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Abstract: As a promising paradigm, mobile crowdsensing exerts the potential of widespread sensors
embedded in mobile devices. The greedy nature of workers brings the problem of low-quality sensing
data, which poses threats to the overall performance of a crowdsensing system. Existing works often
tackle this problem with additional function components. In this paper, we systematically formulate
the problem into a crowdsensing interaction process between a requestor and a worker, which can
be modeled by two types of iterated games with different strategy spaces. Considering that the
low-quality data submitted by the workers can reduce the requestor’s payoff and further decrease the
global income, we turn to controlling the social welfare in the games. To that aim, we take advantage
of zero-determinant strategy, based on which we propose two social welfare control mechanisms
under both game models. Specifically, we consider the requestor as the controller of the games and,
with proper parameter settings for the to-be-adopted zero-determinant strategy, social welfare can
be optimized to the desired level no matter what strategy the worker adopts. Simulation results
demonstrate that the requestor can achieve the maximized social welfare and keep it stable by using
our proposed mechanisms.

Keywords: crowdsensing; game theory; zero-determinant strategy; social welfare

1. Introduction

With the rapid development of micro-electro-mechanical systems and digital electronics, more
and more functional sensors (e.g., accelerometers, cameras and compasses) are equipped in various
kinds of mobile devices (e.g., smartphones and wearable devices). On the other hand, the development
of wireless communication technologies (e.g., bluetooth and Wi-Fi) has stepped into a new era.
These advances contribute substantially to the emergence of mobile crowdsensing [1–3]. Unlike
traditional sensor networks with numerous static sensors [4,5], mobile crowdsensing takes advantage
of the massive mobile-device owners (i.e., workers) and their mobility to obtain comprehensive and
real-time sensing outcomes for requestors. However, since workers with different backgrounds and
skills often undertake tasks without strict rules, they may provide low-quality data (e.g., fabricated
or incomplete data) to get more profit. This situation is harmful to requestors in a short term and is
disastrous to the whole crowdsensing system in a long term. Therefore, it is imperative to tackle the
problem of low-quality data generated by the workers in mobile crowdsensing.

Recently, plenty of research focusing on data quality in mobile crowdsensing has been presented.
Auction, a powerful tool in economics, has been widely adopted to ensure data quality. Accordingly,
auctions are employed in the design of incentive mechanisms for mobile crowdsensing [6–8]. However,
the negotiation process in an auction usually costs excessive time, which is redundant and cumbersome

Sensors 2017, 17, 1012; doi:10.3390/s17051012 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 1012 2 of 16

for lightweight mobile crowdsensing applications. History behaviorial information of the participants
also has been utilized. Crowdsensing quality was improved by filtering out low-quality data providers
in the reputation-based-schemes [9] and machine-learning-based-schemes [10]. Nevertheless, such an
approach may fail due to the lack of sufficient training or history data.

To conquer the existing issues in mobile crowdsensing quality control, we devise a more
cost-efficient and systematic approach in this paper. Our approach embeds a data quality improvement
process into crowdsensing interaction. We first formulate the interaction between the requestor and
any worker in mobile crowdsensing as an iterated game. In this game, the payment amount is regarded
as the strategy of the requestor, and the submitted data quality is the action of the worker. Note that
the worker’s bad actions can directly lower the requestor’s profit, and can bring damage to the total
profit of the crowdsensing system. As the requestor is the victim of the low-quality data problem as
well as the recruiter of the crowdsensing task, we consider that the requestor has the responsibility
and capability to deal with the bad actions. Therefore, in order to warrant mobile crowdsing quality
effectively and efficiently, we propose social welfare controlling schemes for the requestor to guarantee
the whole interest of the crowdsensing system regardless of the workers’ actions.

