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Abstract: The operating condition of rolling bearings affects productivity and quality in the rotating
machine process. Developing an effective rolling bearing condition monitoring approach is critical
to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov
model-based condition monitoring approach for rolling bearings is proposed, where interval valued
features are used to efficiently recognize and classify machine states in the machine process. In the
proposed method, vibration signals are decomposed into multiple modes with variational mode
decomposition (VMD). Parameters of the VMD, in the form of generalized intervals, provide a concise
representation for aleatory and epistemic uncertainty and improve the robustness of identification.
The multi-scale permutation entropy method is applied to extract state features from the decomposed
signals in different operating conditions. Traditional principal component analysis is adopted to
reduce feature size and computational cost. With the extracted features’ information, the generalized
hidden Markov model, based on generalized interval probability, is used to recognize and classify the
fault types and fault severity levels. Finally, the experiment results show that the proposed method is
effective at recognizing and classifying the fault types and fault severity levels of rolling bearings.
This monitoring method is also efficient enough to quantify the two uncertainty components.

Keywords: condition monitoring and fault diagnostics; state recognition and classification; feature
extraction and reduction; signal decomposition; generalized interval

1. Introduction

Rolling bearings are important and fragile parts in machinery. As the connection between the
rotor and the support, the safety and stability of rolling bearings are the key to ensure the normal
operations of machines. Thus, it is very important to diagnosis the rolling bearings fault at its incipient
stage in order to prevent long-term breakdowns or in some cases possibly catastrophic failures.

In recent years, bearing health monitoring research has attracted considerable attention [1–9].
The vibration analysis method has been widely applied for diagnosing the rolling bearing fault
due to its intrinsic merits of revealing bearing failure. Different signal processing methods, such
as traditional spectral decomposition methods, such as wavelet transform [10], empirical mode
decomposition (EMD) [11], ensemble empirical mode decomposition [12], etc., in both the time and
frequency domains have also been employed to analyze the collected non-stationary vibration signals
and to extract relevant and sensitive features. However, the major challenges in these methods include
the selection of basis functions, handling mode mixing and end effects, and the removal of background
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noise. The variational mode decomposition (VMD) is an adaptive and entirely non-recursive signal
decomposition method recently proposed by Dragomiretskiy and Zosso [13]. VMD can extract the
principal mode of the signal and the respective center frequencies. It shows superior performance in
signal decomposition and feature extraction.

The outcome of VMD is affected by the typical selection of the number of components K and the
weight or balancing parameter α. These two parameters need to be set before analyzing the vibration
signal. Some research has been investigated to deal with this problem. For example, Wang et al. find that a
small value of the α parameter will be used for the purpose of detecting impacts [14]. Zhu et al. present an
adaptive VMD method with artificial fish swarm algorithm-based parameter optimization for detecting the
localized faults of the rolling bearing [15]. Yi et al. propose a novel method of fault feature extraction based
on the combination of VMD and the particle swarm optimization algorithm [16]. Zhang et al. predefine
the number of the modes K, the balancing parameter of the data-fidelity constraint α using the correlation
and the energy ratio function [17]. In these methods, parameters with precise values are calculated. These
approaches are robust enough, especially when the working condition is changed.

It has been argued that there is no need to obtain precise parameters. Zhang et al. find that one or
several additional modes would greatly contain noise when small α and large K or large α and small K
are chosen. Additionally, significant parts of the spectrum are shared by two or more different modes,
and their center frequencies overlap when small α and small K or large α and large K are used [18].
Thus, to some extent, the confounding effects of these two parameters are not precisely known. A more
robust approach is not predetermining precise values of the parameters in advance and allowing
for perturbation in applications. Liu et al. find that the number of frequencies of interest helps to
determine the parameter K based on the power spectrum under the machine state [19]. The selection of
balancing parameter α is usually set in a searching range. Therefore, epistemic uncertainty as a result
of the lack of knowledge is significant and cannot be ignored. In this paper, the uncertainty associated
with the parameter is considered, and the balancing parameter α is set in the form of intervals [α, α].
It helps to quantify the epistemic uncertainty.

Naturally, after extracting feature vectors, the multi-fault classifier is needed to automatically
conduct the fault diagnosis, which is common in practical systems [20]. For example, the hidden Markov
model (HMM) has the capability of statistical learning and classification and has been widely applied
in some condition monitoring and diagnosis applications. However, it cannot differentiate two types
of uncertainties. Aleatory uncertainty is from inherent randomness and also known as random error,
variability or irreducible uncertainty, whereas epistemic uncertainty is due to lack of knowledge and
known as systematic error, incertitude or reducible uncertainty [21]. One approach to capture these two
uncertainty components is to characterize uncertainty with imprecise probability so that we can improve
the robustness of decision making. Recently, Wang proposed a new generalized interval probability to
simplify the calculation of imprecise probability [22]. Compared to the classical interval, it has better
algebraic and semantic properties and provides an intuitive framework for applications of interval
probability. Based on the generalized interval probability, a generalized hidden Markov model (GHMM)
was proposed [23]. The GHMM was developed to enhance reasoning where aleatory uncertainty is
represented as probability; intervals are used to capture epistemic uncertainty. It improves the reliability
of recognition with more information provided by the interval probability values than the HMM.

