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Abstract: This study investigated the abilities of pre-processing, feature selection and machine-
learning methods for the spectroscopic diagnosis of soil arsenic contamination. The spectral data
were pre-processed by using Savitzky-Golay smoothing, first and second derivatives, multiplicative
scatter correction, standard normal variate, and mean centering. Principle component analysis
(PCA) and the RELIEF algorithm were used to extract spectral features. Machine-learning methods,
including random forests (RF), artificial neural network (ANN), radial basis function- and linear
function- based support vector machine (RBF- and LF-SVM) were employed for establishing diagnosis
models. The model accuracies were evaluated and compared by using overall accuracies (OAs).
The statistical significance of the difference between models was evaluated by using McNemar’s test
(Z value). The results showed that the OAs varied with the different combinations of pre-processing,
feature selection, and classification methods. Feature selection methods could improve the modeling
efficiencies and diagnosis accuracies, and RELIEF often outperformed PCA. The optimal models
established by RF (OA = 86%), ANN (OA = 89%), RBF- (OA = 89%) and LF-SVM (OA = 87%) had
no statistical difference in diagnosis accuracies (Z < 1.96, p < 0.05). These results indicated that it
was feasible to diagnose soil arsenic contamination using reflectance spectroscopy. The appropriate
combination of multivariate methods was important to improve diagnosis accuracies.

Keywords: visible and near-infrared reflectance spectroscopy; heavy metal contamination; spectral
pre-processing; feature selection; machine-learning

1. Introduction

Soil heavy metal contamination demands effective methods for diagnosing suspected
contaminated areas and controlling the rehabilitation process. There is increasing interest in using
visible and near-infrared reflectance spectroscopy (VNIRS, 350–2500 nm) to measure soil heavy metal
contents and to map its spatial distribution [1], since this technique provides a non-destructive, rapid,
and cost-effective method for measuring several soil properties from a single scan, and requires
minimal sample preparation and hazardous chemicals [2].

The spectroscopic measurement of heavy metals is usually feasible because of their indirect
relationships with some spectral feature soil properties, such as organic matter, iron-oxides or
clays [1]. Therefore, the spectral information for soil heavy metal estimations is weak, indirect,
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and non-specific. Moreover, the spectral features of soil properties in visible/near-infrared spectra
are largely overlapping, while other factors, such as surface roughness, moisture content, and
organic matter of soil, also weaken the spectroscopic measurement of soil properties [3]. Thus,
the analysis of visible/near-infrared spectra requires the use of multivariate chemometric techniques
to mathematically extract useful information for soil property estimations.

Pre-processing techniques are commonly used to reduce the random noise, baseline drift and
multiple scattering effects in the spectra [1]. For instance, Savitzky-Golay (SG) smoothing is adopted
to increase the spectral quality by eliminating random noise. Derivative transformation can remove
background interferences, resolve overlapping spectra and minimize the baseline drift caused by the
differences in grinding and optical setups [4]. Multiplicative scatter correction (MSC) and standard
normal variate (SNV) seek to eliminate the multiplicative interferences of scattering and particle size [5].
Moreover, data enhancement algorithms, such as mean centering (MC) and normalization, are able
to highlight the diversities of spectral data, reduce redundant information, and simplify calibration
models [5]. For soil reflectance spectroscopy, the type and amount of pre-processing required are
data-specific; no single or combination of pre-processing techniques will work well with all data sets [6].

Feature selection techniques, such as successive projection algorithm (SPA), uninformative
variables elimination (UVE) and genetic algorithm (GA), are often applied to remove uninformative
spectral bands and to select optimal spectral variable subsets for establishing regression models [7,8].
SPA is a forward feature selection technique, and it uses a simple projection operation in a vector
space to minimize the collinearity problem [9]. UVE detects uninformative spectral variables based
on a stability analysis of regression coefficients (b-coefficient) [10]. GA uses a probabilistic, non-local
search process to randomly select an initial spectral data-set and to optimize this data set by considering
many combinations of spectral variables and their interactions [10]. In soil spectroscopy, GA always
results in better performances than SPA and UVE for soil property estimates [7,8].

These feature selection methods are designed to select features to improve the estimation of
numerical variables, such as soil property contents, and they are inappropriate to reduce dimensionality
and select features for classifying nominal variables, such as heavy metal contamination levels.
Principal component analysis (PCA) and the RELIEF algorithm have been widely applied for feature
selection in the classification applications, such as image classification and text categorization [11].
However, as far as we know, PCA and RELIEF have rarely been employed to select features for
diagnosing soil heavy metal contamination from soil reflectance spectra.