More specifically, we analyze the problem under two situations with different types of strategies
(i.e., discrete strategy and continuous strategy) a requestor and a worker may take. As a result, we propose
a zero-determinant strategy that offers the possibility for the requestor to unilaterally control the social
welfare in the iterated game. By solving a constrained optimization problem, we design social welfare
control mechanisms for the two models. The requestor only needs to setup appropriate parameters
for her (In this paper, we denote the requestor as “she” and the worker as “he” for better distinction)
strategy, so as to obtain the desired social welfare instead of sparing any effort to deal with the workers’
actions. In other words, with the proposed schemes for the requestor, a worker’s strategy has no
impact on the social welfare.

Concentrating on solving the above problem in mobile crowdsensing, we summarize the
contributions of this paper as follows:

• We make use of two types of iterated games to formulate the interactions between the
requestor and the worker in mobile crowdsensing when they adopt discrete strategies and
continuous strategies.

• Based on the original zero-determinant strategy derived under the discrete model, we extend it
with sufficient theoretic derivation to make it applicable for the continuous model. Note that this
extension not only provides theoretical foundation for our proposed mechanism but also expands
the application range of zero-determinant strategy.

• We propose two social welfare control mechanisms for the requestor under two different situations,
which helps the requestor establish an overall control over the quality of the whole crowdsensing
system so as to solve the low-quality data problem from the perspective of the ultimate goal.

The rest of the paper is organized as follows. Section 2 formulates the games between the requestor
and any worker in mobile crowdsensing under the discrete-strategy and continuous-strategy situations.
The mechanisms achieving social welfare control under two different models are proposed in Section 3.
We simulate our proposed schemes in Section 4 to verify their effectiveness. Most related works are
investigated in Section 5 and the whole paper is concluded in Section 6.

2. Game Formulation

In this paper, we consider the following crowdsensing scenario. As the initiator of mobile
crowdsensing tasks, the requestor publishes jobs with the corresponding payments. The workers claim
the jobs that they can accomplish in order to get payments. At each round, the requestor can distribute
different payments to a certain job while the workers can choose to provide different levels of task
quality to the claimed jobs. With the temptation of getting more profit, the workers may maliciously
provide very low job quality. Because of the limitation on the resources of a requestor (e.g., computing
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power and detection time), we assume that the requestor has difficulty to discover the bad behavior of
a worker in a timely manner. However, the requestor is able to find out a worker’s malicious behavior
of providing low job quality after a certain number of rounds and then penalize the worker in future
rounds. The above working scenario between the requestor and any one of the workers can be viewed
as a game; and it turns out to be an iterated game if the same worker is recruited in multiple rounds.

For the iterated game mentioned above, the strategy of the requestor is considered to be the
amount of payment she determines to offer to the worker for a specific job, while the strategy of
the worker is the quality of the job he decides to provide in the following job completing process.
Since the strategies of both players could be either simple or complicated, we consider them as either
discrete or continuous. A discrete strategy means that both players adopt either an extremely amicable
or a vicious action, while a continuous one refers to any action as long as it is in the corresponding
continuous strategy space. The distinction on strategy types may result in totally different problem
formulations and solutions in the iterated game; thus we model the above problem by considering a
discrete model and a continuous model.

In the discrete model, the requestor can choose the strategy of providing the highest or the lowest
payment for a certain job, and the worker determines his strategy on providing the highest or the
lowest quality for accomplishing the claimed job. Here, the requestor’ strategy is defined as x ∈ {c, d},
where c is the abbreviation of cooperation denoting the highest payment and d means defection
referring to the lowest payment; and the worker’s strategy is y ∈ {c, d}, where c refers to the highest
job quality and d is the lowest. At each round, the strategy that any player adopts is private; thus there
could be four outcomes of the game between the requestor and the worker, i.e., xy = (cc, cd, dc, dd).