In this paper, a hybrid generalized hidden Markov model-based condition monitoring
(GHMM-CM) approach is proposed. The major contributions of this paper include:

1. Rolling bearing feature extraction from noise-contaminated sensor signals based on VMD and
GHMM is proposed firstly to improve the reliability of recognition with more information
provided by the interval probability values;

2. Selection of balancing parameter α is set in the form of the generalized intervals [α, α] to quantify
the epistemic uncertainty;

3. System errors that are inherent during data collection for the learning and feature recognition
stage are incorporated.
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The paper is organized as follows: Section 2 provides the overview of relevant work. The architecture
of the hybrid GHMM-CM process is illustrated in Section 3. Experimental results in the rotating
machine process are analyzed to verify the performance of the proposed method in Section 4. Finally,
this paper is concluded with a summary of the proposed method.

2. Background

2.1. Variational Mode Decomposition

VMD is a newly-developed methodology for adaptive and quasi-orthogonal signal
decomposition [13]. In the VMD framework, the signal is decomposed into K discrete number of
sub-signals, and each component is considered compact around a corresponding center frequency. The
process of the VMD can be considered as a constrained optimization problem, formulated as:

min
{uk},{ωk}

{
K

∑
k=1

∥∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)e−jωkt

] ∥∥∥∥∥
2

2

}
, s.t.

K

∑
k=1

uk(t) = f (t), (1)

where each mode uk is almost compact around a matching center frequency ωk, and its bandwidth is
assessed by means of H1 Gaussian smoothness. K is the number of decomposed sub-signals. uk is the
decomposed sub-signal. f (t) is the original vibration signal.

Equation (1) can be solved via the augmented Lagrangian method:

L ({uk}, {ωk}, λ) = α
K

∑
k=1

∥∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ e−jωkt

] ∥∥∥∥∥
2

2

+

∥∥∥∥∥ f (t)−
K

∑
k=1

uk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−

K

∑
k=1

uk(t)

〉
.

(2)

Alternating direct multipliers are typically adopted to solve Equation (2). The estimated modes
uk and the corresponding updated center frequency ωk in the frequency domain can be written as:

ûn+1
k (ω) =

f̂ (ω)−∑i 6=k ûi(ω) + λ̂(ω)
2

1+ 2α(ω−ωk)2 , (3)

ωn+1
k =

∫ ∞
0 ω |ûk(ω)|2 dω∫ ∞

0 |ûk(ω)|2 dω
. (4)

where α is the balancing parameter of the data-fidelity constraint. More specifically, the process and
more details of the VMD algorithm can be found in [13].

2.2. Multi-Scale Permutation Entropy

After VMD decomposition, a major current focus is how to extract the fault information from the
obtained main components. Many studies have been conducted to investigate the feature extraction
methods. For example, permutation entropy (PE) measures the complexity through comparing the
neighboring values; it is simple, immune to noise and suitable for online monitoring of the mechanical
system [24]. Based on the PE method, multiscale permutation entropy (MPE) was used to estimate the
complexity of the time series in different scales [25]. Furthermore, the advantages of MPE have been
validated, such as stability and robustness. In addition, Wu used MPE to diagnose the rolling bearing
fault and verified that the MPE has better performance compared with PE [26]. Therefore, MPE is taken
as a feature extractor to extract the fault information from the vibration signals in this paper. Given an
N-length time series, x(t), t = 1, 2, · · · , N, the m-dimensional vector Xm

i at time i is defined as:
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Xm
i = [x(i), x(i + τ), · · · , x(i + (m− 1)τ)], i = 1, 2, · · · , N− (m− 1)τ, (5)

where m is the embedding dimension and τ is time delay. If the vector Xm
i satisfies that:

x(t + k0τ) 6 x(t + k1τ) 6 · · · 6 x(t + km−1τ), (6)

where 0 6 ki 6 m− 1 and ki 6= kj, it has a permutation πk0,k1,··· ,km−1 .
Later, the relative frequency of each permutation π can be defined by:

p(π) =
Number{Xm

i }
N− (m− 1)τ

. (7)

After that, the permutation entropy with mdimension can be defined by:

HPE(m) = −∑ p(π) ln(p(π)). (8)

When all possible permutations appear with the same probability, the maximal HPE(m) with a
value of ln(m!) is obtained. Then, the normalized permutation entropy (NPE) can be expressed by:

HNPE(m) =
HPE(m)

ln(m!)
, (9)

where 0 6 HNPE(m) 6 1. From the above process, PE can be utilized to detect the dynamic change of
the time series.

A coarse-grained procedure is proposed to obtain multiple scale time series from the original
time series [27]. Then, the entropy at each scale is calculated to analyze the complicated signal. Given
a time series, x(t), t = 1, 2, · · · , N, a consecutive coarse-grained time series y(s) with a time scale s is
constructed by:

y(s)j =
1
s

js

∑
i=(j−1)s+1

xj, 1 6 j 6
N
s

, (10)

where the time series is divided into non-overlapping windows of length s.
To overcome this shortcoming, based on the concepts of multi-scale and PE, the MPE was proposed

to calculate entropy over multiple scales [25]. In MPE analysis, the entropy of the coarse-grained time
series at each scale is calculated by the NPE algorithm.

