
sensors

Article

A Type-2 Block-Component-Decomposition Based
2D AOA Estimation Algorithm for an Electromagnetic
Vector Sensor Array

Yu-Fei Gao 1, Guan Gui 2,*, Wei Xie 1, Yan-Bin Zou 1, Yue Yang 1 and Qun Wan 1

1 School of Electronic Engineering, University of Electronic Science and Technology of China, No. 2006,
Xiyuan Ave., West Hi-Tech Zone, Chengdu 611731, China; yufeiee@gmail.com (Y.-F.G.);
raysheik@foxmail.com (W.X.); 201311020327@std.uestc.edu.cn (Y.-B.Z.);
201611020223@std.uestc.edu.cn (Y.Y.); wanqun@uestc.edu.cn (Q.W.)

2 College of Telecommunication and Information Engineering, Nanjing University of Posts and
Telecommunications, 66 Xinmofan Road, Nanjing 210003, China

* Correspondence: guiguan@njupt.edu.cn

Academic Editor: Zhiguo Shi
Received: 18 January 2017; Accepted: 18 April 2017; Published: 27 April 2017

Abstract: This paper investigates a two-dimensional angle of arrival (2D AOA) estimation
algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component
decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage
of the multidimensional structural information of electromagnetic signals to accomplish blind
estimation for array parameters with higher resolution. However, existing tensor decomposition
methods encounter many restrictions in applications of the EMVS array, such as the strict requirement
for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc.
To solve these problems, this paper investigates tensor modeling for partially-polarized signals
of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank-(L1, L2, ·) BCD is
developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated
steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical
experiments demonstrate that the present algorithm has the advantages of both accuracy and
robustness of parameter estimation. Even under the conditions of lower SNR, small angular
separation and limited snapshots, the proposed algorithm still possesses better performance than
subspace methods and the canonical polyadic decomposition (CPD) method.

Keywords: EMVS; L-shaped array; partial polarization; 2D AOA; rank-(L1, L2, ·) BCD;
tensor decomposition

1. Introduction

Array signal processing is an important branch of the information acquisition and detection
field, which has been studied and applied extensively in the academic and industrial communities for
nearly half a century [1–3]. The traditional array usually consists of scalar sensors, which are able to
receive a one-dimensional signal only. However, electromagnetic waves have diverse magnetic and
electric field components. How to make the best of the complete information of the electromagnetic
wave has been an important subject that has been paid close attention by researchers. The EMVS is
a kind of polarization-sensitive antenna, which can receive magnetic and electric field information
of the signal simultaneously [4]. Compared with the traditional scalar sensor, EMVS can sense
electromagnetic waves with different polarization forms and fully exploit information carried by
the wave itself. Since the 1980s, many investigations have been presented to study the problem
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of parameter estimation in EMVS arrays. In 1981, R.T. Compton put forward an adaptive signal
processing method of the tripole antenna array, which can obtain better anti-disturbance performance
than traditional array processing methods [5]. In 1992, J. Li et al. introduced the rotational invariance
techniques (ESPRIT) algorithm to the signal processing of the EMVS array to present a joint estimation
algorithm of the AOA-polarization parameter [6]. In 1994, A. Nehorai and E. Paldi studied the received
signal model of the EMVS array and CRB analysis of the parameter estimation comprehensively, in
which the mean square angular error (MSAE) and the covariance vector angular error (CVAE) were
introduced [7]. In 1996, K.C. Tan et al. analyzed the linear independence of steering vectors of EMVS
for different polarization signal types [8]. In 2000, K.T. Wong and M.D. Zoltowski developed an
algorithm of AOA and polarization parameter estimation with a closed-form solution for the EMVS
array, by which high precision estimation could be achieved [9]. In 2004, D. Rahamim et al. proposed a
preprocessing algorithm of coherence signals over the polarization domain, which can be applied to
the EMVS array arbitrarily distributed in space [10]. In 2012, X. Yuan constructed a joint estimation
algorithm of AOA-polarization parameters for the polynomial-phase signal with full polarization and
derived the corresponding analytical expression of CRB [11]. It can be seen that EMVS array signal
processing has been established as a relatively complete theoretical system through the past 30 years.

All of the methods mentioned above fall into one-dimensional vector or two-dimensional matrix
modeling. However, received signals of the EMVS array have a multidimensional structure naturally,
and the structural information associated with parameters exists among each dimension [12–15].
The traditional methods stretch the multidimensional data into matrices or vectors, which may lead
to the loss of the structural information. In recent years, tensor-decomposition-based methods are
more and more applied in the signal processing field [16–18]. Compared with matrix and vector
modeling, the tensor modeling is more suitable to the real signal with a multidimensional structure.
Besides, tensor decomposition possesses the blind estimation feature, which can directly estimate
the source signal from measurements without the need for any prior information. With the help of such
characteristics, even if the noise is non-Gaussian, tensor-based methods can still be applied to achieve
parameter estimation. Tensor decomposition was proposed in psychometrics first in the 1970s [19],
which also has been obtained by in-depth investigation in phonetics [20] and chemometrics [21].
In the 1990s, the higher order statistics (HOS) attracted attention in the signal processing field [22].
It is found that HOS is essentially interconnected with tensor modeling. In fact, the HOS-based
independent component analysis (ICA) [23,24] implied the idea of tensor decomposition. Combining
the tensor decomposition model with the array manifold, the canonical polyadic decomposition (CPD)
method has been introduced into the parameter estimation of 2D array signal processing [25,26]. In
2005, S. Miron et al. introduced the tensor modeling to the EMVS array and proposed a tensor-based
multiple signal classification (MUSIC) algorithm [12]. However, this search algorithm only considered
the invariances in the polarization dimension, i.e., only using the uni-mode orthogonality. In 2009,
X.F. Gong et al. put forward a two-fold mode-projection MUSIC (TM-MUSIC) algorithm, applying it to
the EMVS array [27], which can obtain a better performance than the long-vector MUSIC algorithm by
fusing the orthogonality on both dimensions and taking full advantage of the structural information of
the tensor data. In 2011, X.J. Guo et al. applied the CPD algorithm to the EMVS array and derived the
uniqueness conditions of decomposition, as well as the identifiability of AOAs for coherent signals [28].
In 2014, K. Han and A. Nehorai constructed a nested vector sensor array and introduced the tensor
modeling for AOA estimation [29]. In 2015, X.R. Zhang et al. presented an adaptive beamformer
for the EMVS array based on tensor modeling with a two-stage technique [30], which has a good
robustness even under the condition of steering vector mismatching. In 2016, P. Forster et al. analyzed
the theoretical performance of the tensor MUSIC and classic long vector MUSIC in polarized source
estimation and gave the corresponding theoretical mean square error (MSE) [31].