From a large data-set using trained models, data mining techniques automatically or
semi-automatically uncover patterns, which are used on a new data-set for prediction [12]. Various
data mining techniques, such as principal component regression (PCR) [13], partial least squares
regression (PLSR) [14–16], artificial neural network (ANN) [4], multivariate adaptive regression
splines (MARS) [17] and support vector machine (SVM) [18–20] were employed to train models from
spectral data for estimating soil properties, including heavy metals. The ‘training model’ process is
synonymously described as ‘machine-learning’, which can be defined as the process of discovering the
relationships between predictor and response variables using computer-based statistical methods [21].
In soil science, machine-learning techniques have been used to classify soil types, soil depth classes,
and soil drainage classes [22]. However, few studies have adopted machine-learning techniques to
diagnose soil heavy metal contamination from soil reflectance spectroscopy [23].

Several studies have adopted multivariate chemometric techniques to quantitatively predict heavy
metal contents in agricultural soils by using reflectance spectroscopy. For example, Ren et al. [24]
used PLSR to establish a quantitative relation between reflectance spectra and As, and Cu contents in
agricultural soils; Wu et al. [13] predicted Hg concentration in suburban agricultural soils of the Nanjing
region by using PCR and reflectance spectra within the visible-near-infrared region. By reviewing
the literature on soil heavy metal predictions, it is found that the prediction accuracies of soil heavy
metal contents usually cannot reach a good quantitative level (the recommended R2 of 0.81 or above
for soil analysis [25]) because of the indirect prediction mechanisms. For practical applications, such as
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soil heavy metal monitoring, contamination remediation, or digital soil mapping, the diagnosis of soil
heavy metal contamination may be sufficient rather than accurate heavy metal content estimations.
However, at present, soil reflectance spectroscopy is rarely employed to qualitatively diagnose soil
heavy metal contamination. To the best of our knowledge, Bray et al. [23] were the first to employ
an ordinal logistic regression technique to diagnose Cd, Cu, Pb and Zn contamination in urban soils
from reflectance spectra. Therefore, it is interesting and necessary to extend the knowledge about the
diagnosis of soil heavy metal contamination by using soil reflectance spectroscopy.

In China, arsenic content has continuously increased in agricultural soils during the past 30 years,
because of some anthropogenic activities, such as chemical fertilizers, arsenic-bearing pesticides,
animal manures, mining, smelting, and irrigation with arsenic-contaminated water [26]. Excessive
arsenic accumulation in agricultural soils can hinder the crops’ growth and decrease the yield and
quality of agricultural products. Moreover, as a potent carcinogen, arsenic might pose a serious health
threat to the human body, such as malignant arsenical skin lesions, respiratory disease, gastrointestinal
disorder, liver malfunction, nervous system disorder and haematological diseases [27].

Given the importance of monitoring arsenic contamination in agricultural soils, this study
aimed to compare the abilities of pre-processing techniques (derivative transformations, MSC, SNV,
MC) and machine-learning techniques (random forests (RF), ANN, and SVM) in diagnosing soil
arsenic contamination from soil reflectance spectroscopy, and to investigate whether the feature
selection approaches (PCA and RELIEF) could improve the diagnosis accuracy by using different
machine-learning methods. The result of this study is expected to establish a technical process for
diagnosing soil heavy metal contamination by using soil reflectance spectroscopy.

2. Materials and Methods

2.1. Soil Samples

In total, 195 historical soil samples collected in Yixing and Zhongxiang regions were used for this
work. Yixing (Figure 1b) is located in the south of Jiangsu Province, China, with an annual temperature
of 15.7 ◦C and a mean annual precipitation of 1177 mm. Zhongxiang (Figure 1c) is situated in the
middle of Hubei Province, China, and its mean annual temperature is 15.0 ◦C with a mean annual
precipitation of 961 mm. Yixing’s dominant soil types are dystric cambisols, lixisols, anthrosols, alisols,
calcaric fluvisols, calcisols, cambisols and gleysols for different crop cultivation [20]. The soils collected
from Zhongxiang mainly belong to anthrosols for rice planting [28]. At each sample site, surface
soils (0–10 cm) were collected. The industrial wastewater, exhaust gas or waste residues produced
by local chemical factories are the major causes of arsenics contamination in agricultural soils in the
Zhongxiang region [28]; in Yixing, the contamination may mostly result from sewage irrigation, parent
materials or vehicle exhausts [29].