We define Rr and Rw as the payoff of the requestor and that of the worker when they mutually
cooperate. Let b be the increase on payoff when the worker defects but the requestor cooperates, in
which case the requester gets a decrease m on payoff; let n be the increase on payoff when the requestor
defects but the worker cooperates, and thus the worker’s payoff will have a decrease a. Here, we
consider n < m, b < a because the lowest payment of the requestor and the lowest job quality of
the worker could result in less payoff for both of them than that of the case when both cooperate.
We denote the payoff vector of the requestor as Sr = (S1

r , S2
r , S3

r , S4
r ) = (Rr, Rr −m, Rr + n, Rr −m + n)

and that of the worker as Sw = (S1
w, S2

w, S3
w, S4

w) = (Rw, Rw + b, Rw − a, R + b − a) under the state
xy = (cc, cd, dc, dd), which are demonstrated in Figure 1. For the requestor, it is obvious that no matter
what the worker’s strategy is, her best strategy is x = d; and, similarly, the worker can also derive that
his best strategy is y = d. Thus, this game has an equilibrium of xy = dd, where the social welfare
S4

r + S4
w is certainly less than that of any other state.

c

c

d

d

Requestor

Worker

Figure 1. Payoffs of the requestor and the worker at each round.

In the continuous model, the requestor can choose any payment from her strategy space, while
the worker can determine any job quality from his strategy domain. We denote the requestor’s strategy
as x ∈ [lr, hr], where lr and hr are respectively the lowest and the highest payment that the requestor
can offer; and the worker’s strategy is denoted as y ∈ [lw, hw], where lw and hw are respectively the
lowest and the highest job quality the worker can provide.

We define the requestor’s utility as

wr(x, y) = Arφ(y)− Brx, (1)
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where the first term is the profit that the accomplished job brings to the requestor and the second term
refers to the payment she should assign to the worker; the scaling parameters Ar > 0 and Br > 0; and
φ(y) monotonically increases with the worker’s strategy y.

With a similar composition, the worker’s utility can be expressed as

ww(x, y) = Awx− Bwψ(y), (2)

where the first term is the payment the worker can acquire by completing the sensing job, while the
second term reflects the cost in the job completing process. The scaling parameters Aw > 0 and Bw > 0;
and ψ(y) also monotonically increases with y.

To briefly examine the equilibrium of this continuous game, we make the following calculations.
For the requestor, we have ∂wr(x,y)

∂x = −Br < 0, which means that her utility decreases with x; thus
the requestor’s best strategy is x∗ = lr no matter what the worker’s strategy y is. On the other
hand, since ψ(y) increases as y increases, we have ψ′(y) > 0. Combining with Bw > 0, we have
∂ww(x,y)

∂y = −Bwψ′(y) < 0, which means that the worker can get his best strategy y∗ = lw regardless
of the requestor’s strategy x. Therefore, the stable equilibrium of the continuous-model game is
(x∗, y∗) = (lr, lw), which is clearly an unexpected outcome for the requestor.

3. Game Analysis and Mechanism Design

Based on the analysis in Section 2, one can see that the stable equilibrium states in both the
discrete and the continuous models are unfavorable to the requestor. Moreover, these models are
certainly inefficient for both the requestor and the worker in a short term, and it is potentially harmful
to the stability and sustainability of the crowdsensing system. Thus, it is necessary for the requestor
to address the issue as she is the sensing task employer who is assumed to have the responsibility
and capability for solving such a problem. Therefore, in this section, we first provide a further
analysis on the iterated games under these two different models and then propose mechanisms to
help the requestor control the social welfare in mobile crowdsensing without considering the worker’s
specific strategy.

3.1. Zero-Determinant Strategy Based Scheme in the Discrete Model

In this paper, we assume that all the players only have the memory of the state in the last round.
As mentioned in [11], a short-memory player rather than a long-memory player determines the rules
of the game. In our game, both players have mixed strategies at each round denoting the cooperation
probabilities under the four possible states in the last round. Accordingly, we define the mixed
strategy of the requestor as pt = (pt

1, pt
2, pt

3, pt
4) and that of the worker as qt = (qt

1, qt
2, qt

3, qt
4). Here,

pt
1, pt

2, pt
3, pt

4 and qt
1, qt

2, qt
3, qt

4 are the probabilities of choosing c in round t when the outcome of
round t− 1 is xy = cc, cd, dc, dd. Additionally, we denote the possibilities of the four potential states at
round t as vt = [vt

1, vt
2, vt

3, vt
4], where ∑4

i=1 vi = 1; thus the corresponding payoffs of the requestor and
the worker are Et

r = vtSr and Et
w = vtSw, respectively.