The existing tensor-decomposition-based parameter estimation methods for the EMVS array
are mostly based on the CPD modeling. Such a model has the advantage of uniqueness, but
decomposition factors must be rank-1, which may not be satisfied in practice [32]. Therefore,
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the signal processing community hopes to find a new framework that not only can maintain
the uniqueness of decomposition, but also that does not need the severe requirement for rank
constraints. In 2008, L. De Lathauwer proposed a tensor decomposition model combined with the
features of CPD and Tucker decomposition (TKD), called the block component decomposition (BCD),
or the block term decompositions (BTD) [33–35]. This model has various forms of decomposition.
For instance, a rank-(L, L, 1) BCD expresses the factors as the outer product of one rank-L matrix
with a vector. Such a model has been effectively applied in blind source separation [36,37], in which
a rank-(2, 2, 1) BCD model is utilized to match data with limited samples. When the reflections
result in the inter-symbol-interference (ISI) occurring simultaneously on both the near and far field,
a more flexible block-CPD model can be applied [38]. This shows that the BCD model has more
flexible applicability than the CPD. Another one is rank-(L1, L2, ·) BCD, which expresses the factors
as the product of a core tensor with two factor matrices. In 2008, D. Nion and L. De Lathauwer
introduced such a model into the DS-CDMA (Direct Sequence-Code Division Multiple Access) system
to construct a blind receiver used for convolutive mixtures. It can achieve a good performance on
both channel identification and symbol estimation [39]. In 2013, combining the partial least squares
(PLS) with BCD modeling, Q.B. Zhao et al. put forward a higher order PLS method that can achieve
good results in 3D movement trajectories decoding for the electrocorticogram (ECoG) signal [40].
In 2014, B. Hunyadi et al. introduced the BCD into electroencephalogram signal processing [41],
in which a better performance is gained in the ictal pattern identification than the CPD algorithm.
In addition, these types of BCD models also include the PARALIND (PARAllel factors with LINear
Dependency) [42,43], which has mainly been utilized in blind beamforming and multi-antenna
coding [44]. In 2012, M. Sorensen and L. De Lathauwer proposed a rank-(L1, L2, ·) BCD algorithm
with Vandermonde factors, which has good estimation performance in the uniform linear array
(ULA) [45]. In 2013, L. Sorber et al. generalized the CPD and rank-(Lr, Lr, 1) BCD method to propose a
optimization-based tensor decomposition algorithm that can diminish computation source requirement
by means of Jacobian’s Gramian structure [46]. In 2015, P. Tichavsky et al. proposed a non-orthogonal
tensor diagonalization BCD algorithm, which has a nearly quadratic convergence performance [47].
In 2016, X.F. Gong et al. put forward two kinds of coupled block simultaneous generalized Schur
decomposition (SGSD)-based BCD algorithms, which have advantages of low computational resource
requirement and high computation accuracy [48]. So far, there has been little public research on the
application of the BCD in the vector sensor array. As discussed above, the received signal model
of the EMVS array has a natural multidimensional structure. Additionally, for 2D AOA, the angle
pair-matching is a troublesome problem. The earlier research works often need complicated searching
methods to achieve pair-matching [49–52]. Some researchers put forward the automatic pairing
method by using the eigenvalue of the transfer matrix, but the issue of eigenvalue ordering has not
been well solved with such an algorithm [53]. Since the BCD method possesses the blind estimation
feature, it can solve such a problem properly. This paper takes this as the research motivation to
investigate the parameter estimation algorithm based on the BCD modeling for the EMVS array.

The key contribution of this paper is the rank-(L1, L2, ·) BCD modeling of the partial polarization
signal incident on an EMVS array. For achieving the AOA parameters estimation, an iterative algorithm
is proposed to compute each factor of such a BCD model. This algorithm adopts a block diagonal
constraint criterion of the steering matrix and constructs a subspace-like estimator to achieve the
estimation of spatial frequencies. The BCD-based methods have a common feature that the performance
of the algorithm can be guaranteed only if the rank conditions are satisfied. Thus, we analyze
whether or not the rank conditions can be met. Additionally, for the partial polarization signal,
the decomposition uniqueness of rank-(L1, L2, ·) BCD is investigated in this paper. The proposed
method can accomplish the pair-matching of azimuth and elevation angles automatically by means of
the decomposition uniqueness of the BCD model.

The other sections of this paper are organized as follows: Section 2 describes the received signal
model of the EMVS array and introduces the BCD method; Section 3 develops the algorithm based on
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rank-(L1, L2, ·) BCD for 2D AOA estimation; Section 4 presents numerical simulations for verifying
the proposed algorithm and demonstrates the comparison with the existing methods; finally, the last
section concludes this paper.