Sensors 2017, 17, 1036 3 of 16 

 

mapping, the diagnosis of soil heavy metal contamination may be sufficient rather than accurate 
heavy metal content estimations. However, at present, soil reflectance spectroscopy is rarely 
employed to qualitatively diagnose soil heavy metal contamination. To the best of our knowledge, 
Bray et al. [23] were the first to employ an ordinal logistic regression technique to diagnose Cd, Cu, 
Pb and Zn contamination in urban soils from reflectance spectra. Therefore, it is interesting and 
necessary to extend the knowledge about the diagnosis of soil heavy metal contamination by using 
soil reflectance spectroscopy.  

In China, arsenic content has continuously increased in agricultural soils during the past 30 
years, because of some anthropogenic activities, such as chemical fertilizers, arsenic-bearing 
pesticides, animal manures, mining, smelting, and irrigation with arsenic-contaminated water [26]. 
Excessive arsenic accumulation in agricultural soils can hinder the crops’ growth and decrease the 
yield and quality of agricultural products. Moreover, as a potent carcinogen, arsenic might pose a 
serious health threat to the human body, such as malignant arsenical skin lesions, respiratory disease, 
gastrointestinal disorder, liver malfunction, nervous system disorder and haematological diseases 
[27]. 

Given the importance of monitoring arsenic contamination in agricultural soils, this study aimed 
to compare the abilities of pre-processing techniques (derivative transformations, MSC, SNV, MC) 
and machine-learning techniques (random forests (RF), ANN, and SVM) in diagnosing soil arsenic 
contamination from soil reflectance spectroscopy, and to investigate whether the feature selection 
approaches (PCA and RELIEF) could improve the diagnosis accuracy by using different machine-
learning methods. The result of this study is expected to establish a technical process for diagnosing 
soil heavy metal contamination by using soil reflectance spectroscopy. 

2. Materials and Methods 

2.1. Soil Samples 

In total, 195 historical soil samples collected in Yixing and Zhongxiang regions were used for 
this work. Yixing (Figure 1b) is located in the south of Jiangsu Province, China, with an annual 
temperature of 15.7 °C and a mean annual precipitation of 1177 mm. Zhongxiang (Figure 1c) is 
situated in the middle of Hubei Province, China, and its mean annual temperature is 15.0 °C with a 
mean annual precipitation of 961 mm. Yixing’s dominant soil types are dystric cambisols, lixisols, 
anthrosols, alisols, calcaric fluvisols, calcisols, cambisols and gleysols for different crop cultivation 
[20]. The soils collected from Zhongxiang mainly belong to anthrosols for rice planting [28]. At each 
sample site, surface soils (0–10 cm) were collected. The industrial wastewater, exhaust gas or waste 
residues produced by local chemical factories are the major causes of arsenics contamination in 
agricultural soils in the Zhongxiang region [28]; in Yixing, the contamination may mostly result from 
sewage irrigation, parent materials or vehicle exhausts [29]. 

 
Figure 1. Study areas (a) and spatial distribution of soil samples in Yixing (b) and Zhongxiang (c). Figure 1. Study areas (a) and spatial distribution of soil samples in Yixing (b) and Zhongxiang (c).



Sensors 2017, 17, 1036 4 of 15

2.2. Laboratory Spectrum and Soil Arsenic Content Measurement

Soil samples were air-dried and ground in a mechanical agate grinder to a particle size of ≤2 mm.
The diffuse reflectance spectra were measured by using the FieldSpec3 portable spectroradiometer
(ASD Inc., now PANalytical Company, Boulder, CO, USA) with a spectral range of 350 to 2500 nm.
The spectral measurements were conducted in a dark room. The air-dried and ground soil sample was
placed in a 10 cm diameter petri dish with a thickness of approximately 15 mm. A 50 W halogen lamp
was used as the light source, which was positioned 30 cm away from soil sample, with a 15◦ zenith
angle [20]. The optical probe was installed about 15 cm above the soil sample. A Spectralon panel
(Labsphere, North Sutton, NH, USA) was used for white referencing once every six measurements.

After spectral measurement, soil samples were further ground, and passed through a 100-mesh
sieve (0.15 mm). The finely ground soil samples were digested by HF-HClO4-HNO3. The arsenic
contents of digested samples were then analyzed by using a hydride generation atomic fluorescence
spectrometry (HG-AFS) method [30]. Certified soil reference materials (GBW 07401, GBW 07402,
and GBW 07407, National Research Center for Certified Reference Materials of China) were used to
verify the precision of HG-AFS method.