With the definitions of pt and qt mentioned above, one can get the Markov state transition matrix
as follows,

M =


pt

1qt
1 pt

1(1− qt
1) (1− pt

1)q
t
1 (1− pt

1)(1− qt
1)

pt
2qt

2 pt
2(1− qt

2) (1− pt
2)q

t
2 (1− pt

2)(1− qt
2)

pt
3qt

3 pt
3(1− qt

3) (1− pt
3)q

t
3 (1− pt

3)(1− qt
3)

pt
4qt

4 pt
4(1− qt

4) (1− pt
4)q

t
4 (1− pt

4)(1− qt
4)

 , (3)

where each element denotes the probability of the state transferring from round t− 1 to t. Here, each
row of (3) corresponds to the state at round t − 1 following the order xy = cc, cd, dc, dd and each
column is corresponding to the state at round t following the same order. For example, M23 denotes
the transition probability from state xy = cd at round t− 1 to the state xy = dc at round t.
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We assume that the stable vector of the above transition matrix M is denoted by vT
s ; thus we have

vT
s M = vT

s . (4)

Inspired by the calculation in [11], we denote by I the unitary matrix, and let M′ = M− I; thus
we have vsM′ = 0. Then, we can obtain Adj(M′)M′ = det(M′I) = 0 according to the Cramer’s rule,
in which Adj(M′) denotes the adjugate matrix of M′. Comparing the above two equations, one can
see that v is proportional to every row of Adj(M′). Therefore, the dot product of the stable vector vs

and any vector f = ( f1, f2, f3, f4) can be calculated as follows:

vT
s · f = D(pt, qt, f),

= det


pt

1qt
1 − 1 pt

1 − 1 qt
1 − 1 f1

pt
2qt

3 pt
2 − 1 qt

2 f2

pt
3qt

3 pt
3 qt

3 − 1 f3

pt
4qt

4 pt
4 qt

4 f4

 .
(5)

Notably, the second column of (5) can be determined by the requestor alone, which is denoted as
p̃t = (pt

1 − 1, pt
2 − 1, pt

3, pt
4)

T. Hence, when f = αSr + βSw + γ1, we have

vT
s · f = vT

s · (αSr + βSw + γ1) = αEr + βEw + γ, (6)

where Er and Ew are, respectively, the expected payoffs of the requestor and the worker in the final
stable state; α, β, γ are scalars. Based on (5), we also have

αEr + βEw + γ = D(pt, qt, αSr + βSw + γ1). (7)

Therefore, if the requestor selects strategy pt satisfying p̃t = χ(αSr + βSw + γ1)(χ 6= 0),
the corresponding matrix’s second column is proportional to the fourth column, which implies that
the above equation is equal to zero, i.e., αEr + βEw + γ = 0. Therefore, the strategy adopted by the
requestor is known as a zero-determinant strategy. Then the weighted social welfare of this game can be
defined as

Eall = αEr + βEw = −γ. (8)

The above analysis indicates that when the requestor adopts a zero-determinant strategy, she can
have a unilateral control over the social welfare, which can be fixed to a desired value no matter what
strategy the worker adopts. This provides the requestor a powerful tool to maintain the stability and
sustainability of the crowdsensing system.

In order to set the optimum and stable social welfare regardless of the worker’s strategy,
the requestor needs to solve the following constrained optimization problem:

max Eall = αEr(pt, qt) + βEw(pt, qt), ∀qt,

s.t.