2. Data Model

For convenience of statement hereafter, several notions are explained as follows. The scalar
is indicated by italic letters, e.g., x. The vector and matrix are indicated by bold italic lower- and
upper-case letters, e.g., x, X. The tensor is indicated by calligraphic capital letter, e.g., X . ‖X ‖F
is the Frobenius norm of the tensor X , expressed as the square root of the sum of the absolute squares
of its elements. The operator ⊗ denotes the Kronecker product between matrices. The operator
� indicates the column-wise Kronecker product, or the Khatri–Rao product [16]. The operator ×n

denotes the mode-n product between the tensor and matrix, where the mode is considered as the
order of the tensor data. For a third-order tensor X ∈ CM×N×P, X(1) is defined as the the unfolded
matrix, or matricization of X in mode-1, i.e., X(1) = [X1, X2, ..., XP] ∈ CM×(PN); similarly, X(2) and
X(3) denote the matricization in mode-2 and mode-3, respectively. The mode-n rank of tensor X is the
rank of its unfolded matrix X(n).

2.1. EMVS Array Signal Model

Under the assumption of narrowband and far-field signal [7,8], the measurement of EMVS can
be expressed as:

yk (t) = Θkξk (t)

=



ex

ey

ez

hx

hy

hz


=



− sin φk − cos φk cos θk
cos φk − sin φk cos θk

0 sin θk
− cos φk cos θk sin φk
− sin φk cos θk − cos φk

sin θk 0


ξk (t) , (1)

where φk, θk denote the azimuth and elevation angle of arrival signal, respectively, as shown in Figure 1.
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Figure 1. The geometry of a single EMVS.

For a fully-polarized signal, ξk (t) = Qkwksk (t) = gksk (t), in which sk (t) is the k-th source signal,
Qk and wk are the variables associated to polarization parameters.

Qk =

[
cos µk sin µk
− sin µk cos µk

]
, wk =

[
cos νk
j sin νk

]
, (2)
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where µk ∈ [−π/2, π/2] is the polarization orientation angle of the electromagnetic wave and
νk ∈ [−π/4, π/4] is the ellipticity angle, as shown in Figure 2. Thus, yk (t) = Θkgksk (t) = bksk (t),
where bk ∈ C6×1 is referred to as the polarization steering vector corresponding to the k-th signal.

Figure 2. The electromagnetic polarization ellipse.

The above signal model is only for single EMVS at the receiver. For an EMVS array, the manifold
configuration of sensors must be dealt with. This paper considers the L-shaped array [54,55] shown
in Figure 3, which consists of a couple of orthogonal uniform linear arrays, and each of them has M
sensors. Given the polarization steering matrix as B = [b1, . . . , bK] ∈ C6×K and considering noise,
the received signal model of the EMVS array can be expressed as:

x (t) = (Ax � B) sT (t) + nx (t) , (3)

z (t) = (Az � B) sT (t) + nz (t) , (4)

where Ax = [ax,1, ax,2, ..., ax,K] ∈ CM×K is the steering matrix of the subarray along the x-axis.
Without loss of generality, assuming the array element spatial interval as d and letting αk = − 2πd

λ cos φ′k,

in which λ is the wavelength of source signal, we have ax,k =
[
1, ejαk , · · · , ej(M−1)αk

]T
. s (t) ∈ C1×K is

the source signal, vector and nx (t) ∈ CM×1 is the additive white Gaussian noise (AWGN) vector. The
signal model of the subarray along the z-axis is consistent with the form of the x-axis.

z

x

y
'k

k

( )
ks
t

O

...

1

1

2

M

M

Figure 3. L-shaped array configuration of the EMVS array.

In practical applications, the fully-polarized signal appears rarely. Most signals are partially
polarized. The trajectory of the endpoint of the electric field vector at the spatial frequency is no
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longer a certain ellipse, but a curve of shape and direction that changes over time. In this case,
the polarization parameters are not constant. Thus, gk cannot be incorporated into the polarization

steering vector bk. For instance, the circularly-polarized signal has ξk (t) = Qk

[
ws̃(k)1 (t) + w∗ s̃(k)2 (t)

]
,

where w =
√

2/2 [1, j]T and
(

s̃(k)1 (t) , s̃(k)2 (t)
)

are the k-th signal complex envelope [8]. For such a
partially-polarized signal, the received signal model of the EMVS array can be rewritten as:

x (t) = (Ax �b Ψ) sT (t) + nx (t) , (5)

z (t) = (Az �b Ψ) sT (t) + nz (t) , (6)

where �b denotes the Khatri–Rao product with block form [33]; Ψ = [Θ1, . . . , ΘK] ∈ R6×2K;
s (t) =

[
s̃(1)1 (t) , s̃(1)2 (t) , . . . , s̃(K)1 (t) , s̃(K)2 (t)

]
∈ C1×2K is the vector of partially-polarized signals.

The signal model of the subarray along the z-axis has the same form as that along the x-axis.
Without ambiguity, the argument t is omitted in the following discussions for simplicity.

For N snapshots, the received signal models (5) and (6) become:

X = (Ax �b Ψ) ST + Nx, (7)

Z = (Az �b Ψ) ST + Nz, (8)

where S ∈ CN×2K is the source signal matrix for the N snapshots and Nx, Nz ∈ CM×N are the matrices
of AWGN on the subarrays along the x- and z-axis, respectively.

2.2. Block Component Decomposition

As the combination of CPD and TKD, the BCD framework maintains the advantages of both, the
former with decomposition uniqueness and the latter with the relaxing rank requirement for the
factors [33–35]. In addition, BCD has the feature of structural diversity, such as rank-(L, L, 1),
rank-(L1, L2, L3) and rank-(L1, L2, ·) patterns. Different patterns have different forms of decomposition,
corresponding to different signal models. This paper mainly pays attention to the rank-(L1, L2, ·) BCD,
i.e., the Type-2 BCD model.

Definition 1. Type-2 BCD in rank-(L1, L2, ·) terms:
The decomposition of a tensor X ∈ CM×P×N is called the Type-2 block component decomposition, if it can

be expressed as the summation of a series rank-(L1, L2, ·) factors,

X =
K

∑
k=1
Xk =

K

∑
k=1
Ck ×1 Ak ×2 Bk, (9)

where Ck ∈ CL1×L2×N can be termed as the core tensor of the k-th component. The mode-1 rank and mode-2
rank of Ck are L1 and L2, respectively. Both Ak ∈ CM×L1 and Bk ∈ CP×L2 are of full column rank. The type-2
BCD model in rank-(L1, L2, ·) terms is schematized in Figure 4.