For the purpose of diagnosis, the measured soil arsenic contents were coded into binary 0 or 1,
describing uncontaminated or contaminated samples, respectively. The index of geo-accumulation
(Igeo) [31] was applied to assess the arsenic contamination in the soils:

Igeo = log2
MAs

1.5BAs
(1)

where MAs is the measured arsenic contents in the soils, BAs is the geochemical background value
of arsenic (13 mg·kg−1), the constant of 1.5 was used to eliminate fluctuations caused by regional
differences and anthropogenic influences [31]. Igeo ≤ 0 indicates practically uncontaminated, whereas
Igeo > 0 means contaminated [31].

2.3. Pre-Processing Transformations

The whole measured soil arsenic content data and their corresponding spectral data were divided
into training (n = 98) and test (n = 97) data sets using a Kennard-Stone algorithm [32], which is effective
for selecting spectra-representative samples for model development. The reflectance spectra were
first reduced to 400–2450 nm to remove the wavelengths with high noise effects at the spectral edges.
The reflectance spectra were then SG smoothed with a moving window of 9 nm. The smoothed spectra
were resampled to 10 nm intervals (e.g., 400, 410, and 420 nm, etc.) to eliminate the data redundancy by
using a Gaussian model [4]. Moreover, first and second derivatives, MSC, SNV and MC of reflectance
spectra were performed for soil spectra to enhance spectral features and to further establish robust
diagnosis models. Reflectance spectra were transformed into log(1/Reflectance) before MSC and SNV
were performed.

2.4. Feature Selection

PCA and the RELIEF algorithm were applied to extract features from spectral variables of the
training data-set. PCA was an optimal linear scheme for extracting several principle components
(PCs) from high dimensional variables, and the extracted components can hold the majority of the
variables’ information. The RELIEF algorithm, first described by Kira and Rendell [33], was used
as a simple, fast and effective approach to weigh variables, and its output is the ranking weights
between −1 and 1 for spectral variables, in which the more positive weights indicate more predictive
spectral variables. In this study, PCA and the RELIEF algorithm were implemented in Weka (Waikato
Environment for Knowledge Analysis). The number of PCs was determined by the diagnosis accuracy
of the calibration. The threshold for the RELIEF weight value was set to 0, and the scattered spectral
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bands with local extreme weights were selected as spectral features to avoid the multicollinearity
among RELIEF-selected features.

2.5. Multivariate Diagnosis Analysis

Machine-learning methods, such as RF, ANN and SVM, were employed for calibrating diagnosis
models using the training data set. For brevity, the summaries of these techniques were provided, and
some key references were cited. Interested readers may find more details about these techniques in
these references. In this study, the machine-learning methods were implemented by using a R-based
Rattle package developed by Williams [34].

2.5.1. Random Forests (RF)

RF, introduced by Breiman [35], is an ensemble learning method that constructs a multitude of
decision trees. For the RF learner, each tree is independently trained from a randomized bootstrap
sample of the entire training data set, and a subset of explanatory variables is randomly selected for the
node-splitting rules in each tree [36]. In classification, trees are voted by majority [35]. The RF depends
only on two user-defined parameters: the number of variables in each random subset (nv) and the
number of trees in the forest (nt). In this study, the nv was optimized from 1 to the total number of
variables with increments of 1, and nt from 0 to 1000 by increments of 10. The variable that is important
for RF modeling can be determined by mean decrease GINI values.

2.5.2. Artificial Neural Network (ANN)

The concept of ANN learner may date back to 1940s when McCulloch and Pitts [37] initially
planned to develop a virtual “central nervous system” for computer modeling. The design of ANN
simulates the data processing in biological nervous systems. The structure of an ANN consists of a set
of interconnected neurons. Some neurons are adopted for the reception of information, others for its
forwarding and storage, and another group for the outward release of information [38]. Neurons are
connected to each other through weighted synapses. In an ANN, the number of hidden layers and
neurons in each hidden layer ought to be optimized [21]. In this study, the number of hidden layers
was optimized by iterating this parameter from 1 to 20, and the number of neurons in each layer was
set as the total number of variables.

2.5.3. Support Vector Machine (SVM)

SVM is a kernel-based machine learning method developed on the basis of statistical learning
theory [39]. SVM applies a kernel function to map training data into a higher dimensional feature
space, and computes separating hyperplanes that achieve maximum separation (margin) between the
classes [40]. The maximum separation hyperplane is the training data on the margin, which are called
support vectors. The quality of the SVM classifier is affected by the type of kernel function, kernel
width (γ) and regularization parameter (C) [40]. In this study, radial basis function (RBF) and linear
function (LF) were adopted as kernel functions, respectively.