2.3. Principal Component Analysis

After extracting the fault features using MPE, the obtained features are fed into the multi-fault
classifier to accomplish the fault diagnosis. However, the feature vectors obtained from vibration
signals using MPE are high-dimensional with information redundancy, which will reduce the diagnosis
accuracy. An effective approach to select m most important scale factors to construct the fault feature
vectors is necessary. Thus, a lightweight dimensionality reduction approach is needed to overcome
this challenge. In this work, a dimensionality reduction approach based on the traditional principal
component analysis (PCA) technique is used to process signals decomposed by the VMD method.
The approach aims to choose the most important features that exhibit high divisibility and contain the
most important fault information from the obtained generalized features of the MPE.

Dimensionality reduction is one of the preprocessing steps in practical condition monitoring and
fault diagnosis applications. The lower dimension space represents the direction of the maximum
variance of the given features, which makes it suitable for some fast condition monitoring applications.
The PCA technique, as one of the most used unsupervised dimensionality reduction techniques, finds
relationships between observations and transforms high-dimension features into a lower dimension
space [28].
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Using the PCA technique, dimensionality reduction removes redundant information and
interference noise existing in the feature set. Thus, the most sensitive and important information is
extracted from the raw features.

2.4. Generalized Hidden Markov Model

With both the aleatory and epistemic uncertainty considered, a generalized interval
probability-based GHMM structure was proposed [22,29]. The aleatory uncertainty is represented as
probability; the interval captures the epistemic uncertainty; and all probability parameters of HMM
are replaced by the generalized interval probabilities. The boldface symbols have generalized interval
values. The GHMM is characterized as follows. The values of hidden states are still in the form
of S = {S1, S2, · · · , SN}, where N is the total number of possible hidden states. The hidden state
variable at time t is qt. The M possible distinct observation symbols per state are V = {v1, v2, · · · , vM}.
The observation sequence is in the form of O = (o1, o2, · · · , oT), where ot is the observation value
at time t. Note that the observations have the values in the form of generalized intervals. Events of
the observation sequence O = (o1, o2, · · · , oT) can be directly observed. In contrast, hidden states
sequence Q = (q1, q2, · · · , qT) cannot be observed directly, but can be inferred by the observation
sequence. Let qt ∈ pro[q

t
, qt] and ot ∈ pro[ot, ot] be real-valued random variables that are included in

the respective interval-valued random sets [q
t
, qt] and [ot, ot].

A = (aij)N×N is the state transition probability matrix, where aij := [aij, aij] is the generalized
interval probability; aij, aij are the lower and upper transition probability from state Si at time t to state
Sj at time t + 1. Specifically:

aij = p(qt+1 = Sj|qt = Si)) > 0,
N

∑
j=1

aij = 1, (1 6 i, j 6 N),

aij = p(qt+1 = Sj|qt = Si) > 0,
N

∑
j=1

aij = 1, (1 6 i, j 6 N).

(11)

B = (bj(k))N×M is the observation probability matrix with bj(k) := [bj(k), bj(k)] in state Si,
where bj(k) is the generalized interval probability, bj(k), bj(k) are the lower and upper observations
probability in state Sj at time t. Specifically:

bj(k) = p(ot = vk|qt = Sj) > 0,
M

∑
j=1

bj(k) = 1, (1 6 j 6 N, 1 6 k 6 M),

bj(k) = p(ot = vk|qt = Sj) > 0,
M

∑
j=1

bj(k) = 1, (1 6 j 6 N, 1 6 k 6 M).

(12)

π = (πi)1×N is the initial state probability distribution, where πi := [πi, πi] is the generalized
interval probability; πi, πi are the lower and upper probability in state Si at t = 1. Specifically:

πi = p(q1 = Si) > 0,
N

∑
i=1

πi = 1, (1 6 i 6 N),

πi = p(q1 = Si) > 0,
N

∑
i=1

πi = 1, (1 6 i 6 N).

(13)

The parameters N and M should be predefined. The proposed GHMM is denoted as λ = {A, B, ß}
with λ := [λ, λ], where λ = {A, B, π} and λ = {A, B, π}. The GHMM can describe different stochastic
processes by the definition of A, B and ß under different probability distributions.

The GHMM can also solve three kinds of problems, i.e., evaluation, decoding and
learning. The GHMM learning adopts the maximum log-likelihood to update model parameters.
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The relationship of the observation sequence with the optimal state sequence is referred to as the
decoding process. Combining with the generalized interval probability [22,29], the evaluation,
decoding and learning processes in the GHMM can be achieved. The algorithms include the
generalized forward-backward algorithm, generalized Viterbi algorithm and generalized learning
algorithm. More details about these algorithms can be referred to the previous works [23,29–31].

3. Methodology

Figure 1 shows the basic flow chart of the hybrid GHMM-CM method. First, the VMD method is
used to decompose the vibration signals and obtain a set of sub-signals. Here, the balancing parameter
is predefined and set in the form of generalized intervals [α, α]. Epistemic uncertainty caused by the
lack of knowledge is considered. Later, the MPE is calculated to realize generalized interval-based
features extraction of the principal decomposed signal. After that, the PCA technique is applied to
reducing the dimensionality of features and computational cost. Next, the initial GHMM of the training
datasets is established, and the optimal GHMM of each state is obtained by the generalized learning
algorithm. Then, the extracted features of the testing datasets are used as inputs of the optimal GHMM.
Based on the generalized interval probability, the optimal GHMM enhances the reasoning of aleatory
uncertainty and epistemic uncertainty. More information is provided to improve the reliability of the
states’ recognition.