= + +

Figure 4. Type-2 BCD in rank-(L1, L2, ·) terms.
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The BCD model can also be expressed as:

X = C ×1 A×2 B, (10)

where A = [A1, . . . , AK] , B = [B1, . . . , BK], and C ∈ CKL1×KL2×N is defined as:

[C](k−1)L1+l1,(k−1)L2+l2,n = [Ck]l1,l2,n , ∀l1, l2, n, k, (11)

and Equation (10) can be written as X = JA, B, CK (cf. [16]).

3. The Proposed Method

3.1. The BCD Modeling of the EMVS Array

Consider the observation data on both subarrays [8]; we have the received signal model,

y =
K

∑
k=1

Ak ⊗ΘksT
k + n. (12)

The corresponding matrix form is:

Y = (A�b Ψ) ST + N, (13)

in which A = [A1, . . . , AK], Ak = blockdiag (ax,k, az,k), Ψ = [Θ1, . . . , ΘK], S =
[
ST

1 , . . . , ST
K

]
and

Sk =
[
sk (1)

T , . . . , sk (N)T
]
, where blockdiag (·) denotes a block diagonal matrix. Note that such a

model is the rank-(L1, L2, ·) BCD [34], where L1 = L2 = 2. Then, Equation (13) can be rewritten as:

Y =
K

∑
k=1
Sk ×1 Ak ×2 Θk +N , (14)

where Y ∈ C(ML1)×6×N is the received signal; Sk ∈ CL1×L2×N is the source signal, of which the mode-3
matricization is ST

k , i.e., ST
k = [Sk](3). N is the corresponding AWGN.

Next, we investigate if the rank condition of each factor is satisfied in Equation (14).
First, the steering matrix {Ak}K

k=1 ∈ CML1×L1 is of full column rank when M ≥ 1. The same is true
for {Θk}K

k=1 ∈ R6×L2 when L2 < 6. For {Sk}K
k=1 ∈ CL1×L2×N , the size of mode-1 matricization

is (L1 × NL2) and (L2 × NL1) for mode-2. Thus, the mode-1 and mode-2 rank of {Sk}K
k=1 are L1 and

L2, respectively, when snapshot N is sufficiently large. Consequently, the rank conditions of each
decomposition factor in Equation (14) can be satisfied if:

M ≥ 1,

L2 ≤ 6,

N ≥ max
(⌈

L1
L2

⌉
,
⌈

L2
L1

⌉)
.

(15)

For the L-shaped array in this paper, on each subarray, the number of sensors M > 1 must be true.
Additionally, since L1 = L2 = 2, no matter what the snapshots are, multiple or single, Equation (14)
will be valid according to Equation (15).

3.1.1. Uniqueness Analysis

Based on the EMVS array signal model, the decomposition uniqueness of Equation (14) is
investigated in this section.
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Definition 2. Essentially unique for rank-(L1, L2, ·) BCD:
The rank-(L1, L2, ·) BCD described in Equation (14) is called essentially unique, if the factors satisfy

the following relationships: (1) each of Ak and Θk can be post-multiplied by a nonsingular matrix,
i.e., Āk = AkΓk, Θ̄k = Θk∆k, in which Γk ∈ CL1×L1 , ∆k ∈ CL2×L2 ; (2) corresponding to Condition 1,
there exists the transformation of Sk: S̄k = Sk ×1 Γ−1

k ×2 ∆−1
k .

If Ā = [Ā1, . . . , ĀK], Ψ̄ =
[
Θ̄1, . . . , Θ̄K

]
and

[
S̄
]
(k−1)L1+l1,(k−1)L2+l2,n =

[
S̄k
]

l1,l2,n , ∀l1, l2, n, k, the

two sets of BCD expressions
q

Ā, Ψ̄, S̄
y

and JA, Ψ,SK can be considered as essentially unique.

Theorem 1. Uniqueness of BCD modeling for the EMVS array:
The rank-(L1, L2, ·) BCD descried in Equation (14) is essentially unique, if A and Ψ are of full column

rank, N ≥ 3 and all elements of {Sk}K
k=1 are characterized by jointly continuous probability density functions.

For the proof of Theorem 1, reference can be made to [34]. Since the EMVS model in this paper
is based on the assumption that source signals obey the zero mean Gaussian random process [7],
this implies that the elements of {Sk}K

k=1 are surely characterized by jointly continuous probability
density functions, i.e., the conditions of factors {Sk}K

k=1 in Equation (14) are satisfied from Theorem 1.
In addition, the array manifold based on the L-shaped array in this paper gives L1 = L2 = 2;
the structure of {Ak}K

k=1 is block diagonal; and each block factor is the steering vector of the subarray,
which has the Vandermonde structure. As a consequence, the arbitrary two columns of A are linearly
independent. Hence, rank (A) = min (2M, 2K). Thus, when M > K, A is of full column rank. From
the definition of {Θk}K

k=1 in Section 2.1, we have rank (Ψ) = min (6, 2K). Thus, when K < 3, Ψ is of
full column rank. The above analysis reveals that the decomposition from the tensor model (14) of the
EMVS array is unique, if the following conditions are met,{

K ≤ min (M, 3) ,

N ≥ 3.
(16)

It should be noted that Equation (16) is only the sufficient condition. In practical applications,
if the constraints are imposed on factor matrices, the decomposition (14) can still be unique, even if
the conditions limited by Equation (16) may not be satisfied.