{
0 ≤ pt ≤ 1,

αEr + βEw + γ = 0.
(9)

As mentioned in (8), it is equivalent to solve the following problem:

min γ,

s.t.


0 ≤ pt ≤ 1,

p̃t = χ(αSr + βSw + γ1),

χ 6= 0.

(10)
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For the case of χ > 0, when considering the constraint pt ≥ 0, one can get

γmin = max(Γi), ∀i ∈ {1, 2, 3, 4},

Γi =

{
−αSi

r − βSi
w − 1

χ , i = 1, 2,

−αSi
r − βSi

w, i = 3, 4.
(11)

while when considering the constraint condition pt ≤ 1, we have

γmax = min(Γj), ∀j ∈ {5, 6, 7, 8},

Γj = Γi+4 =

{
−αSi

r − βSi
w, i = 1, 2,

−αSi
r − βSi

w + 1
χ , i = 3, 4.

(12)

Note that γ has a feasible solution only when it meets γmin < γmax, i.e., max(Γi) < min(Γj), ∀i ∈
{1, 2, 3, 4}, ∀j ∈ {5, 6, 7, 8}. Considering that χ could be any positive value, we can obtain the minimum
value of γ as follows,

γmin = max(−αS3
r − βS3

w,−αS4
r − βS4

w). (13)

For the case of χ < 0, when considering that pt ≥ 0, we have γmin = max(Γj), ∀j ∈ {5, 6, 7, 8};
while when considering that pt ≤ 1, we have γmax = min(Γi), ∀i ∈ {1, 2, 3, 4}. Then, γ is feasible
when γmin < γmax, i.e., max(Γj) < min(Γi), ∀i ∈ {1, 2, 3, 4}, ∀j ∈ {5, 6, 7, 8}. Finally, we can get the
following result:

γmin = max(−αS1
r − βS1

w,−αS2
r − βS2

w). (14)

According to (13) and (14), when the requestor adopts the zero-determinant strategy pt meeting
p̃t = χ(αSr + βSw + γ1), each element of pt can be calculated as follows:

pt
i =

{
χ(αSi

r + βSi
w + γmin) + 1, i = 1, 2,

χ(αSi
r + βSi

w + γmin), i = 3, 4.
(15)

3.2. Zero-Determinant Strategy Based Scheme in the Continuous Model

In order to solve the problem under the continuous model, we also assume that both the requestor
and the worker make their choices on strategies according to the outcome of the last round. Similarly,
we define the mixed strategy of the requestor pt(x−1, y−1, x) as the probability she chooses the payment
x at round t when the state at round t− 1 is x−1y−1, where x−1, x ∈ [lr, hr] and y−1 ∈ [lw, hw]. Since
the strategy x can be any value in the continuous domain, we have

∫ hr

lr
pt(x−1, y−1, x)dx = 1. (16)

In addition, the mixed strategy of the worker qt(x−1, y−1, y) also refers to the conditional probability he
provides job quality y when the state at the last round is x−1y−1, where x ∈ [lr, hr] and y−1, y ∈ [lw, hw].
There also exists the following relationship:

∫ hw

lw
qt(x−1, y−1, y)dy = 1. (17)

Next, we suppose that the joint probability that the requestor adopts strategy x and the worker
adopts y at each round is v(x, y). Considering the utility functions wr(x, y), ww(x, y), one can get the
expected utility of the requestor and that of the worker at round t as follows:

Et
r =

∫ hw

lw

∫ hr

lr
v(x, y)wr(x, y)dxdy, (18)
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Et
w =

∫ hw

lw

∫ hr

lr
v(x, y)ww(x, y)dxdy. (19)

Similar to the state transition matrix M in the discrete model, there is a transition function, denoted
as M(x−1, y−1, x, y), indicating the state transition probability from round t− 1 to round t, which can
be expressed as:

M(x−1, y−1, x, y) = pt(x−1, y−1, x)qt(x−1, y−1, y). (20)

Then, the state probabilities at two sequential rounds have the following relationship:

v(x−1, y−1) ·M(x−1, y−1, x, y) = v(x, y). (21)

With a similar analysis as the one for the zero-determinant strategy derived in the discrete model,
we can figure out the zero-determinant strategy in the continuous model, which is summarized
as follows.

