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Abstract: By incorporating a growing number of sensors and adopting machine learning technologies,
wearable devices have recently become a prominent health care application domain. Among the
related research topics in this field, one of the most important issues is detecting falls while walking.
Since such falls may lead to serious injuries, automatically and promptly detecting them during daily
use of smartphones and/or smart watches is a particular need. In this paper, we investigate the use
of Gaussian process (GP) methods for characterizing dynamic walking patterns and detecting falls
while walking with built-in wearable sensors in smartphones and/or smartwatches. For the task
of characterizing dynamic walking patterns in a low-dimensional latent feature space, we propose
a novel approach called auto-encoded Gaussian process dynamical model, in which we combine
a GP-based state space modeling method with a nonlinear dimensionality reduction method in a
unique manner. The Gaussian process methods are fit for this task because one of the most import
strengths of the Gaussian process methods is its capability of handling uncertainty in the model
parameters. Also for detecting falls while walking, we propose to recycle the latent samples generated
in training the auto-encoded Gaussian process dynamical model for GP-based novelty detection,
which can lead to an efficient and seamless solution to the detection task. Experimental results show
that the combined use of these GP-based methods can yield promising results for characterizing
dynamic walking patterns and detecting falls while walking with the wearable sensors.

Keywords: walking; fall detection; wearable sensors; Gaussian process; dynamic model;
dimensionality reduction; novelty detection; latent feature space

1. Introduction

By incorporating a growing set of sensors and adopting machine learning technologies,
wearable devices have recently become a prominent health care application domain for a variety
of multi-disciplinary research areas. As a useful health care application domain along these lines,
remote health monitoring systems (RHMS) (see e.g., [1,2]) have been developed to perform health
care tasks such as continuous recording of health data and identifying health status. As the number
of smartphones equipped with various multipurpose sensors including acceleration sensors and
gyro sensors have rapidly increased, continuously recording and identifying health status from daily
smartphone use is now possible, and smartphones are rapidly becoming a key intelligent device that
can extract useful heath information during people’s daily activities. Many smartphone users now use
smart watches, with a variety of modern functions such as sensing acceleration and rotation rate along
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with wireless data transmission capability. Since wearable sensors are becoming increasingly prevalent
with smartphones and/or smart watches, it is possible to detect various health-related human activities
in mobile device environments. Human behavior patterns that can be recognized by such means
include walking and falling down. Among the relevant health care research topics, one of the most
important issues is detecting falls while walking. Since falls may lead to serious injuries, automatically
and promptly detecting them is particularly important.

In this paper, we are concerned with the problem of characterizing dynamic walking patterns
and detecting falls while walking with wearable sensors by means of machine learning methods.
Since many health issues are related to walking and/or falling, many research efforts are currently
focused on the problems and questions of human walking patterns and falling. When dealing with
these problems, decision making by raw sensor output data only is generally insufficient. For example,
simply utilizing thresholds for sensory values from accelerators and gyros to detect falls would easily
suffer from detection errors and false alarms. Recently, various machine learning methods such
as artificial neural networks (ANNs), support vector machines (SVMs), and k nearest neighbors
(kNNs) have been successfully applied to distinguishing activities such as walking and falling
(see e.g., [3–6]) based on data from wearable sensors. For more related works on the subject, the
reader is referred to papers such as [7–13]. Jeon et al. [7] proposed a method for detecting falls using
two accelerometer sensor units. In their proposed method, the falls were detected based on the
z-axial acceleration differences between two sensors which are located at subject’s chest and abdomen.
Ellis et al. [8] addressed the problem of modeling pedestrian trajectory patterns, and proposed the use
of Gaussian process regression that can model trajectory data by regressing relative motion against
current position. As an application domain, the reference paper [8] considered databases collected from
static surveillance cameras, and illustrated the benefit of the proposed approach for long term motion
prediction. Ojetola et al. [9] proposed the use of decision trees for detecting four types of falls (forward,
backward, right, and left) with wearable sensors, and showed that when applied to experimental data
from eight male subjects, the proposed algorithm discriminated between activities of daily living and
falls with a precision of 81% and recall of 92%. Choi et al. [10] studied on the use of machine learning
algorithms for fall detection and movement classification. In their works, different machine learning
algorithms were considered to identify and detect three type of normal activities (standing, walking,
and lying down), four types of fall trajectories (forward, backward, left, and right), and near fall
situation. Abbate et al. [11] proposed a method for the elderly people’s fall detection using smartphone
and external sensor, where the falls were detected by threshold. In their method, the system produced
an alarm for the acceleration higher than 3g. Also, they used the fall-like daily activities, which reduced
the false alarms. Wang et al. [12] proposed an algorithm which detected five different human walking
patterns from data acquired using a triaxial accelerometer. In their works, the sensor’s signal was
decomposed into frequency scale by discrete Fourier transform, and then the features were classified
by multi-layer perceptron neural networks. Sekine et al. [13] distinguished walking on level ground
from walking on a stairway using waist acceleration signals. Their method was based on the wavelet
coefficients, and the experiment was conducted with elderly people walking corridor and stairs. While
machine learning methods directly handling data sets can provide reasonably good performance
many cases, understanding intrinsic characteristics of human activity is often more important for
attaining enhanced robustness and reliability. In this paper, we examine the problem of understanding
and characterizing the intrinsic dynamics of walking patterns and detecting falls while walking with
wearable sensors. For solving this problem, we utilize several Gaussian process methods for dynamic
modeling, dimensionality reduction, and novelty detection. In particular, for the step of characterizing
dynamic walking patterns in a latent feature space, we propose a novel approach called auto-encoded
Gaussian process dynamical model (GPDM).