2.6. Validation and Comparison of Diagnosis Models

The calibrated models were applied for diagnosing the contaminated and uncontaminated soil
samples of the test data-set. The overall accuracy (OA, Equation (2)) [38] of the test data-set was
calculated and employed for comparing the diagnosis abilities of multivariate methods. The same
computer environment was kept for running different machine-learning algorithms.

OA =
pp + nn

pp + np + pn + nn
(2)

where the meanings of pp, np, pn and nn are displayed in Table 1.
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Table 1. Confusion matrix of observed and diagnosed soil samples for calculating overall accuracy 1.

Allocation

Observed

Contaminated
(Positive, Value = 1)

Uncontaminated
(Negative, Value = 0)

Predicted
Contaminated (positive, value = 1) pp np

Uncontaminated (negative, value = 0) pn nn
1 pp: number of correctly diagnosed contaminated soil samples; np: number of falsely diagnosed uncontaminated
soil samples; pn: number of falsely diagnosed contaminated soil samples; nn: number of correctly diagnosed
uncontaminated soil samples.

The statistical significance of the difference between diagnosis models was evaluated by using
McNemar’s test [41], which is based on a binary distinction between correct and incorrect class
allocations (Table 2). McNemar’s test is also based on the standardized normal test statistic expressed
in Equation (3):

Z =
f12 − f21√

f12 + f21
(3)

Therefore, the test is focused on the cases that are correctly diagnosed by one classifier but
misdiagnosed by the other. Two diagnosis models may exhibit different accuracies at the 95% level of
confidence if Z > |1.96|.

Table 2. Assessment of the statistical significance of the difference between two diagnosis models using
McNemar’s Test 1.

Allocation
Diagnosis Model 2

Correct Incorrect

Diagnosis model 1 Correct f 11 f 12
Incorrect f 21 f 22

1 f 12: the test soil samples that are correctly diagnosed by diagnosis model 1 but misdiagnosed by diagnosis model 2;
f 21 the test soil samples that are correctly diagnosed by diagnosis model 2 but misdiagnosed by diagnosis model 1.

3. Results

3.1. Soil Arsenic and the Spectra

The percent mean standard error of the HG-AFS method for arsenic determination was 2.9%.
The descriptive statistics of soil arsenic of the 195 soil samples are shown in Table 3. For the total data
set, the soil arsenic contents varied from 1.91 to 133.36 mg·kg−1, with a mean of 18.13 mg·kg−1 and
a standard deviation of 18.67 mg·kg−1. Considering Igeo values, 27%, 26% and 29% of samples were
contaminated by arsenic in total, training and test data sets, respectively.

Table 3. Statistical descriptions for the arsenic contents (mg·kg−1) and the percent value of
contaminated samples (per %) 1.

No. Minimum Maximum Mean Std. Per %

Total data set 195 1.91 133.36 18.13 18.67 27
Training data set 98 1.91 106.10 12.70 16.81 26

Test data set 97 4.40 133.36 19.00 20.43 29
1 No.: number of samples; Std.: standard deviation.

The mean value and standard deviation of original and pre-processed spectra for contaminated
and uncontaminated soil samples are shown in Figure 2. Three prominent absorption peaks around
1400, 1900 and 2000 nm are visibly water absorption features [42] (Figure 2a); MC centered the
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reflectance spectra on 0 values (Figure 2b); SNV (Figure 2c) and MSC (Figure 2d) had similar spectral
curves, and served the same purpose to remove the multiple scattering effects in the reflectance spectra;
first (Figure 2e) and second (Figure 2f) derivatives minimized the baseline drift and highlight the
minor absorption features of reflectance spectra. These demonstrated that the original reflectance and
pre-processed spectra of uncontaminated and contaminated soil samples were overlapped, which
indicates that there might exist a nonlinear relationship between spectra and soil arsenic contamination.
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3.2. Principal Components and RELIEF Selected Features

The first three loadings of the PCA analysis for original reflectance and pre-processed spectra
were displayed in Figure 2. The score plots showed that the spectral space of the contaminated samples
fell into those of uncontaminated samples. This meant that the linear classifier might be unable to
effectively diagnose contaminated or uncontaminated soil samples by using principal components.

