to the iteration number. From Figure 1, we can see that the
relative error is a little larger at the initial iterations. However, it decreases rapidly and is substantially
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below 10−4 after several iterations. In the whole iteration process, the relative error is less than one,
which means that the objective function is monotonically decreasing. Figure 2 shows the peak relative
error of 100 random trials. It is easy to see that the peak relative error of all three cases is very small and
less than one. This indicates that the monotonicity of the Gra-WeCorr-SFW is not affected by the initial
iteration point. Since the Gra-Corr-SFW is a simplified algorithm of the Gra-WeCorr-SFW, it can also
guarantee that the objective function is monotonically decreasing at each iteration.
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Figure 1. Evolution of the relative error with respect to the iteration number.
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Figure 2. The peak relative errors of 100 random trials.

5.2. CSS Design or OWS Design

In Appendix A, we have demonstrated that the CSS design is equivalent to the OWS design.
In this subsection, we apply the Gra-Corr-SFW to design CSS (or OWS). Since the lower bound of the
CISL is zero, we choose CISL ≤ ε as the stopping criterion for all of the algorithms in this experiment.
The weight coefficient λ and the correlation weights are the same as Case 1 in Table 2. Figure 3 shows
the normalized autocorrelation sum of the waveform sets designed by the Gra-Corr-SFW, where the
normalized autocorrelation sum is defined as:
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rsum(k) = 20log10

∣∣∣∣ M
∑

m=1
rmm(k)

∣∣∣∣
M
∑

m=1
rmm(0)

, k = 1− N, ..., N− 1. (84)
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Figure 3. The autocorrelation sum of the waveform sets designed by the Gra-Corr-SFW with different
ε. (N = 256, M = 3)

From Figure 3, we can see that the autocorrelation sum of the CSS is a Delta function. Additionally,
with the decrease of ε, the sidelobes of the CSS are getting lower and lower.

Next, we compare the performance between the proposed Gra-Corr-SFW and the state-of-the-art
MM-Corr-acc by designing waveform sets with different waveform number M and waveform length
N. For both algorithms, we choose M and N as follows:

M = 3k, N = 256k, k = 1, ..., 5. (85)
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Figure 4. Evolution of the CISL with respect to the running time: (a) MM-Corr-acc; (b) Gra-Corr-SFW.
(ε = 10−13).

The evolution curves of MM-Corr-acc and Gra-Corr-SFW are respectively shown in Figure 4a,b.
From these two subfigures, we observe that the convergence speed of the proposed Gra-Corr-SFW
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is much faster than that of the MM-Corr-acc. Even for (N = 1280, M = 15), the proposed algorithm
takes 1.35 s to coverage to CISL ≤ 10−13, while the MM-Corr-acc takes 48.11 s.

Further, to eliminate the randomness, we repeat the algorithms 100 times for each (M, N) pair
and record the average iteration number NI , the average running time t and the average peak sidelobe
level of the autocorrelation sum Psum, where Psum is defined as:

Psum = max (rsum(k), k = 1, ..., N − 1) . (86)

Then, we choose ε = 10−1 for the stopping criterion. The performance parameters (NI , t, Psum) of
these two algorithms are provided in Table 3. As can be seen from this Table, since the algorithms stop
the iteration when CISL ≤ 10−1, the Psum of these two algorithms are basically the same. At the same
time, the average running time in Table 3 shows that the Gra-Corr-SFW is an order of magnitude faster
than the MM-Corr-acc. From Table 1, we can see that the per iteration computational complexities
of both the MM-Corr-acc and the Gra-Corr-SFW are O(8MN log 2N). Therefore, the reason for the
slower convergence of the MM-Corr-acc may be that the MM strategy in this algorithm makes the
objective function loose, so that the iteration number of the MM-Corr-acc is larger than that of the
Gra-Corr-SFW (as shown in Table 3).

Table 3. The comparison of the performance parameters between MM-Corr-acc and Gra-Corr-SFW.