Gaussian processes are a branch of probabilistic kernel method closely related to
non-probabilistic kernel methods such as support vector machines [14]. Recently, Gaussian processes
have been successfully applied to a variety of data analysis tasks including regression, classification,
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and non-linear feature extraction (see e.g., [15–17]). One of the main advantages of the GP methods
compared to non-probabilistic kernel methods is that, in their solutions, probabilistic information on
uncertainty can be additionally provided. Since probabilistic uncertainty information is important in
dealing with dynamic modeling, dimensionality reduction, and novelty detection problems, the GP
methods are particularly useful for our purposes in this paper.

With this background in mind, we examine the problem of characterizing dynamic walking
patterns and detecting falls with wearable sensors based on Gaussian process (GP) methods.
In the modeling steps, we propose the combined use of the Gaussian process dynamical model
(GPDM) [18–20] with the concept of an auto-encoder (e.g., [21,22]). The proposed combination
results in the auto-encoded GPDM, a novel nonlinear dynamic structure for dimensionality reduction.
Dimensionality reduction is one of the most important concepts in the field of machine learning.
Well-known conventional linear dimension reduction methods include principal component analysis
(PCA) and linear discriminant analysis (LDA) [23]. When the underlying structure of the problem is
nonlinear and high-dimensional, nonlinear dimension reduction is more useful. Among conventional
nonlinear dimension reduction methods are locally linear embedding (LLE) [24], isometric mapping
(ISOMAP) [25], and kernel principal component analysis (KPCA) [26]. One of the most promising
modern approaches to nonlinear dimensionality reduction is the use of auto-encoders (e.g., [21,22]),
which are currently hot topics in various deep learning applications. Our auto-encoded GPDM is an
extension of the GPDM [18–20]. In contrast to GPDM, which relies on time-consuming optimization
in order to find latent features for given observation data, the GP encoder, which is derived from
training the auto-encoded GPDM, can provide an intrinsic representation in low-dimensional latent
space for the given observation data without resorting to optimization. For the task of detecting falls
while walking, we use the GP-based novelty detection [27–29] for the latent samples resulting from
the auto-encoded GPDM. Note that, since the latent samples generated by the training of the GPDM
are recycled in our novelty detection step, the combination of these GP-based modules together are
seamlessly natural.

The remainder of this paper is organized as follows. In Section 2, after providing
preliminary background on Gaussian processes, we present the GP-based solutions for the problem
of characterizing dynamic walking patterns and detecting falls while walking. In Section 3,
the effectiveness of the GP-based solutions is illustrated by experiments, and in Section 4, the usefulness
of the GP-based solutions is discussed. Finally, in Section 5, concluding remarks are provided along
with topics for future studies.