The RELIEF weights and the selected spectral features are displayed in Figure 3. The RELIEF
weights of the MC spectra (Figure 3b) had the same values as those of original reflectance spectra
(Figure 3a), thus the same spectral variables at 400, 470, 930, 1090, 1840, 2140, 2350 and 2400 nm were
selected as spectral features for original reflectance and MC spectra. The RELIEF weights of SNV
(Figure 3c) and MSC (Figure 3d) processed spectra showed the same tendency, and the same spectral
variables at 470, 1100, 1420, 1780, 1910 and 2120 nm were identified as spectral features. Spectral
variables at 410, 490, 540, 640, 820, 1210, 1300, 1460, 1940 and 2210 nm (Figure 3e), and variables at 570,
670, 750, 810, 990, 1290, 1400, 1570, 1890, 1990, 2150 and 2220 nm (Figure 3f) were selected as spectral
features for first and second derivatives, respectively. Compared with the original reflectance, MC,
SNV and MSC spectra, first and second derivatives resulted in more spectral features with higher
RELIEF weights.
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3.3. Comparison of the Abilities of Different Methods

The operation times, parameter setting, and validated OAs for diagnosis models by using
different methods are illustrated in Table 4. The results showed that (1) the suitable combination
of pre-processing and feature selection was vital to improve OAs of each machine-learning method;
(2) feature selection methods, PCA and RELIEF, could improve modeling accuracies and decrease
operation times of modeling, and RELIEF often outperformed PCA; (3) derivative transformation
often resulted in the best diagnosis models. The optimal models for RF, ANN, LF and RBF-SVM were
described as follows:
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Table 4. The operation times, parameter setting, and overall accuracies for diagnosis models by using different pre-processing, feature selection and machine-
learning methods 1.

Machine-Learning
Methods

Pre-Processing
Methods

Feature Selection Methods

No Feature Selection PCA RELIEF

Parameters
time (s) OA (%) nPC

Parameters
time (s) OA (%) nfeature

Parameters
time (s) OA (%)

nt nv nt nv nt nv

RF

none 70 5 0.32 80 5 60 7 0.22 82 8 150 5 0.04 85
MC 270 4 0.27 74 7 160 2 0.17 83 8 130 3 0.03 71
SNV 290 3 0.32 84 7 20 2 0.05 70 6 60 3 0.03 82
MSC 150 4 0.25 71 6 30 2 0.03 71 6 30 2 0.03 71
1st 50 2 0.25 77 8 80 4 0.05 79 10 30 3 0.03 81
2nd 200 2 0.28 85 6 50 4 0.05 71 12 50 2 0.05 86

Parameters
time (s) OA (%) nPC

Parameters
time (s) OA (%) nfeature

Parameters
time (s) OA (%)

nlayer nlayer nlayer

ANN

none 1 0.34 86 6 9 0.05 71 8 3 0.02 84
MC 2 0.48 76 8 2 0.04 71 8 10 0.05 76
SNV 1 0.27 81 6 2 0.03 64 6 6 0.03 86
MSC 1 0.28 29 8 2 0.03 40 6 3 0.02 52
1st 3 0.67 87 8 3 0.03 89 10 1 0.03 81
2nd 1 0.30 82 5 2 0.03 62 12 1 0.03 75

Parameters
time (s) OA (%) nPC

Parameters
time (s) OA (%) nfeature

Parameters
time (s) OA (%)

γ C nsv γ C nsv γ C nsv

RBF-SVM
none 0.01 1 32 0.11 80 7 0.04 1 32 0.05 85 8 0.17 1 32 0.02 82
MC 0.01 1 32 0.14 70 7 0.08 1 35 0.05 87 8 0.38 1 31 0.03 76

Machine-learning
methods

Pre-processing
methods

Feature selection methods

No feature selection PCA RELIEF

Parameters
time (s) OA (%) nPC

Parameters
time (s) OA (%) nfeature

Parameters
time (s) OA (%)

γ C nsv γ C nsv γ C nsv

RBF-SVM

SNV 0.01 1 36 0.09 81 9 0.04 1 42 0.04 66 6 0.28 1 36 0.03 80
MSC 0.01 1 37 0.08 71 5 0.23 1 38 0.03 71 6 0.31 1 37 0.02 71
1st 0.01 1 46 0.06 79 8 0.05 1 43 0.05 75 10 0.09 1 33 0.33 82
2nd 0.01 1 53 0.08 81 5 0.07 1 41 0.03 71 12 0.06 1 42 0.05 89

Parameters
time (s) OA (%) nPC

Parameters
time (s) OA (%) nfeature

Parameters
time (s) OA (%)