MM-Corr-acc Gra-Corr-SFW

(M, N) t(s) NI Psum(dB) t(s) NI Psum(dB)
M = 3, N = 256 1.249 1687 −63.8 0.071 239 −65.9
M = 6, N = 512 0.914 496 −68.7 0.110 132 −71.4
M = 9, N = 768 1.558 460 −72.0 0.178 131 −74.7

M = 12, N = 1024 2.531 484 −74.4 0.265 132 −77.5
M = 15, N = 1280 4.483 587 −76.1 0.343 138 −79.1

5.3. Waveform Set Design with Zero Correlation Zone

To verify the effectiveness of the Gra-WeCorr-SFW, we consider the problem of suppressing the
correlation sidelobes at the specified intervals, i.e., designing the waveform set with the zero correlation
zone (ZCZ), and compare the performance with the MM-WeCorr-acc. The experimental parameters
are the same as Case 2 in Table 2. For both algorithms, we choose the value of the objective function
ψ in (4) as the stopping criterion, i.e., ψ ≤ ε. The auto- and cross-correlations of the waveform sets
designed by MM-WeCorr-acc and Gra-WeCorr-SFW are shown in Figure 5. From this figure, we can
see that the proposed algorithm can also generate a waveform set with correlation sidelobes that are
almost zero at the specified intervals.

Similar to Figure 4, for each (M, N) pair, we simulate the evolution curves of the objective function
ψ with respect to the running time. Additionally, the results of these two algorithms are presented in
Figure 6. It is easy to see that the Gra-WeCorr-SFW is faster than the MM-WeCorr-acc. In addition,
we can also find that when the objective function ψ is less than 10−11, the convergence speed of the
MM-WeCorr-acc decreases, especially for a large (M, N) pair.
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Figure 5. The normalized auto- and cross-correlations of the waveform sets designed by
MM-WeCorr-acc and Gra-WeCorr-SFW. (ε = 10−10).
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Figure 6. Evolution of the objective function with respect to the running time: (a) MM-WeCorr-acc;
(b) Gra-WeCorr-SFW (ε = 10−13).

Further, Table 4 presents the comparison of performance parameters between MM-WeCorr-acc
and Gra-WeCorr-SFW, where Pzcz is the peak sidelobe level at the zero correlation zone defined as:

Pzcz = max
(

20log10

∣∣∣∣ rij(k)
N

∣∣∣∣ , i, j = 1, ..., M, k ∈ [51, 80]
)

. (87)

Similarly, for each (M, N) pair, the algorithms are repeated 100 times. As can be seen from Table 4,
the Pzcz of the Gra-WeCorr-SFW is a little bit lower than that of the MM-WeCorr-acc. Moreover, due
to fewer iterations, the average running time of the Gra-WeCorr-SFW is about 50% of that of the
MM-WeCorr-acc, which indicates that the former is more computationally efficient.
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Table 4. The comparison of the performance parameters between MM-WeCorr-acc and
Gra-WeCorr-SFW (ε = 10−10).

MM-WeCorr-acc Gra-WeCorr-SFW

(M, N) t(s) NI Pzcz(dB) t(s) NI Pzcz(dB)
M = 3, N = 256 0.584 335 −167.5 0.248 164 −168.2
M = 6, N = 512 2.691 407 −178.1 1.348 176 −179.5
M = 9, N = 768 10.167 445 −184.5 5.149 178 −186.3

M = 12, N = 1024 37.760 486 −189.7 15.106 179 −191.5
M = 15, N = 1280 84.759 549 −193.5 30.683 182 −195.1

5.4. OWS Design with the Stopband Constraint

In this subsection, we consider the problem of designing OWS with the stopband constraint.
Since the Gra-Corr-SFW is a simplified version of the Gra-WeCorr-SFW and needs much fewer (I)FFT
operations, it is more efficient than the Gra-WeCorr-SFW. Thus, we only investigate the performance
of the Gra-Corr-SFW and compare it with the MDISAA-SFW. Here,

∥∥∥Xl+1 − Xl
∥∥∥

F
≤ 10−4 is employed

as the stopping criterion, and the experimental parameters are the same as Case 3 in Table 2. First,
we apply these two algorithms to design OWS with the stopband constraint. Suppose the waveform
number M is three and the waveform length N is 256. The correlation levels and spectral power
of the waveform sets designed by MDISAA-SFW and Gra-Corr-SFW are shown in Figure 7 and
Figure 8. From Figure 7, we can see that the waveform set designed by the MDISAA-SFW has
better autocorrelation performance, while the waveform set designed by the Gra-Corr-SFW has
better cross-correlation performance. This is because the MDISAA-SFW optimizes the autocorrelation
explicitly and, thus, places more emphasis on suppressing the autocorrelation sidelobes. Figure 8
indicates that the stopband spectral power of the waveform set designed by the Gra-Corr-SFW is less
than that of the waveform set designed by the MDISAA-SFW.
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Figure 8. The spectral power of the waveform sets designed by MDISAA-SFW and Gra-Corr-SFW.