Finally, fault types and fault severity levels of rolling bearings are recognized and classified by
the proposed hybrid GHMM-CM method, and the fault diagnosis of the rotation process is realized.

Figure 1. Basic flow of the proposed hybrid generalized hidden Markov model-based condition
monitoring (GHMM-CM) method.

4. Experimental Verification

4.1. Experimental Setup

To validate the effectiveness of the proposed method, public experimental data from the bearing
data center of Case Western Reserve University (CWRU) were analyzed [32]. The photograph of the
experimental setup is shown in Figure 2, in which the 6205-2RS JEM (SKF, Gothenburg, Sweden) deep
groove ball bearing is used. The vibration signals of the rolling bearing were collected under three fault
types including inner race defect (IRD), ball defect (BD) and outer race defect (ORD). The fault bearings
were using the electro-discharge machining with fault diameters of 7, 14, 21 and 28 mils to simulate
different fault severities. The associated rotating speed of driving motor was set to 1730 rpm, 1750 rpm,
1772 rpm and 1797 rpm, respectively. Accelerometers were placed at the 12 o’clock position of the
driving motor end to measure the vibration signals under different working conditions. The sampling
rate was set to 12 kHz. The relevant data settings of experiments are illustrated in Table 1.
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Figure 2. Experimental setup of the rolling bearings for Case Western Reserve University (CWRU) [32].

Table 1. Experimental settings of machine rotation experiments.

Types Values

Fault types inner race defect, ball defect, outer race defect
Fault severity levels 7 mil, 14 mil, 21 mil, 28 mil

Rotation speed 1730 rpm, 1750 rpm, 1772 rpm, 1797 rpm
Sampling frequency 12 kHz

In the following experiments, recognition and classification for different fault types are performed.
The fault diameter used in the experiments is 21 mil, and the motor speed is 1750 rpm with 2 Hpload.
Vibration signals are divided into non-overlapping segments with the length N = 2400. Each machine
state has 50 samples, in which 25 samples will be chosen as the training dataset using the Kennard
and Stone algorithm [33,34]. The remaining 25 samples are used to test the constructed system model.
All algorithms were processed by MATLAB 9.1.0 (2016b, MathWorks Inc., Natick, MA, USA) in a
laptop with an Intel Core i5 CPU and 8G RAM (Apple Inc., Cupertino, CA, USA).

4.2. Signal Analysis

For the bearing with fixed outer race, there are some fundamental frequencies, which are defined
as follows [35].

Inner race defect frequency: fid =
N fr

2
(1 +

d
D

cos α), (14)

Ball defect frequency: fbd = fr
D
d
(1− d2

D2 cos2 α), (15)

Outer race defect frequency: fod =
N fr

2
(1− d

D
cos α), (16)

where fr is the shaft rotation frequency, d is the ball diameter, D is the pitch diameter, N is the number
of rolling elements and α is the contact angle.

Based on the geometrical parameters shown in Table 2, corresponding bearing defect frequencies
under the rotating speed 1750 rpm are shown in Table 3. Vibration signals of accelerated sensors under
four fault categories in the time domain are illustrated in Figure 3, respectively.

Table 2. Geometrical parameters of 6205-2RS JEM SKF.

Types Values

Rolling element number (N) 9
Ball diameter (d) 312.6 mil

Pitch diameter (D) 1537 mil
Contact angle (α) 0
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Table 3. Bearing defect frequencies under the rotating speed of 1750 rpm.

Types Values

Shaft rotation frequency ( fr) 29.17 Hz
Inner defect frequency ( fid) 157.95 Hz
Ball defect frequency ( fbd) 137.48 Hz

Outer defect frequency ( fod) 104.56 Hz

�
�
�
���
�
�
	
p(
�
0
�
T
/

).-1

).-T

.

.-T

.-1

���	p(/
. .-.� .-4 .-4� .-T

�
�
�
���
�
�
	
p(
�
0
�
T
/

)1

)T

.

T

1

���	p(/
. .-.� .-4 .-4� .-T

�
�
�
���
�
�
	
p(
�
0
�
T
/

).-1

).-T

.

.-T

.-1

���	p(/
. .-.� .-4 .-4� .-T

�
�
�
���
�
�
	
p(
�
0
�
T
/

)1

)T

.

T

1

���	p(/
. .-.� .-4 .-4� .-T

Figure 3. The waveforms of the rolling bearing vibration signal under four different conditions.