Lemma 1. When the requestor’s strategy pt(x−1, y−1, x) satisfies p̃t(x−1, y−1, hr) = χ(αwr(x, y) +
βww(x, y) + γ)(χ 6= 0), the requestor’s expected utility Er in a stable state and that of the worker Ew

meet the following relationship:
αEr + βEw + γ = 0, (22)

where p̃t(x−1, y−1, hr) is defined as

p̃t(x−1, y−1, hr) =

{
pt(x−1, y−1, hr), x < hr,

pt(x−1, y−1, hr)− 1, x = hr.
(23)

Proof. We first divide the continuous strategy space into η parts. Then the strategies of the requestor
and the worker turn to be x ∈ {lr, lr + δ, lr + 2δ, · · · , lr + ηδ}, and y ∈ {lw, lw + δ, lw + 2δ, · · · , lw + ηδ},
respectively, where δ is sufficiently small while η is sufficiently large, satisfying lr + ηδ = hr

and lw + ηδ = hw. It is clear that when δ→ 0, the strategy space is approximately continuous.
Accordingly, the payoffs of the requestor and the worker are Wr = {wr(lr, lw), · · · , wr(lr, lw +

ηδ), · · · , wr(lr + ηδ, lw), · · · , wr(lr + ηδ, lw + ηδ)} = {wr00, · · · , wr0η, · · · , wrη0, · · · , wrηη} and
Ww = {ww(lr, lw), · · · , ww(lr, lw + ηδ), · · · , ww(lr + ηδ, lw), · · · , ww(lr + ηδ, lw + ηδ)} =

{ww00, · · · , ww0η, · · · , wwη0, · · · , wwηη}, respectively.
Then, we define the requestor’s mixed strategy at round t as pt

ij−k,∀i, j, k ∈ {0, 1, · · · , η}, which
means that the probability of the requestor choosing x = lr + kδ at round t when the last state
is x−1 = lr + iδ, y−1 = lw + jδ; similarly, the worker’s mixed strategy at round t is qt

ij−k, where
i, j, k ∈ {0, 1, · · · , η}.

According to the above division on the strategy space and utility space, we have a Markov state
transition matrix as follows:

Md = [M00, · · · , M0η, M11, · · · , M1η, · · · , Mη0, · · · , Mηη], (24)

where each element Mij,∀i, j ∈ {0, 1, · · · , η} is a vector containing the transition probability from all
the possible combinations of the last state x−1y−1 to the current state x = lr + iδ and y = lw + jδ. More
specifically, each element can be written as:

Mij =[pt
00−iq

t
00−j, · · · , pt

0η−iq
t
0η−j, pt

11−iq
t
11−j, · · · , pt

1η−iq
t
1η−j, · · · , pt

η0−iq
t
η0−j, · · · , pt

ηη−iq
t
ηη−j]

T. (25)

Suppose that the stable vector of Md is vd, we have vT
d Md = vT

d , and the expected utilities of the
requestor and the worker are Er = vT

d Wr and Ew = vT
d Ww, respectively.
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Assuming that M′d = Md − I, we have vT
d M′d = 0. With the same calculation as that under the

discrete model, we obtain that vT
d is proportional to each row of Adj(M′d). Therefore, for any vector

f = [ f00, f01, · · · , fηη], with the known condition ∑
η
j=0 qt

i−j = 1, one can compute its dot product with
vd as follows:

vd · f = D(pt, qt, f),

= det



pt
00−0qt

00−0 · · · pt
00−η f00

...
...