3.2. AOA Estimation Algorithm

Given the rank-(L1, L2, ·) BCD model (14) with additive noise, the task is to acquire the estimation
of factor matrices {Ak}K

k=1, {Θk}K
k=1 from the received signal Y ∈ C(2M)×6×N and obtain the estimation

of spatial frequency {αk}K
k=1. This paper adopts the minimum mean square error (MMSE) criterion [35],

min
Âk ,Θ̂k

∥∥Y − Ŷ∥∥2
F , k = 1, 2, . . . , K,

s.t. Ŷ =
K

∑
k=1
Ŝk ×1 Âk ×2 Θ̂k.

(17)

With the mode-n matricizations of the tensor Y and N , i.e., Y (n) and N(n), n = 1, 2, 3, the signal
model (14) can be rewritten as:

Y (1) = A
[

FT
1 , FT

2 , . . . , FT
K

]T
+ N(1), (18)

Y (2) = Ψ
[

GT
1 , GT

2 , . . . , GT
K

]T
+ N(2), (19)

Y (3) = S (A�b Ψ)T + N(3), (20)
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in which Fk = [Sk ×2 Θk](1), Gk = [Sk ×1 Ak](2), k = 1, 2, . . . , K.
Several algorithms can be employed to solve the above problems [35,46,56,57]. The typical one

is alternating least squares (ALS) [19,46]. With two fixed components of A, Ψ, S in each iteration,
the remaining one is updated by the least squares approach. Then, the same scheme is repeated in
turn until the convergence condition is satisfied.

For instance, with {Sk}K
k=1 and {Θk}K

k=1 fixed, the update of A is calculated as follows,

min
Â

∥∥∥∥Y (1) − Â
[

FT
1 , FT

2 , . . . , FT
K

]T
∥∥∥∥2

F
, (21)

then we can obtain:

Â = Y (1)

([
F̂T

1 , F̂T
2 , . . . , F̂T

K

]T
)†

, (22)

where (·)† represents the pseudo-inverse of a matrix. With {Sk}K
k=1 and {Ak}K

k=1 fixed, the same
procedure gives the update of Ψ,

Ψ̂ = Y (2)

([
ĜT

1 , ĜT
2 , . . . , ĜT

K

]T
)†

. (23)

Then, fixing {Ak}K
k=1 and {Θk}K

k=1 leads to the update of S,

Ŝ = Y (3)

([
Â�b Ψ̂

]T
)†

. (24)

During the steps of updating A and Ψ, the normalization by using QR decomposition can
be added to enhance the stability of estimation [35]. It is necessary to guarantee that

[
F̂T

1 , F̂T
2 , . . . , F̂T

K

]
,[

ĜT
1 , ĜT

2 , . . . , ĜT
K

]
and

(
Â�b Ψ̂

)
are of full column rank in the iterations.

In addition, the structural information about factor matrices can be considered in the initialization
step for accelerating the convergence of ALS. Let Yn represent the n-th frontal slice matrix of the tensor
Y , i.e., Yn = [Y ]:,:,n , n = 1, 2, . . . , N; then given L1 = L2, we have:

Y2Y†
1 = A · blockdiag

(
S̈1, S̈2, . . . , S̈K

)
· A†, (25)

where S̈k = [Sk]:,:,2 · [Sk]
†
:,:,1 is of full rank, known from the previous rank condition of rank-(L1, L2, ·)

BCD and the characteristics of the source signal. A is also full column rank in terms of the uniqueness
analysis because Equation (16) is fulfilled. This means that the column space of Y2Y†

1 is the same as

that of A. A similar conclusion can be deduced that YT
2

(
YT

1

)†
and Ψ have the same column space.

Therefore, we can employ singular value decomposition (SVD) to initiate the factor matrices for
the ALS algorithm.

The analysis of Section 3.1 shows that solving Equation (14) can result in the estimation of
Ak, Θk, k = 1, . . . K. After finding the steering matrix Âk by means of ALS, the spacial frequency can be
obtained. Note that the trivial indeterminacies of Âk exists, i.e.,

Âk = AkΓk, (26)

where Γk ∈ CL1×L1 is a nonsingular matrix. Equation (26) indicates that the BCD estimation result and
steering matrix have the same column space. Because Ak has the block diagonal structure, we can
extract the correct AOA information by exploiting this feature.
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For the array manifold configuration in this paper, the Ak can be parted as Ak =
[

AT
k,1, AT

k,2

]T
,

where Ak,1 = [ax,k, 0], Ak,2 = [0, az,k]. In the same way, the estimation of Âk is parted as

Âk =
[

ÂT
k,1, ÂT

k,2

]T
. Then, combined with Equation (26), we have:

Âk,1 = [ax,k, ax,k] · diag
(
[Γk]1,:

)
, (27)

Âk,2 = [az,k, az,k] · diag
(
[Γk]2,:

)
. (28)

The above equations indicate that Âk,m is a rank-1 matrix and has the same column space
as the steering vector. Hence, the spacial frequency can be estimated by subspace methods.
Giving the SVD of Âk,m,

Âk,m = Uk,mΣk,mV H
k,m, m = 1, 2, (29)

the left singular vector uk,1 corresponding to the maximum singular value can be obtained. Take the first
and last (M− 1) rows of uk,1, denoted as ua and ub, to construct Uab = [ua, ub]. Applying the
eigenvalue decomposition of UH

abUab,

UH
abUab = WΛW H , (30)

in which:

W =

[
w1,1 w1,2

w2,1 w2,2

]
∈ C2×2, (31)

yields the estimation of spacial frequency α̂k = ∠
(
−w1,2

w2,2

)
, where ∠ (·) denotes the phase angle of

a complex variable. Finally, the estimation of the arrival angle on the array along the x-axis can
be obtained,

φ̂′k = arccos
(
−α̂kλ

2πd

)
. (32)

The same method can be used to get the estimation of the elevation angle θ̂k. After obtaining
the estimation of φ′k and θk, the azimuth angle φk can be estimated directly,

φ̂k = arccos

(
cos φ̂′k
sin θ̂k

)
. (33)

Since Âk includes the steering vector information on both subarrays and the Type-2 BCD
is unique, the estimation of azimuth and elevation angles accomplish the matching pairing
automatically. It should be noted that even if the array manifold is arbitrarily configured and no
longer has the Vandermonde structure, the spatial frequency can still be estimated by utilizing the
one-dimensional spectral peak search method.