2. Methods

2.1. Preliminaries

In this paper, we examine the problem of characterizing dynamic walking patterns and detecting
falls while walking with built-in wearable sensors in smartphones and/or smart watches. We deal
with the problem by utilizing several Gaussian process (GP) methods. Since the used GP methods are
all built on Gaussian process regression (GPR) [15], we begin by introducing the concept of Gaussian
process regression (GPR). For more details on Gaussian processes, readers are referred to references
such as [15,16].

Gaussian processes are an example of non-parametric probabilistic models and have been
successfully applied to many practical problems [15]. The Gaussian process, { f (x)}, is defined
as an indexed family of random variables with index x ∈ Rd such that for any finite indices,
x1, · · · , xN , the corresponding random variables, f (x1), · · · , f (xN) are jointly Gaussian. In a certain
stage of our application, the index space, Rd, where the index xi belong, will play the important
role of the latent feature space. A Gaussian process { f (x)} is characterized by its mean function,
m(x) = E[ f (x)], and the covariance function (which is also known as the kernel function),
κ(x, x′) = E[( f (x)−m(x))( f (x′)−m(x′))]. The mean function m(x) is generally assumed to be the
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zero function, and the covariance function κ(x, x′) is chosen as a class of functions parametrized
by a hyper-parameter vector. The Gaussian process with the mean function m(x) and the kernel
function κ(x, x′) is denoted by f (x) ∼ GP(m(x), κ(x, x′)). The concept of the Gaussian process can
also be explained using weight space. In the weight space framework, f (x) is described by a linear
combination of basis functions, ∑J

j=1 wjψj(z) = ψ(x)Tw, where ψ(x) is the feature vector, and the
prior distribution of the random coefficient vector w is the Gaussian with a zero mean and a certain
covariance matrix Σw (i.e., w ∼ N(0, Σw)). Note that, in the weight space framework, the mean
function of f (x) satisfies E[ f (x)] = E[ψ(x)Tw] = ψ(x)TE[w] = 0, which shows that the mean zero
assumption of the Gaussian process is natural. Given the training data set D = {(xn, yn)}N

n=1, we
define the design matrix Z = [x1, · · · , xN ]

T as the matrix of the input points of the training data, and
T = [y1, · · · , yN ]

T as the vector of the corresponding target values. Gaussian process regression often
views the output y as generated by a zero mean Gaussian process f (x) along with an additive zero
mean white Gaussian noise (i.e., y = f (x) + ε, where f (x) ∼ GP(0, κ(x, x′)) and ε ∼ N(0, σ2

n)). Then,
the joint distribution of the random vector F = [ f (x1), · · · , f (xN)]

T , given Z, can be written as

p(F|Z) = N(F|0, K(Z, Z)), (1)

where K(Z, Z) is an N × N matrix, whose (i, j)-th element is κ(xi, xj). For notational convenience,
we usually use K instead of K(Z, Z). Note that, by combining p(F|Z) and p(T|F) together, one
can write the resultant marginal likelihood as p(T|Z) = N(T|0, K + σ2

n I). Hence, the log marginal
likelihood for the whole training data D can be written as follows:

log p(T|Z) = −1
2

TT(K + σ2
n I)−1T − 1

2
log |K + σ2

n I| − N
2

log(2π). (2)

Finding the optimal hyper-parameters can be achieved by maximizing the above log marginal
likelihood function with respect to the hyper-parameters. In addition, the predictive distribution of
the output y∗ for the test input point x∗ can be obtained by applying the conditional density formula
for the multi-variate Gaussian distributions [15], i.e.,

p(y∗|x∗, D) = N(y∗|kT
∗ (K + σ2

n I)−1T, k∗∗ − kT
∗ (K + σ2

n I)−1k∗ + σ2
n), (3)

where k∗ = [κ(x1, x∗), · · · , κ(xn, x∗)]T , and k∗∗ = κ(x∗, x∗). With α = [α1, · · · , αN ]
T = (K + σ2

n I)−1T,
the point estimate of the target value for the given test input point x∗ can be written as

ŷ∗ = kT
∗ (K + σ2

n I)−1T =
N

∑
i=1

αiκ(xi, x∗). (4)

Finally, note that Equation (4) is the canonical form of the decision function used in the kernel
methods [14].

Table 1. Each unit’s data set.