...
...

pt
(η−1)η−0qt

(η−1)η−0 · · · pt
(η−1)η−η

f(η−1)η

pt
ηη−0qt

ηη−0 · · · pt
ηη−η − 1 fη0

...
...

...
...

pt
ηη−0qt

ηη−0 · · · pt
ηη−η − 1 fηη


.

(26)

It is clear that the penultimate column of (26) can be decided only by the requestor, denoted
as p̃(η+1)(η+1). When f = αWr + βWw + γ1, we have vT

d · f = vT
d(αWr + βWw + γ) = αEt

r + βEt
w + γ.

Therefore, if p̃(η+1)(η+1) = χ(αWr + βWw + γ1), we have αEt
r + βEt

w + γ = 0. When the small number
δ approaches to 0, the above lemma is proved.

The weighted social welfare is defined as Eall = αEr + βEw = −γ. Then according to Lemma 1, the
requestor’s strategy pt(x−1, y−1, x) is the only factor affecting the weighted social welfare Eall, which
can be regarded as the zero-determinant strategy in the continuous model. To be specific, the requestor
can solve the following optimization problem to achieve a unilateral control on the social welfare
without considering the worker’s strategy:

max Eall = αEr(pt, qt) + βEw(pt, qt),∀qt,

s.t.

{
0 ≤ pt(x−1, y−1, x) ≤ 1,

αEr + βEw + γ = 0.
(27)

Let W(x, y) = αwr(x, y) + βww(x, y); then the above problem can be converted into

min γ,

s.t.


0 ≤ pt(x−1, y−1, x) ≤ 1,

pt(x−1, y−1, x) = χ(W(x, y) + γ),

χ 6= 0.

(28)

For the case of χ > 0, considering the constraint pt ≥ 0, we have

γmin = max(Γ(x′, y′)),∀x′ ∈ [lr, hr],∀y′ ∈ [lw, hw],

Γ(x′, y′) =

{
−W(x′, y′), x′ < hr,

−W(x′, y′)− 1
χ , x′ = hr.

(29)

While considering the constraint condition pt ≤ 1, we have

γmax = min(Γ(x′′, y′′)),∀x′′ ∈ [lr, hr],∀y′′ ∈ [lw, hw],

Γ(x′′, y′′) =

{
−W(x′′, y′′) + 1

χ , x′′ < hr,

−W(x′′, y′′), x′′ = hr.
(30)



Sensors 2017, 17, 1012 9 of 16

When γmin < γmax, γ has a feasible solution. In other words, max(Γ(x′, y′)) <

min(Γ(x′′, y′′)),∀x′, x′′ ∈ [lr, hr],∀y′, y′′ ∈ [lw, hw]. Since χ could be any positive number, we can
get the minimum value of γ:

γmin = max(−W(x′, y′)),∀x′ ∈ [lr, hr),∀y′ ∈ [lw, hw]. (31)

For the case of χ < 0, when considering pt ≥ 0, we have γmin = max(Γ(x′′, y′′)),∀x′′ ∈
[lr, hr],∀y′′ ∈ [lw, hw]; while when considering pt ≤ 1, we have γmax = min(Γ(x′, y′)),∀x′ ∈ [lr, hr],∀y′ ∈
[lw, hw]. Then, γ is feasible only when γmin < γmax, i.e., max(Γ(x′′, y′′)) < min(Γ(x′, y′)),∀x′, x′′ ∈
[lr, hr],∀y′, y′′ ∈ [lw, hw]. Thus, we can obtain the following result:

γmin = max(−W(hr, y′′)),∀y′′ ∈ [lw, hw]. (32)

Then, according to (31) and (32), the requestor’s zero-determinant strategy pt can be calculated
as follows:

pt(x−1, y−1, hr) =

{
χ(W(x−1, y−1) + γmin), x−1 < hr,

χ(W(x−1, y−1) + γmin) + 1, x−1 = hr.
(33)

4. Evaluation of the Proposed Schemes

In this section, we evaluate the zero-determinant strategy based schemes proposed in Section 3 by
simulations in Matlab. Considering the general definition of social welfare, we set α = β = 1. First, we
investigate the scheme proposed for the discrete model and report the results for the parameter settings
Rw = 3, Rr = 3, a = 3, b = 2, m = 3, n = 2, which implies that Sr = (3, 0, 5, 2) and Sw = (3, 5, 0, 2). Note
that we also simulate other parameter settings satisfying the relationship among these parameters
mentioned in Section 2, and obtain very similar results, which are omitted due to page limit.