The algorithm flow is shown in Algorithm 1. The ALS procedure is the key step to estimate
the steering matrix, which has the complexity of O

(
2K (P + 1)∏P

p=1 Ip

)
. Such a procedure consists of

three parts. The first is to update the factor matrices, which has the complexity of O
(

2KP ∏P
p=1 Ip

)
.

The second is to solve the linear systems, which has the complexity of O
(

1
3 K3P + 2K2 ∑P

p=1 Ip

)
.

The third is function evaluation, which has the complexity of O
(

2K ∏P
p=1 Ip

)
. In addition, we

employ the SVD to calculate the spatial frequencies, which has the the complexity of O
(
2L3

1
)
. For the

signal model of the EMVS array in this paper, we have P = 3, I1 = 2M, I2 = 6, I3 = N. It can
be concluded that the total computational complexity is O

(
2K (3 + 1)× (2M× 6× N) + 2L3

1
)
=

O
(
96KMN + 2L3

1
)
.
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Algorithm 1 2D AOA estimation algorithm for the EMVS array based on Type-2 BCD.

Input: the received signal Y ∈ C2M×6×N ; the number of source signals, K; BCD model parameters,

L1 = L2 = 2; the threshold of error, ε.

Output: AOA estimation φ̂k, θ̂k, k = 1, 2, . . . , K.

1: Initialization for factor matrices

2: A = [A1, . . . , AK] , s.t. Col (A) = Col
(

Y2Y†
1

)
;

3: Ψ = [Θ1, . . . , ΘK] , s.t. Col (Ψ) = Col
(

YT
2

(
YT

1

)†
)

;

4: Presetting for iteration variables

5: Ŝ = 0L1×L2×N ; F = 06K×L1 ; G = 02MK×L2 ; E = Y .

6: while ‖E‖F > ε do

7: ALS for estimating S: Ŝ← Y (3)

([
Â�b Ψ̂

]T
)†

;

8:
[
Ŝk
]
(3) ← ŜT

k , k = 1, 2, . . . , K;

9: F̂k ←
[
Ŝk ×2 Θ̂k

]
(1) , k = 1, 2, . . . , K;

10: ALS for estimating A: Ã← Y (1)

([
F̂T

1 , F̂T
2 , . . . , F̂T

K

]T
)†

;

11: Apply QR decomposition: Ãk = QARA, Âk ← QA, k = 1, 2, . . . , K;

12: Ĝk ←
[
Ŝk ×1 Âk

]
(2) , k = 1, 2, . . . , K;

13: ALS for estimating Ψ: Ψ̃← Y (2)

([
ĜT

1 , ĜT
2 , . . . , ĜT

K

]T
)†

;

14: Apply QR decomposition: Θ̃k = QΘRΘ, Θ̂k ← QΘ, k = 1, 2, . . . , K;

15: Calculate the residual: E ← Y −∑K
k=1 Ŝk ×1 Âk ×2 Θ̂k;

16: end while

17: while k ≤ K do

18: Divide Âk into two parts: Âk =
[

ÂT
k,1, ÂT

k,2

]T
;

19: Apply SVD to each part: Âk,m = Uk,mΣk,mV H
k,m, m = 1, 2;

20: Obtain the estimates φ̂′k, θ̂k by the subspace approach.

21: φ̂k ← arccos
(
cos φ̂′k/ sin θ̂k

)
;

22: end while

4. Numerical Simulations and Discussion

In this section, several simulation experiments are demonstrated for proving the validation of
the proposed method. The experimental scenario is consistent with the received signal model (14)
described in Section 3.1. It is assumed that the L-shaped array consists of two ULAs, and each one
has M sensors. The number of source signals is K; the number of snapshots is N; the Monte Carlo
independent trials is L.

Since the signal studied in this paper is partially-polarized waves and the polarization state
is time-varying, so the simulations in this section only estimate the AOA of the signal. In the numerical
experiments, the polarization orientation angle is set as a random variable obeying the zero mean
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Gaussian distribution; the simulation results are given in the following subsections. If the distribution
function changes to obeying the uniform distribution, the corresponding simulation results would
have considerable consistency with the Gaussian distribution.

4.1. Implementations of 2D AOA Estimation

4.1.1. Different SNRs

The simulation parameters are configured as: M = 5, K = 2, N = 200; the distance between
adjacent sensors is λ/2; two groups of the AOAs are (φ1, θ1) = (100◦, 65◦) and (φ2, θ2) = (120◦, 45◦);
the SNR range is −3 dB∼15 dB; the Monte Carlo trials L = 500. The azimuth-elevation angles
estimation is shown in Figure 5.
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Figure 5. Azimuth-elevation scatter versus SNRs, for two AOAs at (φ1, θ1) = (100◦, 65◦),
(φ2, θ2) = (120◦, 45◦), by 500 Monte Carlo trials (M = 5, K = 2, N = 200). (a) SNR = –3 dB,
(b) SNR = 3 dB, (c) SNR = 9 dB, (d) SNR = 15 dB.

For comparing the accuracy of estimation under different SNRs more directly, we analyze
the simulation result for one group of AOA, (φ2, θ2), as shown in Figure 6. The result indicates
that the proposed algorithm has better estimation accuracy under different noise conditions. Even if
the SNR is low, different AOAs can be distinguished, which can be verified by the result of detection
probability in Section 4.2.2. When the SNR is−3 dB, the detection probability of the proposed algorithm
is larger than 85%. However, the value of the existing method, e.g., ESPRIT, is less than 50% only.
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Figure 6. The AOA estimation scatter for (φ2, θ2) versus SNRs, by 500 Monte Carlo trials
(M = 5, K = 2, N = 200).