Notation Meaning

Ax Acceleration along the x-direction
Ay Acceleration along the y-direction
Az Acceleration along the z-direction

AT Total magnitude of acceleration, i.e.,
√

A2
x + A2

y + A2
z

ωx Angular velocity around the x-direction
ωy Angular velocity around the y-direction
ωz Angular velocity around the z-direction

ωT Total magnitude of angular velocity, i.e.,
√

ω2
x + ω2

y + ω2
z
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2.2. GP-Based Solutions for Characterizing Dynamic Walking Patterns

In this subsection, we first examine the problem of characterizing dynamic walking patterns with
wearable sensors based on dynamic modeling and dimensionality reduction. There has been a wide
variety of efforts for understanding dynamic walking (e.g., [30,31]). The two main approaches in these
efforts are observation-based strategies and model-based strategies. In this paper, we propose a mixed
strategy that utilizes the data obtained from wearable sensors together with the GP-based dynamic
model for the problem. Figure 1 is the schematic diagram of our strategy for the problem, and the figure
shows the configuration of the wearable sensor units in the experiments for verifying the strategy.
As shown in Figure 1, we use two sets of wearable sensor units, one of which is carried in the right
pocket while the remaining set is attached to the left wrist with straps. Each unit is comprised of three
tri-axial devices measuring accelerations and angular velocities along three perpendicular axes. Also
for robustness enhancement, we additionally consider total magnitudes [32,33] for acceleration and
angular velocity. Note that these total magnitudes can provide additional measures of the degree of
movement intensity. An explanation of each unit’s data set is given in Table 1. Note that the dimension
of the observation space for the configuration is sixteen, i.e., y(t) ∈ R16. The problem of identifying
dynamic systems often relies on the auto-regressive state space model [34–36] described by

yt+1 = h(yt, · · · , yt−Ly , ut−1, · · · , ut−Lu) + εt, (5)

where yt ∈ RD is the output vector, ut ∈ Rd is the input vector, εt is the noise, and h is a
nonlinear function with some universal approximation capability. However, regarding the problem of
characterizing dynamic walking patterns with wearable sensors, modeling the dynamic directly with
the observation vector via above auto-regressive model would be impractical because the dimension
of the observed output vector, D, is too large. A reasonable framework for modeling the dynamics for
the noise-prone high-dimensional data is to use the framework consisting of the GP state equation for
low-dimensional latent space [18–20] and the GP output equation. This framework is often called the
Gaussian process dynamical model or GPDM [18–20], and has the following state and output equations:

xt+1 = fX(xt), (6)

yt = gY(xt), (7)

where fX(x) and gY(x) are Gaussian processes with zero means and kernel functions κX(x, x′) and
κY(x, x′), respectively (i.e., f (x) ∼ GP(0, κX(x, x′)), g(x) ∼ GP(0, κY(x, x′))). Originally, GPDM [18]
was applied to the problem of 3D people tracking based on human motion capture data [18]. In this
paper, we use an extended version of the GPDM for the purpose of characterizing dynamic walking
patterns with wearable sensor data. For the kernel functions of the GP dynamical model, we use
the following:

κX(x, x′) = α1 exp(−α2

2
‖x− x′‖2) + α3 + α4xTx′ +

δx,x′

α5
, (8)

κY(x, x′) = β1 exp(− β2

2
‖x− x′‖2) +

δx,x′

β3
. (9)

For the kernel functions of the decoder and transition operator, we used the similar ones with
the GPDM paper [18] (i.e., we used the squared exponential (SE), constant (C), linear (LIN), and the
white noise (WN) kernels for transition operator, and the squared exponential (SE) and the white noise
(WN) kernels for decoder). Also for the encoder, we used the squared exponential (SE) and the white
noise (WN) kernels. Note that including the linear term (LIN) is necessary when the dynamics under
consideration contains a linear dynamical mode such as periodic oscillation, and the SE kernel are the
most important when dealing with smooth interpolation. In addition, note that the constant term (C)
is for correlating all values to some degree, and the white noise kernel (WN) is for permitting variation
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between variables. All of the kernel functions of Equations (8) and (9) are widely used kinds in the
studies of kernel methods, and they all satisfy the Mercer law (see, e.g., [14]).