In order to fully compare the algorithms, we define the peak autocorrelation sidelobe Pac, peak
cross-correlation Pcc, peak stopband power Psp and integrated sidelobe level (ISL) [16] as follows:

Pac = max
(

20log10

∣∣∣∣ rii(k)
N

∣∣∣∣ , i = 1, ..., M, k = 2, ..., N − 1
)

,

Pcc = max
(

20log10

∣∣∣∣ rij(k)
N

∣∣∣∣ , i, j = 1, ..., M, i 6= j, k = 0, ..., N − 1
)

,

Psp = max
(

Pi
stop, i = 1, ..., M

)
,

ISL =
M

∑
i=1

N−1

∑
k=−N+1

k 6=0

|rii(k)|2 +
M

∑
i=1

M

∑
j=1
j 6=i

N−1

∑
k=−N+1

∣∣rij(k)
∣∣2,

(88)

where Pi
stop denotes the peak stopband power of the waveform xi. In the above four performance

parameters, Pac and Pcc are used to measure the autocorrelation and cross-correlation performances,
respectively; Psp is the parameter related to the stopband performance; and ISL indicates the overall
sidelobe performance. Since the decrease of the bandwidth leads to the broadening of the main lobe,
rii(1), i = 1, ..., M can be regarded as the autocorrelation main lobe. Thus, the definition of Pac does
not take k = 1 into account. Here, we consider the waveform sets with M = 3 waveforms and each
waveform of length N ∈ {256, 512, 1024}. For each (M, N) pair, we repeat these two algorithms 100 times
and record the average values of the performance parameters. The comparison of the performance
parameters between MDISAA-SFW and Gra-Corr-SFW is shown in Table 5. In addition to the parameters
defined in (88), the average iteration number NI and the running time t are provided in Table 5. From
this table, we obtain three findings, as follows. Above all, the Pcc and Psp of the Gra-Corr-SFW are lower
than that of the MDISAA-SFW, which means that the cross-correlation and stopband performances
of the Gra-Corr-SFW are better than that of the MDISAA-SFW. However, in terms of autocorrelation
performance, the Gra-Corr-SFW is inferior to the MDISAA-SFW. From the ISL in Table 5, it is easy to
see that the overall sidelobe performance of the Gra-Corr-SFW is better than that of the MDISAA-SFW.
Furthermore, although the per iteration computational complexity of the Gra-Corr-SFW is slightly higher
than that of the MDISAA-SFW (see Table 1), the Gra-Corr-SFW needs fewer iterations due to the fast
convergence of the gradient algorithm, which makes the proposed algorithm more efficient. Finally,
with the increase of the waveform length, both the correlation and stopband performances of these two
algorithms are improved, especially the cross-correlation performance.
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Table 5. The comparison of the performance parameters between MDISAA-SFW and Gra-Corr-SFW.

Algorithm N Pac(dB) Pcc(dB) Psp(dB) ISL NI t(s)

MDISAA-SFW
N = 256 −13.6 −13.9 −17.5 893,573 11932 2.512
N = 512 −13.9 −16.6 −17.9 3,532,447 18,602 6.045

N = 1024 −14.1 −19.3 −18.2 14,013,417 27,268 14.080

Gra−Corr−SFW N = 256 −12.5 −15.9 −20.3 832,482 1216 0.274
N = 512 −12.9 −18.6 −22.2 3,321,729 2100 1.013

N = 1024 −13.3 −21.1 −23.8 13,237,903 3577 3.033

Next, we investigate the performance of the algorithms under different λ. The average values
(100 trials) of Pac, Pcc and Psp are shown in Figure 9. From this figure, we can see that with the increase
of λ, the Pac and Pcc of these two algorithms change slowly, while the Psp is sensitive to the change
of λ. It can also be observed that except the autocorrelation performance, the cross-correlation and
stopband performances of the Gra-Corr-SFW are better than that of the MDISAA-SFW. This means
that the stopband property can be easily obtained by using the Gra-Corr-SFW. Moreover, since the
correlation performance changes slowly with the increase of λ, we can choose a relatively large λ

(e.g., λ ∈ (0.85, 0.95)) for the Gra-Corr-SFW to obtain both good correlation and stopband properties.
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Figure 9. The comparison of Pac, Pcc and Psp between MDISAA-SFW and Gra-Corr-SFW versus λ from
0–1. (a) Pac; (b) Pcc; (c) Psp (M = 3, N = 256).