C nsv C nsv C nsv

LF-SVM

none 1 36 0.16 84 7 1 35 0.05 81 8 1 37 0.05 80
MC 1 36 0.12 85 7 1 35 0.05 85 8 1 35 0.03 79
SNV 1 33 0.11 86 5 1 27 0.06 56 6 1 39 0.06 72

MSC 1 34 0.11 29 5 1 39 0.06 29 6 1 39 0.04 73
1st 1 26 0.09 80 8 1 27 0.05 80 10 1 29 0.05 87
2nd 1 36 0.10 76 4 1 30 0.06 63 12 1 26 0.05 81

1 RF: random forests; ANN: artificial neural network; SVM: support vector machine; RBF: radial basis function; LF: linear function; MC: mean centering; SNV: standard normal variate;
MSC: multiplicative scatter correction; 1st: first derivative; 2nd: second derivative; PCA: principle component analysis; time: operation time for calibration; OA: validated overall accuracy;
nPC: number of principle components; nfeature: number of RELIEF selected features. nt: number of trees; nv: number of variables; nlayer: number of layers; nsv: number of support vectors.
C: regularization parameter; γ: kernel width. The results of selected models are emphasized in bold.
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3.3.1. RF

The optimal pre-processing method for the RF model was second dervative. The best RF model
was calibrated by using 12 RELIEF-selected spectral features, and the optimized nv and nt of the RF
model were 3 and 50, respectively. The mean decrease GINI values (Figure 4) showed the importance
of the spectral features for RF modeling in descending order as 2150, 810, 1400, 670, 1890, 2220, 1290,
570, 990, 750, 1570 and1990 nm. The validated OA for the RF model was 86%, which mean that the
RF model correctly diagnosed 86% of soil samples in the test data-set (Figure 5a).
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random forests; (b) first derivative spectra (first), principle component analysis and artificial neural
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(d) first, RELIEF and linear function-based SVM. Value 1 indicates contaminated, and value 0 indicates
uncontaminated. The correctly-diagnosed and misdiagnosed samples are displayed in the figures.

3.3.2. ANN

The optimal pre-processing method employed for ANN modeling was first derivative; PCA was
selected as the feature selection method, and the number of hidden layers was three. The factor number
for modeling was eight, and the first eight PCs explained approximately 99% of the variation of the
spectral data. The ANN model correctly diagnosed 89% of soil samples in the test data-set (Figure 5b).
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3.3.3. SVM

Second derivative was the optimal pre-processing method for RBF-SVM, and first derivative was
the optimal pre-processing method for LF-SVM. The optimized C and γ for RBF-SVM were 1 and
0.06, respectively, while the optimized C for LF-SVM was 1. By adopting 12 RELIEF-selected spectral
features, the RBF-SVM model correctly diagnosed 89% of soil samples in the test data-set (Figure 5c);
and the LF-SVM model correctly diagnosed 87% of soil samples by using the RELIEF-selected spectral
features (Figure 5d).

3.3.4. Model Comparison

Figure 5 displayed the predicted values of samples in the test dat-set by using three optimal
diagnosis models. McNemar’s test applied to these diagnosis models showed that the Z values were
all less than 1.96 (Table 5), which indicated that there was no statistical difference in the diagnosis
abilities of these optimal diagnosis models (p < 0.05).

Table 5. Z Values of McNemar’s test between the optimal diagnosis models.1

Second + RELIEF + RF First + PCA + ANN Second + RELIEF + RBF-SVM

First + PCA + ANN 0.24
Second + RELIEF + RBF-SVM 0.90 0.00

First + RELIEF + LF-SVM 0.30 0.26 0.41
1 Second: second derivative spectra; First: first derivative spectra; PCA: principle component analysis; RF: random
forests; ANN: artificial neural network; SVM: support vector machine; RBF: radial basis function; LF: linear-function.

4. Discussion

In this study, with the combination of pre-processing, feature selection and machine-learning
methods, the OAs for soil arsenic contamination diagnosis achieved a satisfactory level (OA > 85%).
This result demonstrated that VNIRS could be applied to diagnose soil arsenic contamination, although
in the process of developing diagnosis models, VNIRS technology depended on conventional methods
for providing the ground-truth of soil heavy metal contamination. Compared with conventional
methods, this study confirmed that VNIRS might allow for faster and cheaper classification of soil
heavy metal contaminants in an increased spatial coverage, which has been suggested by Bray, Viscarra
Rossel and McBratney [23].