Figure 1. Schematic diagram for representing dynamic walking patterns in a latent space.

Given the matrix of observed data Y = [y1, · · · , yN ]
T ∈ RN×M and the matrix of the corresponding

latent positions X = [x1, · · · , xN ]
T ∈ RN×m, one can obtain the following likelihood and density by

defining the kernel matrices KY and KX with (KY)ij = κY(xi, xj) and (KX)ij = κX(xi, xj), respectively:

p(Y|X, β, W) =
|W|N√

(2π)ND|KY|D
exp(−1

2
tr(K−1

Y YW2YT)), (10)

p(X|α) = p(x1)√
(2π)(N−1)d|KX |d

exp(−1
2

tr(K−1
X XoutXT

out)), (11)

where Xout = [x2, · · · , xN ]
T , Xin = [x1, · · · , xN−1]. Note that in Equations (10) and (11), α and β are

the sets of kernel hyper-parameters for κX and κY, respectively, and W = diag(w1, · · · , wD) is the
diagonal matrix of scale parameters. Note that with appropriate prior distributions over α, β, and W,
the GPDM posterior becomes

p(X, α, β, W|Y)∝p(Y|X, β, W)p(X|α)p(α)p(β)p(W). (12)

In the original GPDM method, the low-dimensional latent trajectories are obtained through the
optimization step, which minimizes the negative log posterior of Equation (12) with respect to the
latent variables. However, solving the optimization problem may be computationally expensive
and limit its usefulness. In order to overcome this limitation, we propose a novel extension of the
GPDM called the auto-encoded GPDM, which is essentially a combination of the GPDM with a
variational auto-encoder [22]. The proposed auto-encoded GPDM consists of the GPDM decoder
and the GP encoder, where the GPDM decoder is essentially the same as the original GPDM, and
the aim of the newly added GP encoder is to discover the intrinsic latent representation, given
the observation. More precisely, given the observation data pair (Y1:N−1, Y2:N), the GPDM decoder
provides the generative model for state transition and output generation (i.e., ptrans(X1:N , αtrans)

and pdec(Y1:N , βdec|X1:N)), while the encoding distribution qenc(X1:N , γenc|Y1:N) from the GP encoder
approximates the true posterior distribution p(X1:N |Y1:N). For the GP encoder, we use the so-called
automatic relevance determination (ARD) kernel [23] along with the inducing point method [37].
A schematic diagram for the auto-encoded GPDM is given in Figure 2. Note that the hyper-parameters
of the GPDM decoder and the GP encoder are denoted by {αtrans, βdec} and γenc, respectively.
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Utilizing the strategy of variational auto-encoders (e.g., [22,38]), we can obtain the following variational
objective function, L(Y1:N , αtrans, βdec, γenc), based on Jensen’s inequality [39] as follows:

log(p(Y1:N , αtrans, βdec)) (13)

= log(
∫

ptrans(X1:N , αtrans)pdec(Y1:N , βdec|X1:N)dX1:N) (14)

= log(
∫

qenc(X1:N , γenc|Y1:N)
ptrans(X1:N ,αtrans)pdec(Y1:N ,βdec |X1:N)

qenc(X1:N ,γenc |Y1:N)
dX1:N) (15)

≥
∫

qenc(X1:N , γenc|Y1:N) log( ptrans(X1:N ,αtrans)pdec(Y1:N ,βdec |X1:N)
qenc(X1:N ,γenc |Y1:N)

)dX1:N (16)

= E[log pdec(Y1:N , βdec|X1:N)] +
∫

qenc(X1:N , γenc|Y1:N) log( ptrans(X1:N ,αtrans)
qenc(X1:N ,γenc |Y1:N)

)dX1:N (17)

4
= L(Y1:N , αtrans, βdec, γenc), (18)

where ptrans, pdec, and penc stand for transition distribution, decoder distribution, and encoder
distribution, respectively; αtrans, βdec, and γenc are the corresponding parameters for transition
distribution, decoder distribution, and encoder distribution, respectively. Here, X1:N are called the
latent trajectory (i.e., the state trajectory in the latent space) because they are not measured directly,
but can be estimated via the proposed framework of the auto-encoded GPDM. Note that training
the proposed auto-encoded GPDM for a single trajectory involves minimizing the reconstruction
error for Y1:N−1 and Y2:N . Here, we denote Y1:N−1 and Y2:N as Y and Ỹ in Figure 3 for convenience of
notation. In addition, note that training based on L(Y1:N , αtrans, βdec, γenc) can be handled by achieving
the following subgoals (see, e.g., [38]):