6. Conclusions

In this paper, we propose an efficient algorithm named Gra-WeCorr-SFW for designing the
waveform set with a good correlation and stopband properties. The algorithm optimizes the objective
function directly and can guarantee that the objective function is monotonically decreasing at each
iteration. By changing the design parameters, the Gra-WeCorr-SFW can be used to generate different
waveform sets, such as CSS, the waveform set with ZCZ and OWS with the stopband constraint.
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As the main steps can be implemented by the FFT operations and the Hadamard product, the proposed
algorithm is computationally efficient and can be used to design waveform sets with large M and
N. Besides, the simplified version of the Gra-WeCorr-SFW (named Gra-Corr-SFW) is proposed for
the design problem without considering the correlation weights. Compared to the Gra-WeCorr-SFW,
the simplified algorithm requires fewer FFT operations and is faster. Numerical experiments show
that the proposed algorithms are faster than the state-of-the-art algorithms (MM-WeCorr-acc and
MM-Corr-acc) when designing CSS or the waveform set with ZCZ. In the case of designing OWS with
the stopband constraint, the simplified algorithm has better stopband performance and computational
efficiency compared with the MDISAA-SFW.
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Abbreviations

The following abbreviations are used in this manuscript:

MIMO multiple-input multiple-output
(I)FFT (inverse) fast Fourier transform
CSS complementary sets of sequences
OWS orthogonal waveform set
CAN cyclic algorithm-new
WeCAN weighted cyclic algorithm-new
LBFGS limited-memory Broyden, Fletcher, Goldfarb and Shanno
MM majorization-minimization
MM-Corr MM-correlation
MM-Corr-acc MM-correlation-acceleration
MM-WeCorr MM-weighted correlation
MM-WeCorr-acc MM-weighted correlation-acceleration
CDMA code-division multiple-access
OFDM orthogonal frequency division multiplexing
SFW sparse frequency waveforms
HFSWR high frequency surface wave radar
UWB ultra-wide bandwidth
MDISAA-SFW multi-dimensional iterative spectral approximation algorithm-SFW
PSD power spectrum density
Gra-WeCorr-SFW gradient-weighted correlation-SFW
Gra-Corr-SFW gradient-correlation-SFW
CISL complementary integrated sidelobe level

Appendix A

Proof. Due to the unimodular constraint, the energy of each waveform is N, i.e.,
rii(0) = N, i = 1, ..., M. Then, (3) can be rewritten as:

CISL =
N−1

∑
k=1−N

∣∣∣∣∣ M

∑
m=1

rmm (k)

∣∣∣∣∣
2

−
∣∣∣∣∣ M

∑
m=1

rmm (0)

∣∣∣∣∣
2

=
N−1

∑
k=1−N

∣∣∣∣∣ M

∑
m=1

rmm (k)

∣∣∣∣∣
2

−M2N2. (A1)
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Since
∣∣∣∣ M

∑
m=1

rmm (k)
∣∣∣∣2 =

M
∑

i=1

M
∑

j=1
r∗ii (k) rjj (k), we have:

CISL =
M

∑
i=1

M

∑
j=1

N−1

∑
k=1−N

r∗ii (k) rjj (k)−M2N2 =
M

∑
i=1

M

∑
j=1

rH
ii rjj −M2N2. (A2)

by substituting (6) into (A2), CISL can be expressed as:

CISL =
1

2N

M

∑
i=1

M

∑
j=1

pH
ii pjj −M2N2. (A3)

Assume fm is the 2N-point discrete Fourier transform (DFT) vector of the waveform
xm, m = 1, ..., M, i.e.,

fm(i) =
N

∑
n=1

xm(n)e−jnωi , ωi =
2π

2N
i, i = 1, ..., 2N, (A4)

then the PSD vector pij can be written as:

pij = fi ◦ f∗j . (A5)

According to (A5), it is easy to verify that pH
ii pjj = pH

ij pij. Thus, (A3) can be denoted as:

CISL =
1

2N

M

∑
i=1

M

∑
j=1

pH
ij pij −M2N2. (A6)

Let wt(k) = 1, k = 1− N, ..., N − 1, then we have Dt = Diag (12N) = I2N . Thus, (8) can be
simplified as:

ψ1 =
1

2N

M

∑
i=1

M

∑
j=1

pH
ij pij −MN2. (A7)

From (A6) and (A7), we can observe that the only different between CISL and ψ1 is the constant
term, i.e., CISL and ψ1 are equivalent. The proof is complete.