Due to the nonlinear and non-stationary characteristics of vibration, the VMD method is used to
decompose the vibration signal under four bearing defects. The vibration signal under the outer race
defect in Figure 3 is taken as an example. The decomposition results are shown in Figure 4. At the same
time, corresponding fast Fourier transform of the decomposed sub-signals is illustrated in Figure 5.
Typically, the spectrum energy of the outer race defect, inner race defect and rolling element defect
vibration signal is concentrated in the natural frequency. Here, the defect vibration signal is dominated
by a high frequency oscillation waveform, which carries the information about the impulse response of
the structure. It can be found that the third decomposed sub-signal corresponds to the high frequency
oscillation waveform. However, traditional fast Fourier transform (FFT) cannot describe the defect
features. Using the Hilbert transform, the envelope analysis method can effectively extract different
location defect features from the vibration signal of the rolling bearing [36]. The Hilbert transform of
the vibration signal is defined by:

x̂(t) =
1
π

∫ +∞

+∞

x(τ)
t− τ

dτ. (17)

The complex analytic signal z(t) can be obtained by:

z(t) = x(t) + ix̂(t), (18)

where x(t) is the origin vibration signal and x̂(t) is the Hilbert transform of the origin vibration signal,
i2 = −1.

Using Equations (17) and (18), the envelope waveform of the raw vibration signal is obtained,
and its frequency spectrum can be calculated by the FFT. The envelope waveform and its spectrum
are shown in Figure 6a,b. Similarly, the envelope transform of the third decomposed sub-signal is
shown in Figure 7a,b. Based on the envelope waveform output in Figure 6a,b, noise and interference
are filtered out in the third decomposed sub-signal by the VMD process. Through the energy in the
decomposed signal is reduced, the interested characteristic frequencies of the outer race defect are
successfully retained in the envelope spectrum as shown in Figure 7b. The signal-to-noise ratio is
improved by the VMD process. Thus, the third decomposed sub-signal can be used to recognize and
classify the vibration signal of the defect bearings.
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Figure 4. The time domain waveforms of rolling bearing vibration signal under the outer race defect
after the variational mode decomposition (VMD) process.
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defect after the VMD process.
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Figure 6. The envelope waveform and spectrum of the raw vibration signal under the outer race defect.
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Figure 7. The envelope waveform and spectrum of the third decomposed sub-signal under the outer
race defect.

4.3. Signal Decomposition

Typical selection of the modes number K and the balancing parameter α affects the outcome of
the VMD. Before, the signal decomposition, initialization and input parameters of the VMD need
to be predefined. Thus, they are key parameters of VMD [14,18,37]. Some parameter optimization
methods have been investigated in [15,16,38,39]. In practical applications, these methods increase the
computational cost especially under different operation conditions. In this paper, these two parameters
are defined by prior knowledge. On the one hand, the number of modes K can be manually set based
on the frequency distribution of the vibration signals. Parameter K cannot be less than the number
of frequencies of interest. Based on the analysis in Section 4.2, suitable parameter K is set to three in
this paper.

On the other hand, the selection of balancing parameter α is usually set in a searching range.
In the VMD, the balancing parameter α controls the data preservation [17]. It determines noise levels of
the decomposed component in the frequency domain and also affects the bandwidth of the matching
center frequency. Thus, the exact balancing parameter α causes one common drawback. Here, the
balancing parameter α is set in the form of the generalized intervals [α, α]. It helps to quantify the
epistemic uncertainty in the proposed hybrid GHMM-CM method. For example, for an exact balancing
parameter α with the value of 1600, the generalized intervals are set to [1200, 2000] by general error
±25% in this paper. The Lagrangian multiplier was effectively shut off. The parameter ω was set to one,
which means that center frequencies of all of the modes were initialized in the uniform distribution.
No DC part was imposed.

4.4. Reduced Features Extraction

After the VMD process, the principal decomposed sub-signal contains sufficient information of
the fault in rolling bearings. The time series with multiple scale structures are complicated. Before
using the MPE, some setting of the parameters should be defined in advance, such as time series
length N, embedding dimension m, time scale factor s and time delay τ. The embedding dimension m
determines the accessible states. Christoph et al. indicated that the reasonable range of the embedding
dimension is 3 6 m 6 7 [24]. Obviously, when m is too large, the calculation will be very resource
intensive and time consuming. In contrast, when m is too small, it cannot work [40]. Thus, trade-offs
have to be assessed on practical applications. In this paper, the embedding dimension m can be chosen
as four. Moreover, the time series length N should satisfy the condition N > 5m! [40]. Therefore, N is
set to 2400, which is the data length of a sample. In the end, time scale factor s and time delay τ are set
to 20 and one.
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Using the MPE technique, the entropy of the coarse-grained time series at each scale is calculated.
Therefore, features with fault information are obtained from the main decomposed sub-signal.

In this paper, a PCA-based dimensionality reduction approach is adopted to process these
high-dimensional high-volume features. The PCA projects the entropy-based features to a lower
dimensional space and ensures the major variance captured. At the same time, the problem of how
many PCs need to be obtained should be determined. Typically, the extracted PCs represent the main
characteristics of the original decomposed sub-signals. However, reducing the features too much
makes it difficult to build the system model. Based on prior knowledge, the extracted PCs should
generally capture at least 90.0% of the total variance.

The robustness of the PCA space is shown in Figure 8. When the upper balancing parameter α is
2000, the total of the variance values using one PC to eight PCs is displayed in the red rectangle line.
At the same time, when the lower balancing parameter α is 1200, the total variance values are plotted
in the black ellipse line. It can be found that the first three PCs capture 96.7% of the total variance
under the generalized balancing parameter α. That is, the first three generalized PCs represent the
main characteristics of the original decomposed sub-signals. Fault types of defect bearings will be
recognized and classified based on the calculated generalized PCs in the next subsection. At the same
time, the effects of different major PCs will also be discussed in detail later.
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Figure 8. Robustness of the PCA space under parameter interval α = [α, α].