Yrecon ≈ Y, Ỹrecon ≈ Ỹ, X̃trans ≈ X̃, and qenc(X) ≈ N(0, K), (19)

where Y
4
= Y1:N , Ỹ

4
= Y2:N , X

4
= X1:N−1, X̃

4
= X2:N , and X̃trans is the output of the transition operation

trans : Xt 7→ Xt+1 via the state equation used in the auto-encoded GPDM framework. The first
expectation on the right side of (17) is called the reconstruction loss term, which is approximated
by sampling in the process of training. We call these samples in the latent space the latent samples,
and utilize them efficiently in the next step for novelty detection.

Given any observation data, the auto-encoded GPDM is capable of providing an approximate
probability density for their corresponding latent objects. Hence, in principle, one can obtain the
support of the latent objects by thresholding the resultant probability density function. However,
since what matters in the task of detecting abnormal objects is to gain the support of the latent objects,
finding their density is stronger than necessary. In this paper, we rely on a practical alternative
solution to the task. Since the training phase of the auto-encoded GPDM utilizes the latent samples
generated for evaluating the reconstruction loss, we already have latent samples as a by-product of
the GPDM training. Based on the latent samples for the normal class, we are able to decide whether
test objects belong to normal class. This is the so-called novelty detection problem, which is often
called the one-class classification problem or outlier detection problem [40,41]. Recently, GP-based
novelty detection methods [27–29] have become available. For the task of detecting falls while walking,
we utilize the predictive mean score of the GP-based novelty detection method [27] for the latent
samples obtained in the training of the auto-encoded GPDM. Note that, since the latent samples
generated for the training of the auto-encoded GPDM are recycled in the novelty detection step, the
combination of these GP-based modules is seamlessly natural. Also, note that our method is capable
of pre-impact fall detection in the sense that it can detect the falls before the body hits the ground.
The schematic diagram for our combination of auto-encoded GPDM and GP based novelty detection
for detecting falls is shown in Figure 3. In addition, illustrated falls are shown in Figure 4.
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Figure 2. Schematic diagram of auto-encoded Gaussian process dynamical model.

Figure 3. Seamless combination of GP-based walking representation and fall detection.

Figure 4. Illustrative falls.

3. Experimental Results

In this section, we first describe the experimental environment and data information to illustrate
the proposed GP-based solutions for characterizing dynamic walking patterns and detecting falls.
Following the procedure of Figure 5, we performed the experiments at the R&D Center, Korea
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University, with its available WiFi networks. The experiment was conducted for the five male
volunteers who are 27 years old, 75 kg, 188 cm; 28 years old, 59 kg, 166 cm; 25 years old, 60 kg,
176 cm; 27 years old, 63 kg, 169 cm; 24 years old, 112 kg, 168 cm. During the entire experimental
procedure, we used two smartphones: the iPhone 7 (by Apple Inc., Cupertino, CA, USA), one laptop
computer: a MacBook Pro (by Apple Inc.), and one application: Matlab (mobile and PC version).
The walking data were transmitted from the smartphones to the laptop computer via the WiFi networks.
In our experiments, we set the sampling rate, which is the rate of transmitting data from smartphone
to PC at 10 Hz. As shown in Figure 1, each test subject performed experiments with the mobile
phones in the right pants pocket and the left hand. The smartphone on the left wrist was positioned
facing the subject’s body, and the other one in the right pocket was positioned facing front. Based on
these settings, the test subject walked the predefined courses and fell down at some random moment.
Through this process, we obtained the data needed for simulating the proposed method.

Figure 5. Experimental procedure for GP-based modeling and detection.

In the experiment, we used the acceleration sensors and angular velocity sensors which are built
into the iPhone 7. Each smartphone contains two sensors (accelerometer and gyro sensor) that can
measure motion data around three orthogonal axes (x, y, z). We thus obtained motion data comprised
of twelve features. We additionally considered the feature data with a total magnitude of 3-axes data
from each sensor. As a result of acquiring the motion data and pre-processing the data, we obtained
a 16-dimensional feature data (Table 1) used for our methodological model. We used the data after
applying the commonly used Z-Score normalization technique.