Appendix B

Proof. According to (A5), it is easy to verify that:

pim = p∗mi. (A8)

by substituting (A8) into
M
∑
i=1
i 6=m

pH
imQ′pim, we have:

M

∑
i=1
i 6=m

pH
imQ′pim =

M

∑
i=1
i 6=m

pT
miQ

′p∗mi =

 M

∑
i=1
i 6=m

pH
miQ

′Tpmi


T

=
M

∑
i=1
i 6=m

pH
miQ

′Tpmi. (A9)

Since:
Q′H =

1
4N2 (1− λ)

(
FDtFH

)H
= Q′, (A10)

we have:
Q′T =

(
Q′H

)∗
= Q′∗. (A11)
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Thus, (A9) can be rewritten as:

M

∑
i=1
i 6=m

pH
imQ′pim =

M

∑
i=1
i 6=m

pH
miQ

′∗pmi. (A12)

The proof is complete.

Appendix C

Proof. Here, we temporarily replace the subscripts i, j with p, q (i.e., pl+1
pq ) to avoid the confusion of

the number j and the imaginary unit j. According to (A4), (A5) and (40), the k-th element of pl+1
pq can

be written as:

pl+1
pq (k) = f l+1

p (k)
(

f l+1
q (k)

)∗
=

N

∑
n=1

N

∑
m=1

xl
p(n)

(
xl

q(m)
)∗
· ejµ(dl

p(n)−dl
q(m)) · e−j 2π

2N (n−m)k, (A13)

where xl
p(n), dl

p(n) denote the n-th elements of xl
p and dl

p. By using the Taylor series, the expansion of

ejµ(dl
p(n)−dl

q(m)) in (A13) (which we keep the first three terms) is given by:

ejµ(dl
p(n)−dl

q(m)) ≈ 1 + jµ
(

dl
p(n)− dl

q(m)
)
+
(

jµ
(

dl
p(n)− dl

q(m)
))2

/
2. (A14)

Thus, pl+1
pq (k) can be approximated as:

pl+1
pq (k) ≈

N

∑
n=1

N

∑
m=1

xl
p(n)

(
xl

q(m)
)∗
· e−j 2π

2N (n−m)k

+ jµ
N

∑
n=1

N

∑
m=1

xl
p(n)

(
xl

q(m)
)∗
·
(

dl
p(n)− dl

q(m)
)
· e−j 2π

2N (n−m)k

− µ2

2

N

∑
n=1

N

∑
m=1

xl
p(n)

(
xl

q(m)
)∗
·
(

dl
p(n)− dl

q(m)
)2
· e−j 2π

2N (n−m)k

(A15)

Let:
fi = F

(
xl

i

)
, f′ i = F

(
xl

i ◦ dl
i

)
, f′′ i = F

(
xl

i ◦ dl
i ◦ dl

i

)
. (A16)

Then, (A15) can be rewritten as:

pl+1
pq (k) ≈ fp (k) f ∗q (k) + jµ

(
f ′p (k) f ∗q (k)− fp (k)

(
f ′q (k)

)∗)
− µ2

2

(
f ′′p (k) f ∗q (k) + fp (k)

(
f ′′q (k)

)∗
− 2 f ′p (k)

(
f ′q (k)

)∗)
,

(A17)

where fp (k) , f ′p (k) , f ′′p (k) are the k-th elements of fp, f′p, f′′p. By representing (A17) as a vector, we have:

pl+1
pq ≈fp ◦ f∗q + j

(
f′p ◦ f∗q − fp ◦ f′∗q

)
µ

− 1
2

(
f′′p ◦ f∗q + fp ◦ f′′∗q − 2f′p ◦ f′∗q

)
µ2.

(A18)

The proof is complete.
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