4.5. Fault Diagnosis

Considering the aleatory uncertainty and epistemic uncertainty simultaneously, an initial model
λ is assumed, where number of states is four. Using the MPE, reduced generalized features are
regarded as the observations of the GHMM. Here, the Lloyd algorithm [41] is used to encode the
observation vector, and the observation sequence O = (o1, o2, · · · , o8). The initial models of four fault
types are trained and updated by the GHMM learning algorithm. Four GHMMs with respect to the
four fault types are trained, and four optimal models are established. The observation sequences of
the testing datasets are obtained, and then, they are substituted in the optimal GHMM. Four values
of log p(O|λ̃i)(i = 1, 2, 3, 4), which correspond to four optimal GHMMs respectively, for the testing
datasets are calculated. The maximum log-likelihoods of the fault types in testing datasets under
different optimal GHMMs are compared. In this paper, the maxi-min criterion (pessimistic criterion)
of the interval comparison is used to improve the reliability of the estimation results [42].

In this criterion, the minimal result for each interval will be chosen firstly. Then, the maximal one
within these minimal results is selected. For example, four samples from four fault types of defect
bearings are tested, and the recognition results are shown in Table 4. Based on the maxi-min criterion,
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the minimal values of each interval in sample No. 1, such as −0.0842, −Inf, −582.69, −Inf, are selected.
Then, the maximal one −0.0842 with these selected minimal values is chosen. Thus, the interval
[−0.0842, −0.0412] is the maximum log-likelihood, which means the normal condition is recognized in
Sample No. 1. Similarly, Test Sample Nos. 2, 3, 4 can be also identified by the proposed method.

Table 4. Recognition results of fault types based on the GHMM; normal condition (NC), inner race
defect condition (IRDC), ball defect condition (BDC) and outer race defect condition (ORDC).

Sample No. Optimal GHMM for NC Optimal GHMM for IRDC Optimal GHMM for BDC Optimal GHMM for ORDC

1 [−0.0842, −0.0412] [−Inf, −1617.4] [−172.79, −582.69] [−Inf, −1949.5]
2 [−Inf, −Inf] [−2.248, −51.994] [−94.4, −110.13] [−Inf, −97.352]
3 [−Inf, −Inf] [−Inf, −623] [−108.19, −4.997] [−Inf, −639.01]
4 [−921.2, −Inf] [−424.76, −165.2] [−11.965, −54.34] [−9.16, −12.445]

Without loss of generality, the Kennard and Stone algorithm [33,34] was used to choose training
and testing datasets from raw datasets with different fault types. In the experiments, there are four
fault types of defect bearings in the rotation process. Thus, the outputs of the GHMM respond to
the normal condition (NC), inner race defect condition (IRDC), ball defect condition (BDC) and outer
race defect condition (ORDC), respectively. At the same time, the issue of sensitivity variance using
different numbers of major generalized PCs is investigated. Different numbers of major generalized
PCs are chosen as inputs of the GHMM.

The simulation results are shown in Table 5. On the one hand, the proposed method can recognize
and classify all fault types of training datasets using 3, 4, 5, 6, 7 and 8 PCs. On the other hand, the
accuracy rate of testing datasets is no less than 98% using the proposed methods with 4, 5, 6, 7 and
8 PCs. However, limited PCs cause information loss. There is also a trade-off in choosing the number
of generalized PCs. Based on the practical applications, the proposed method not only maintains
the accuracy rate, but also reduces the computation cost. Based on the simulation results above, the
performance of the proposed hybrid GHMM-CM method using reduced features is demonstrated.

Table 5. Accuracy rate using different principal components.

Number of PCs Training Testing Total

8 100.0% 98.0% 99.0%
7 100.0% 98.0% 99.0%
6 100.0% 98.0% 99.0%
5 100.0% 99.0% 99.5%
4 100.0% 100.0% 100.0%
3 100.0% 94.0% 97.0%

4.6. Discussion

4.6.1. Improvement in Signal Decomposition

In the proposed hybrid GHMM-CM method, the improvements in signal decomposition help to
recognize and classify the fault types of defect bearings. To verify the essentiality of preprocessing
the rolling bearing vibration signals using the VMD, some contrast experiments between VMD and
other traditional signal decomposition method, such as EMD, have been carried out. Here, uncertainty
problems, such as measuring error, calculating error and systemic error, are considered. Vibration
signals are described in the form of the generalized interval by general error ±5%. At first, the
vibration signal was decomposed by the VMD and EMD methods. After signal decomposition, the
MPE technique is used to calculate the main decomposed sub-signal. Using the PCA technique, major
generalized PCs were obtained. At last, the GHMM model was used to recognize and classify the fault
types of defect bearings. In the contrast experiments, the effect of using different numbers of major
PCs was also discussed.
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Results of the comparative experiments are shown in Table 6. It shows that the VMD method is
much more effective than the EMD, not only in the training datasets, but also in the testing datasets.
For example, using 4, 5, 6, 7 and 8 PCs, the VMD method can almost recognize and classify all of the
fault types with an accuracy rate of 100%. In the EMD, choosing the main intrinsic mode function
causes information loss. To some extent, the EMD technique weakens the recognition ability of the
proposed method. However, the VMD technique is used to denoise the raw vibration signals and
extract the frequency domain of interest.