4.1.2. Different Angular Separations

This group of experiments investigates the estimation of AOA under different angular separations
for fixed SNR, which is shown in Figure 7. Set SNR as 5 dB, and the remaining parameters
agree with those of Section 4.1.1. Two groups of AOA are selected as (φ1, θ1) = (100◦, 65◦),
(φ2, θ2) = (φ1 + ∆, θ1 + ∆), ∆ ∈ [1◦, 20◦]. The Monte Carlo simulation trials L = 500.
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Figure 7. Azimuth-elevation scatter versus angular separations, for two AOAs at (φ1, θ1) = (100◦, 65◦),
(φ2, θ2) = (100◦ + ∆, 65◦ + ∆), by 500 Monte Carlo trials (M = 5, K = 2, N = 200). (a) Angular
Separatio = 1◦, (b) Angular Separatio = 3◦, (c) Angular Separatio = 5◦, (d) Angular Separatio = 9◦,
(e) Angular Separatio = 14◦, (f) Angular Separatio = 20◦.
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From the scatter diagram, the AOA estimation can be fully resolved when the angular separation
is large than 3◦. Even if the separation degree is very small, (φ2, θ2) can still be estimated correctly with
high probability, as shown in Figure 8. This conclusion can also be proven by the result of detection
probability analysis in Section 4.2.2. When ∆ = 1◦, the detection probability of the proposed algorithm
is larger than 80%. However, the ESPRIT has only about 40%.
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Figure 8. The AOA estimation scatter for (φ2, θ2) versus angular separations, by 500 Monte Carlo trials
(M = 5, K = 2, N = 200).

4.1.3. Different Snapshots

This group of experiments investigates the estimation of AOA under different snapshots, which
is set as N ∈ [5, 500]. The SNR is fixed at 5 dB, and the remaining simulation parameters are the same
as given in Section 4.1.1. With the given Monte Carlo trials L = 500, the simulation result is shown
in Figure 9.
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(a) Snapshots = 5
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(c) Snapshots = 200
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(d) Snapshots = 500

Figure 9. Azimuth-elevation scatter versus snapshots, for two AOAs at (φ1, θ1) = (100◦, 65◦),
(φ2, θ2) = (120◦, 45◦), by 500 Monte Carlo trials (M = 5, K = 2). (a) snapshots = 5, (b) snapshots = 50,
(c) snapshots = 200, (d) snapshots = 500.



Sensors 2017, 17, 963 15 of 22

Even if the snapshots are finite, the simulation result shows that the proposed algorithm can
achieve better angular resolution. For the different snapshots, the estimation of the two AOA groups
appears to be hardly aliasing. When the snapshot is five, the detection probability with the proposed
algorithm is more than 95% from the result in Section 4.2.2, while the detection probability of ESPRIT
is less than 75%. One group of angle estimation results is shown in Figure 10. The simulation result
reveals that the estimation accuracy of (φ2, θ2) rises with the snapshot increasing.
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Figure 10. The AOA estimation scatter for (φ2, θ2) versus snapshots, by 500 Monte Carlo trials
(M = 5, K = 2).

4.2. Performance Comparison

The comparison of the proposed algorithm with three existing algorithms has been investigated in
this section, which shows the performance advantage of it in both root mean square error (RMSE) and
detection probability. The reference methods include subspace-like algorithms, i.e., TM-MUSIC [27],
ESPRIT [58,59], and the CPD-based 2D AOA estimation algorithm [26]. The ESPRIT algorithm is based
on matrix modeling, the TM-MUSIC and CPD algorithms are based on tensor modeling.

4.2.1. RMSE

First, we investigate the RMSE of each method, which is defined as:

RMSE =

√√√√ 1
LK

L

∑
l=1

K

∑
k=1

((
φ̂k (l)− φk

)2
+
(
θ̂k (l)− θk

)2
)

, (34)

where
(
φ̂k (l) , θ̂k (l)

)
are the estimation values of the k-th AOA for the l-th Monte Carlo trial.

The Cramer–Rao lower bound is defined as
√

1
K ∑K

k=1 (CRB (φk) + CRB (θk)), where CRB (φk) and
CRB (θk) are the diagonal elements of CRB matrix [60,61], corresponding to the parameters φk and
θk, respectively.
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(1) RMSE versus different SNRs:

The parameter settings are the same as those in the Section 4.1.1. The results are shown in Figure 11.
The RMSE curves interpret the advantage of the algorithm developed in this paper over the reference
methods in the whole SNR range. The three tensor-based algorithms are better than the matrix-based
algorithm, i.e., ESPRIT, since tensor modeling can make the best of the multidimensional structure
information in the received signal. It is noticed that when the SNR is high, e.g., 15 dB, the performance
of TM-MUSIC is close to the CPD algorithm. Compared with the CPD algorithm, as analyzed
in Section 3.2, the BCD algorithm can solve the steering matrix Ak directly and then automatically
achieve the matching pair of the azimuth and elevation angles. Thus, the detection probability of BCD
is higher than CPD, which utilizes the pair-matching technique based on the cross-correlation matrix
(CCM) [26]. The results in Section 4.2.2 provide the same conclusion. Therefore, the performance of the
proposed algorithm is better than that of the CPD algorithm. As a classic matrix subspace algorithm,
the RMSE of the ESPRIT algorithm is the highest. This may be because ESPRIT has to lose a part of
array aperture for constructing the rotation-invariant matrix.
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Figure 11. RMSE versus SNRs, by 500 Monte Carlo trials (M = 5, K = 2, N = 200).