This study demonstrated that, to establish robust diagnosis models, the trial and error of various
pre-processing methods was vital. Pre-processing methods, including SNV, MSC, first derivative,
and second derivative, can be employed to eliminate the baseline drift caused by the difference in
particle size and optical setups [6]. Derivative transformations also enhance the minor absorption
features which may be useful to improve the diagnosis abilities of models. Nevertheless, derivative
transformation will add noises into the spectral data, generating more noises with the increase of
derivative orders [20]. Therefore, derivative transformations are often applied in conjunction with
a smoothing algorithm to amplify noise [6]. Our research suggested that, compared with other
pre-processing methods, derivative transformation was a more suitable pre-processing method for
developing diagnosis models.

Feature selection methods could improve modeling accuracies by eliminating uninformative
spectral variables and increase modeling efficiency by reducing the independent variables for
modeling [10]. PCA extracted principle components from spectral variables without consideration of
dependent variables (i.e., soil arsenic contamination in this study). However, RELIEF-selected spectral
features based on their contributions to the classification of dependent variables [33]. Therefore,
the results in this study indicated that RELIEF always outperformed PCA for diagnosing soil arsenic
contamination from hyperspectral spectra. We considered that, based on these factors, the RELIEF
algorithm was a more suitable method to select spectral features. Moreover, van Groenigen et al. [43]
demonstrated that pre-processing methods could strongly influence the reflectance spectra, and they
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will therefore have an impact on the spectral features. Therefore, in this study, the results indicated
that pre-processing methods affected the RELIEF-selected spectral features (Figure 3).

The establishment of robust diagnosis models by using different machine-learning methods
(i.e., RF, ANN, LF-SVM, RBF-SVM) depends on the selection of appropriate pre-processing and
feature selection methods. In addition, our study demonstrated that these optimal models for
machine-learning methods had no statistical difference in diagnosis abilities; moreover, RF was
superior to other machine-learning methods because of its ability to simplify parameter optimization
and its better models explanatory. In this study, based on mean decrease GINI values, wavelengths at
2150, 810, 1400, and 670 nm can be identified as the first four important wavelengths for diagnosing
arsenic contamination with the RF model. Wavelengths near 2150 and 810 nm relate to organic
matter, and spectral features near 1400 and 670 nm coincide with wavelengths related to mostly iron
oxides [42]. This might demonstrate that the diagnosis of arsenic contamination might depend on its
surrogated correlations with organic matter and iron oxides.

Over-fitting is a common problem for modeling. It means that the best diagnosis model for
the training data-set will not work well for the test data-set. RF is robust against over-fitting.
Breiman [35] observed that the error associated with the error of RF converged to a limit with
the increase in the number of trees in a forest. Nevertheless, in the case of ANN, over-fitting is
a serious problem [40]. RF is easily accessible to non-specialists because of its simplicity in parameters
optimization. However, for SVM, a number of hyper-parameters need to be optimized for each
kernel function [40], while its parameters optimization also requires considerable knowledge of the
frequently non-trivial underlying mathematics [40]. Moreover, complex machine-learning algorithms,
such as SVM and ANN, were not easily interpretable to present relationships between independent
and dependent variables [44]. However, RF, a method that performs a majority vote of tree-based
classifiers, is explicit and comprehensible, revealing the important spectral variables for modeling [40].
Variable importance in RF can be evaluated by the increase in prediction error when the out-of-bag
data are permuted for a certain variable, while keeping all other data constant. Considering these
advantages, we regarded RF as a more efficient machine-learning method for modeling soil arsenic
contamination levels.

This study investigated the abilities of laboratory reflectance spectroscopy to diagnose soil
arsenic contamination. The field and air-/space-borne imaging spectroscopy have the potential
to rapidly map heavy metal contamination over large areas [17,45,46]. Compared with laboratory
spectroscopy, the application of field or imaging spectroscopy faces some constraints, such as soil
surface, atmospheric and illumination conditions [47]. Therefore, the principles of this study should
be further tested with field and imaging data.

5. Conclusions

The spectroscopic diagnosis of soil arsenic contamination is feasible, and the appropriate
combination of pre-processing, feature selection and machine-learning methods is important for
diagnosis accuracies. The RELIEF algorithm is a simple and efficient method to extract spectral
features to improve modeling efficiency and diagnosis accuracy. Compared with ANN and SVM, RF is
a more optimal machine-learning method for developing diagnosis models, because of its ability to
simplify parameter optimization and its better models explanatory.
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