In order to illustrate the GP-based solutions, we considered five sets of training data. In all of
these training data, the observation sequence were obtained from five subjects each for 10 sec with the
frequency of 10 Hz. In addition, the batch size for training was 50, and initial values of the adjustable
parameters were set as: β1:3 = [1, 1, 1], α1:5 = [1, 1, 1, 1, 1], and number of inducing points = 20.

Figure 6 presents the simulation results for the five-fold cross-validation and describes the
resultant trajectories in the two-dimensional latent space. The exact meaning of the pictures in the
figure is as follows: in the j-th row, which is for the j-th subject, the i-th picture shows the latent
trajectories obtained by the proposed auto-encoded GPDM procedure for the i-th experiment, in which
the i-th walking data set was used as the test set, and the other four walking data sets were used as the
training set for estimating the parameters of the auto-encoded GPDM. In the pictures, the solid line
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represents some portion of the latent trajectory provided by the GP encoder after training is completed,
while the dashed lines indicate some portion of the latent trajectories of the training data sets. Figure 6
shows that the proposed auto-encoded GPDM method worked reasonably well in characterizing
dynamic walking patterns in the latent space. From the cross-validation results, one can see obvious
similarities between the latent trajectory of the test data and that of the training data. This indicates
that the proposed auto-encoded GPDM successfully transformed a high-dimensional time series of
noisy observation data signals into a time series of low-dimensional codes, and the training and test
data with common characteristics indeed shared similar codes. We believe that this capability of
characterizing dynamic walking patterns is of significant practical value, and can be applied to many
important real world problems. In addition, we believe that the proposed methods can be deployed
into current smartphone and smartwatch systems.

Figure 6. Latent trajectories learned from walking sequences using five-fold cross validation for five
subjects (solid lines for test data, and dashed lines for training data). The subjects are the five male
volunteers who are 27 years old, 75 kg, 188 cm; 28 years old, 59 kg, 166 cm; 25 years old, 60 kg, 176 cm;
27 years old, 63 kg, 169 cm; 24 years old, 112 kg, 168 cm. Note that there are no units for axes in
latent space.

For the task of detecting falls while walking, we utilize the predictive mean score of the GP-based
novelty detection method [27–29] for the latent samples obtained in the training of the auto-encoded
GPDM. Figure 7 shows how some contours for the normal class look like for an experiment. For the
contours, we utilize matplotlib.pyplot.contour [42] to show automatically-chosen-level contours for
the predictive mean score. In Figure 8, some typical latent trajectories resulting from falls are shown.
As indicated in the figure, one can quickly and reliably provide alarms for falls by noting the abnormal
trajectory deviation from the normal region. In addition, the readers can watch the accompanying
video [43], which contains an example of not only auto-encoded GPDM results for walking patterns
but also detecting falls. Finally, it is one of our future works to deploy the proposed methods in current
smartphone and smartwatch systems.
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(a) 1st (b) 2nd (c) 3rd

(d) 4th (e) 5th

Figure 7. GP-based novelty detection results for a subject with the five-fold cross validation.

(a) (b)

(c) (d)

Figure 8. Detecting falls by GP (solid lines for trajectory after fall, and dashed lines for trajectory
before fall): left, right, forward, and backward falls. Considered fall trajectories: (a) left, (b) right,
(c) forward, (d) backward.
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4. Discussion

In this paper, we investigated the use of Gaussian process (GP) methods for characterizing
dynamic walking patterns and detecting falls while walking with built-in wearable sensors in
smartphones. For the task of characterizing dynamic walking patterns in a low-dimensional latent
feature space, we presented a novel approach called auto-encoded Gaussian process dynamical model,
in which we combine a GP-based state space modeling method with a nonlinear dimensionality
reduction method in a unique manner. Our approach is inspired by the GPDM model for human
motion capture data [18]. The GPDM model is a GP-based non-parametric model for high-dimensional
dynamical systems, and one of the most important strengths of the GPDM model is its capability of
handling uncertainty in the model parameters [18]. Compared to the original GPDM works in [18],
our works have the following two differences:

• In [18], the GPDM model was applied to the problem of 3D people tracking based on human
motion capture data, whereas in this paper, we used an extended version of the GPDM for the
purpose of characterizing dynamic walking patterns with wearable sensor data.