(2) RMSE versus different angular separations:

The parameter settings are taken as those in the Section 4.1.2. Figure 12 shows the simulation
results under different angular separations. The RMSE curves vary with the steeper slope as
the separation degree is less than 5◦, which reveals the sensitivity to angular separation within such an
interval. The results of detection probability analysis in Section 4.2.2 can also verify this conclusion.
The curves in Figure 15 indicate that the detection probability is larger than 95% for all algorithms with
the angular separation larger than 5◦. Below this value, the detection probability is diverse for different
algorithms. It is noticed that when the angular separation is 1◦, of the three reference methods, the
performance of TM-MUSIC algorithm approaches the CPD. When the angular separation is increasing,
the RMSE of TM-MUSIC is becoming larger than the tensor-decomposition-based algorithms and so is
the ESPRIT algorithm. Essentially, the TM-MUSIC is a kind of smoothing approach along a certain
mode. Therefore, it can achieve a better performance than the classic subspace method, which may
be influenced by outliers when the parameters to be estimated are close. Of all of the methods, the
proposed algorithm has the lowest RMSE, which shows its high-resolution feature under the condition
of small angular separation.



Sensors 2017, 17, 963 17 of 22

1 2 3 4 5 7 9 11 14 17 20

10
−1

10
0

10
1

Angular Separation (deg)

R
M

S
E

 (
de

g)

 

 
TM−MUSIC
ESPRIT
CPD
Proposed
CRLB

Figure 12. RMSE versus angular separations, by 500 Monte Carlo trials (M = 5, K = 2, N = 200).

(3) RMSE versus different snapshots:

The experimental parameters are set as those in the Section 4.1.3. The simulation results
are depicted in Figure 13. The RMSE curves indicate that the tensor-based methods outperform
the classic matrix-based subspace method ESPRIT during the entire snapshots’ range. The RMSE of
TM-MUSIC approximates that of CPD algorithm when the snapshots are larger than 300. The analysis
in Section 3.1.1 indicates that when K = 2, the uniqueness of BCD can be met as long as snapshots
N > 3. The similar conclusion is also suitable for the CPD algorithm. The results of detection
probability analysis in Section 4.2.2 also provide the same conclusion that even for limited snapshots,
BCD modeling can keep the detection probability on a higher level. Consequently, the performance of
the proposed algorithm is better than the reference algorithms.
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Figure 13. RMSE versus snapshots, by 500 Monte Carlo trials (M = 5, K = 2).

4.2.2. Detection Probability

The detection probability measures the success rate of pair-matching for two group of
azimuth-elevation angles. In this section, detection probabilities of the four methods are compared
in accordance with three simulation experiments, grouped by SNR, angular separation and snapshot.

(1) Detection probability versus different SNRs:

The experiment parameters as set in the Section 4.1.1 yield the simulation results shown
in Figure 14. The detection probability curves show the obvious advantage of the proposed algorithm
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in the success rate of angle pair-matching at low SNR. For example, when SNR = −3 dB, the detection
probability of the proposed algorithm reaches 88% and increased by 69.2%, 49.1% and 35.4% compared
with ESPRIT (52%), TM-MUSIC (59%) and CPD (65%), respectively. This benefit by automatic
angle pairing resulted from estimating steering vectors and the decomposition uniqueness of BCD,
which makes the proposed algorithm obtain more powerful detection ability and possess the best
estimation performance under the worse noise environment.
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Figure 14. Detection probability versus SNRs, by 500 Monte Carlo trials (M = 5, K = 2, N = 200).

(2) Detection probability versus different angular separations:

The experimental parameters are the same as those in Section 4.1.2. Figure 15 shows the simulation
results. We can find that for different angular separations, the algorithm developed in this paper
always has the highest success rate of angle pair-matching, especially at a small angle separation
degree (∆ ≤ 3◦). For instance, when ∆ = 1◦, the success rate of the proposed algorithm is 84% and
increased by about 82.6%, 52.7% and 25.4% compared with ESPRIT (46%), TM-MUSIC (55%) and CPD
(67%), respectively. When ∆ ∈ (3◦, 5◦), the detection probabilities of all methods have significant
improvement. Meanwhile, the proposed algorithm is still optimal. When ∆ > 5◦, all of the methods
achieve 100% detection probability.
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Figure 15. Detection probability versus angular separations, by 500 Monte Carlo trials
(M = 5, K = 2, N = 200).
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(3) Detection probability versus different snapshots:

The experimental parameters are selected as set in Section 4.1.3. The simulation results can be seen
in Figure 16. The detection probability curves show that the proposed algorithm has a higher success
rate of angle pair-matching versus different snapshots, especially at small snapshots. As an example,
when the snapshot is five, the detection probability of the proposed algorithm reaches to 97% and
increased by about 31.1%, 15.4% and 7.8% compared with ESPRIT (74%), TM-MUSIC (84%) and CPD
(90%), respectively. What is more, one more interesting characteristic different from the reference
methods is that the detection probability of the proposed algorithm is slightly influenced by snapshots,
which is embodied by the evenly-varied curve. This characteristic makes the proposed algorithm
possess the highest detection probability even under the limited snapshots. Hence, the algorithm
is more suitable for the scenario with the real-time requirement.
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Figure 16. Detection probability versus snapshots, by 500 Monte Carlo trials (M = 5, K = 2).

5. Conclusions

The application of BCD tensor modeling in parameter estimation of the EMVS array has been
studied in this paper. In allusion to the issue of lacking effective methods for solving parameter
estimation of partially-polarized waves, we put forward an algorithm for 2D AOA estimation of the
EMVS array based on the rank-(L1, L2, ·) BCD model. This algorithm can make full use of the multiway
structural information of the received signal and achieve a high-resolution estimation. Benefiting from
the decomposition uniqueness of such a Type-2 BCD model, the pair-matching of azimuth and elevation
angles can be automatically achieved. According to the possible situations in practical applications,
we carry out several groups of numerical experiments to verify the effectiveness of the proposed
algorithm. The experimental results show that both the estimation accuracy and detection success rate
of this algorithm are superior to the existing subspace method based on matrix decomposition and
the CPD method based on tensor decomposition. The proposed algorithm manifests robust and good
performance under severe conditions, such as low SNR, small angular separation and limited snapshots.
This makes the algorithm possess potential application value in practical engineering applications.
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