Table 6. Accuracy rate considering the effect of the signal decomposition methods. EMD, empirical
mode decomposition.

Signal Decomposition 3 PCs 4 PCs 5 PCs 6 PCs 7 PCs 8 PCs

Training 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
VMD Testing 96.0% 100.0% 100.0% 99.0% 100.0% 100.0%

Total 98.0% 100.0% 100.0% 99.5% 100.0% 100.0%

Training 91.0% 96.0% 97.0% 97.0% 95.0% 95.0%
EMD Testing 89.0% 94.0% 95.0% 94.0% 92.0% 93.0%

Total 90.0% 95.0% 96.0% 95.5% 93.5% 94.0%

Training 100.0% 100.0% 100.0% 100.0% 99.0% 100.0%
Without signal decomposition Testing 95.0% 93.0% 91.0% 91.0% 95.0% 98.0%

Total 97.5% 96.5% 95.5% 95.5% 97.0% 99.0%

To illustrate this point, the circumstance without signal decomposition is also investigated.
The MPE is directly applied to calculate the PE values of the original generalized vibration signals.
The recognition results are also shown in Table 6. The proposed method without the signal
decomposition can identify the fault types of defect bearings with an accuracy rate of about 100%.
It has a poorer classification ability than the VMD-based method in testing datasets. Due to containing
full defect information, it performs better classification than the EMD-based method when 3, 4, 6, 7 and
8 PCs are used. Based on the comparison experiments, it can be found that the generalized vibration
signal needs to be decomposed firstly. Furthermore, the ability of recognizing and classifying the fault
types of the defect bearings is improved by the VMD.

4.6.2. Improvement in Features Extraction

In order to verify the superiority of multi-scale analysis with the MPE, a detailed comparison
is conducted using different feature extraction methods, such as PE and Shannon entropy (SE).
Here, epistemic uncertainty is paid attention. The balancing parameter α is set in the form of the
generalized intervals [1200, 2000] to quantify the epistemic uncertainty. At first, the vibration signal
was decomposed by the VMD. After signal decomposition, different feature extraction methods are
used to calculate decomposed sub-signals as follows:

• MPE-based extraction: The MPE with time scale factor 20 is used to extract features from the third
decomposed sub-signal, and then, the PCA reduces the feature dimension into three PCs.

• PE-based extraction: The PE is used to calculate the third decomposed sub-signal.
• PE/SE ratio-based extraction: The PE and SE are used to calculate each decomposed sub-signal,

and the entropy ratio is chosen as the features [19,43].

At last, the GHMM model was used to recognize and classify the fault types of defect bearings.
Results of the contrast experiments are shown in Table 7. The MPE-based extraction method only

using three PCs is more effective than the PE-based method, not only in the training datasets, but also
in the testing datasets. Due to its single scale algorithm, the PE-based method has limited performance
in analyzing complicated vibration signals. The MPE-based method can extract multi-scale defect
information from the decomposed sub-signal.
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The entropy ratio-based method has been used to analyze the vibration signal and identify
the machine states in different working conditions [18,19]. Similarly, PE/SE ratio-based extraction
is used here. Based on results shown in Table 7, PE ratio-based extraction improves the ability of
recognition more than the PE-based method. However, it still performs worse than the MPE-based
extraction. On the other hand, SE ratio-based extraction has a similar recognition ability compared
to the MPE-based method. In turn, the effectiveness of the proposed MPE-based method has been
verified. Furthermore, combining the results shown in Table 5, the proposed MPE-based method using
other different numbers of PCs is much better. Thus, the improvement of feature extraction using the
proposed MPE-based method has been demonstrated.

Table 7. Accuracy rate considering the effect of the feature extraction methods. MPE, multiscale
permutation entropy; SE, Shannon entropy.

Feature Extractions Training Testing Total

MPE-based extraction 100.0% 94.0% 97.0%
PE-based extraction 90.0% 84.0% 87.0%

PE ratio-based extraction 94.0% 93.0% 93.5%
SE ratio-based extraction 100.0% 94.0% 97.0%

4.6.3. Improvement in Pattern Recognition

Similarly, these samples in Table 4 are also tested using traditional HMM. Recognition results
using HMM are shown in Table 8. Based on the maximum log-likelihoods criterion [44], the recognition
results are highlighted in bold. Compared to the results in Table 8, the recognition result of sample
No. 3 is incorrect. It is recognized as the inner race defect condition. Thus, using the maxi-max criterion
(optimistic criterion), the accuracy rate of recognition can be improved. The comparison shows that
the proposed hybrid GHMM-based recognition methodology is more reliable than the HMM.

Table 8. Recognition results of fault types based on the HMM.