• In the original GPDM method, the low-dimensional latent trajectories were obtained through
optimization, which minimizes an objective function related with the negative log posterior.
The proposed auto-encoded GPDM is equipped with the GP encoder, which is capable of yielding
latent representations for given observations. This capability played important roles in our finding
latent trajectories for test data (e.g., solid lines in Figure 6).

The capability of the auto-encoded GPDM can be utilized in a variety of ways. As an example
along the line, we performed an experiment for the purpose of illustrating more explicitly about
intrinsic characteristic of walking. For this illustration, we collected data of standing and lying
down together with walking, and obtained their latent trajectories. Here for standing and lying
down, we considered the postures of standing upright at a fixed position and lying down flat on
the back, respectively. When collecting data for these postures, slow movements such as leaning a
little forward or backward, and turning slowly a little to left or right were also allowed to imitate
normal daily activities. Table 2 and Figure 9 report the training procedure and contours of the
illustrative experiment conducted for the first subject of our volunteers, respectively. Contours of
Figure 9 show good contrast between the considered classes of daily activities, and are capable of
yielding an important intrinsic characteristic of walking. Finally, note that the above procedure can be
similarly applied to the task of detecting fall while walking. In order to explore this applicability, we
already performed the corresponding experiment for the first subject of our volunteers, and reported
the resultant latent trajectories in Figure 8 for four cases of falls with different directions (left, right,
forward, and backward). Note that the solid lines of Figure 8 showed clearly that the latent trajectories
associated with the falling phase deviated significantly from those of the walking phase. It is one of
our future works to perform more extensive experiments and report statistical results for the purpose
of verifying the applicability.

Figure 9. Results for intrinsic characteristics of walking, standing, and lying.
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Table 2. Steps for conducting and analyzing the experiment.

1: Obtain five sets of training data for each class of walking, standing, and lying.

2: Obtain five sets of test data for each class of walking, standing, and lying.

3: Train the auto-encoded Gaussian process dynamical model with the training data for walking,
and fix the model.

4: Based on the fixed model, compute latent trajectory samples with the training data for each
class of walking, standing, and lying.

5: Plot contours of the predictive mean score (see e.g., [27]) based on the latent trajectory
samples for each class of walking, standing, and lying.

6: (optional) Perform classification for the test data.

5. Conclusions

In this paper, we examined the problem of characterizing dynamic walking patterns and detecting
falls while walking with wearable sensors based on Gaussian process methods for dynamic modeling
and novelty detection. For the wearable sensors, we used two units of wearable sensors positioned
on the left wrist and in the right pocket, and from each unit, acceleration, the rate of return along
three perpendicular axes, and their total magnitudes were used as input signals. For the GP-based
dynamic modeling, we proposed the auto-encoded Gaussian process dynamical modeling, which can
map noisy high-dimensional input space to the low-dimensional latent feature space, and the resultant
latent trajectories efficiently revealed intrinsic characteristics of human dynamic walking patterns.
In the training phase of the auto-encoded GPDM, the objective function was defined as the variational
approximation to the negative marginal log likelihood function. According to the latent trajectories
found by the GP encoder, the low-dimensional latent manifolds associated with dynamic walking
patterns were smooth, while the original input signals coming from wearable sensors were often
abrupt and noisy. For the task of detecting falls while walking, we used the GP-based novelty detection
for the latent samples resulting from the auto-encoded GPDM. Note that, since the latent samples
generated by the training for the GPDM are recycled in our novelty detection step, the combination
of these GP-based modules are seamlessly natural. In addition, the experiments showed that the
proposed GP approach was able to distinguish falls from normal walking. Future work yet to be done
includes more extensive experiments and comparative studies, which should reveal the strengths and
weaknesses of the proposed approach, and further extension of the approach in several directions.
Consideration of other kinds of auto-encoders for nonlinear dimensionality reduction, and the use
of a larger number of wearable sensors for the problem are some of the topics to be covered along
these lines.
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