Samples No. Optimal HMM for NC Optimal HMM for IRDC Optimal HMM for BDC Optimal HMM for ORDC

1 −0.67167 −1482.5 −649.79 −Inf
2 −Inf −5.7906 −75.438 −Inf
3 −Inf −497.99 −657.96 −Inf
4 −Inf −115.62 −83.03 −2.1655

Furthermore, log p(O|λ) is a form of generalized interval probability in the GHMM. With much
more information provided by the interval values, the GHMM can improve the reliability of recognition.
The width of an interval probability helps to quantify the extent of epistemic uncertainty. For instance,
[−11.965, −54.34] overlaps with [−9.16, −12.445] in Table 4. It provides the hidden information that
the mode could be possibly misinterpreted. Thus, in order to make a robust decision, more experiments
should be conducted. So much more data can be obtained to analyze and deal with this problem.
In contrast, using the HMM cannot obtain such hidden information.

A comparative study between the present work and some published literature is presented to
demonstrate the effectiveness and potential application of the proposed hybrid GHMM-CM method
in bearing fault type identification, as shown in Table 9. The comparing items include the fault type,
decomposition technique, feature extraction technique, feature selection technique, classifier and
model, maximum classification efficiency and the reference.
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Table 9. Comparative studies for recognizing and classifying fault types of defect bearings.

Fault Type Preprocess Feature Feature Classifier Maximum ReferencesTechnique Selection and Model Classification

ORD, IRD, BD LMD MSE N/A SVM 100.0% Liu and Han [45]
ORD, IRD, BD EMD Statistics N/A PSO-SVM 97.5% Liu et al. [46]
ORD, IRD, BD N/A MPE N/A SVM 100.0% Wu et al. [26]
ORD, IRD, BD Wavelet Different attribute filters N/A SVM and ANN 97.5% Vakharia et al. [47]
ORD, IRD, BD LMD MPE LS SVM-BT 100.0% Li et al. [48]

ORD, IRD LCD Energy entropy N/A ACROA-SVM 100.0% Ao et al. [49]
ORD, IRD, BD NA Multi-scale analysis MD SVM 99.79% Wu et al. [50]

ORD, IRD EMD Energy entropy N/A ANN 93.0% Yu et al. [51]
ORD, IRD, BD VMD AR N/A RF 100.0% Han et al. [52]
ORD, IRD, BD VMD MPE PCA GHMM 100.0% present work

4.7. Fault Severity Levels’ Classification

Recognition and classification of different fault severity levels were also performed. For the
defect bearing with inner race defect and ball defect, the fault diameters are 7 mil, 14 mil, 21 mil and
28 mil; while, the fault diameters are 7 mil, 14 mil and 21 mil for the defect bearing with the outer
race defect. Vibration signals are divided into non-overlapping segments with the length N = 2400.
Similarly, each fault diameter has 50 samples, in which 25 samples will be chosen as the training
dataset using the Kennard and Stone algorithm [33,34]. The remaining 25 samples are used to test
the constructed system model. Here, the balancing parameter α of the VMD was set in the form of
the generalized intervals [1200, 2000] to quantify the epistemic uncertainty. Eight PCs were chosen
to extract generalized features from fault diameter data. Outputs of the GHMM were set to State 1,
State 2, State 3 and State 4 corresponding to 7 mil, 14 mil, 21 mil and 28 mil, respectively.

Following the same procedure above, the recognition results for different fault diameters are
shown in Figures 9–11. Accuracy rates for different fault diameters are shown in Table 10. The ability
of recognition and classification is still effective. The accuracy rates of fault severity levels are almost
above 96.0% for different fault types. Thus, the proposed hybrid GHMM-CM method can also identify
fault severity levels of defect rolling bearings.
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Figure 9. Classification results of fault severity levels under inner race defect.
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Figure 10. Classification results of fault severity levels under ball defect.
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Figure 11. Classification results of fault severity levels under outer race defect.

Table 10. Accuracy rate of recognition for different fault diameters.

Fault Types Fault Diameters Training Testing Total

IRD

7 mil 100.0% 100.0% 100.0%
14 mil 96.0% 100.0% 98.0%
21 mil 100.0% 100.0% 100.0%
28 mil 100.0% 100.0% 100.0%

BD

7 mil 100.0% 100.0% 100.0%
14 mil 100.0% 92.0% 96.0%
21 mil 100.0% 96.0% 98.0%
28 mil 100.0% 92.0% 96.0%

ORD
7 mil 100.0% 100.0% 100.0%

14 mil 100.0% 100.0% 100.0%
21 mil 100.0% 100.0% 100.0%
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5. Conclusions

In this paper, we proposed a hybrid GHMM-CM method using reduced decomposition features
for fault types and fault severity level state recognition and classification. Vibration signal with
defect information was decomposed into multiple mode components by the VMD method, in which
the generalized balancing parameter provides a concise representation for aleatory and epistemic
uncertainty. Then, the MPE technique extracts the interval valued features from the decomposed
sub-signal. These features are closely related to defect information of rolling bearings. Next, the
PCA technique was applied to reduce the dimensionality of features and computational cost. Further,
identified fault types and fault severity levels of the rolling bearings based on classified features were
recognized. Experimental results show that the proposed hybrid GHMM-CM method is more accurate
and reliable. At the same time, this monitoring approach is efficient enough to quantify the two
uncertainty components. It also provides a basic frame to deal with similar problems in other fault
diagnoses and may be attractive for other application fields, such as the milling process, gearbox, wind
generation, multi-agent systems, etc.
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