In order to testify the effectiveness of our proposed scheme, we compare the zero-determinant
strategy with five other classical strategies that might be adopted by the requestor. In Figure 2, we
display the results when the requestor adopts the proposed zero-determinant (ZD), all cooperation
(pt = [1, 1, 1, 1], denoted as ALLC), all defection (pt = [0, 0, 0, 0], denoted as ALLD), and random
(pt = [0.5, 0.5, 0.5, 0.5], denoted as Random) strategies while the worker adopts three strategies, i.e.,
ALLC, ALLD, and Random. It can be seen that the social welfare can be kept stable and can achieve
its maximum value when the requestor adopts the ZD strategy and the worker adopts any strategy.
However, when the requestor takes the other three strategies, the social welfare is determined by the
strategies of both the requestor and the worker, which means that the requestor has no dominance on
the control over the social welfare. The comparison results between the ZD strategy and two other
classical strategies, i.e., tit-for-tat (TFT) and win-stay-lose-shift (WSLS), are presented in Figure 3. It is
clear that when the requestor adopts the ZD strategy and the worker takes either TFT or WSLS, the
social welfare is approximately the same and is stable; while when the requestor changes to any other
strategy, the social welfare is fluctuated most of the time and is affected by the strategies of both parties.

Next, we look at the respective payoffs of the requestor and the worker, depicted together with
the total payoff (i.e., social welfare). The results when the requestor adopts the ZD strategy and the
worker takes ALLC, ALLD, and Random strategies are shown in Figure 4, from which one can find out
that the payoffs of the requestor and the worker are getting stable as the number of rounds increases,
so does the social welfare. In Figure 5, we plot the payoffs of the requestor and the worker as well
as the social welfare at each round under different strategy pairs, i.e., ZD versus TFT and ZD versus
WSLS. The results indicate that the payoffs gradually become stable, which is consistent with the
change of the social welfare. From the above two figures, one can also find out that the requestor’s
payoff in stable state is no less than that of the worker in all strategy pairs except for the case when the
requestor takes the ZD strategy while the worker takes the ALLD strategy, which seems to be unwise
for a reasonable worker in practice.
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Figure 2. Social welfare with different strategy pairs (requestor vs. worker) among ZD, ALLC, ALLD,
and Random in the discrete model. (a) requestor adopts the ZD strategy; (b) requestor adopts the
ALLC strategy; (c) requestor adopts the ALLD strategy; (d) requestor adopts the Random strategy.
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Figure 3. Social welfare with different strategy pairs (requestor vs. worker) among ZD, TFT, and WSLS
in the discrete model. (a) requestor adopts the ZD strategy; (b) requestor adopts the TFT strategy; and
(c) requestor adopts the WSLS strategy.
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Figure 4. Payoffs with ZD vs. ALLC/ALLD/Random in the discrete model. (a) requestor’s payoff;
(b) worker’s payoff; (c) social welfare.
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Figure 5. Payoffs with ZD vs. TFT/WSLS in the discrete model. (a) requestor’s payoff; (b) worker’s
payoff; (c) social welfare.

In the scenario of continuous strategies adopted by both the requestor and the worker, we assume
that they can choose their strategies from [0,10], i.e., lr = lw = 0, hr = hr = 10. Suppose that
φ(y) = 1

1+exp(−y) , Ar = 4, Br = 0.1, and ψ(y) = 1
1+exp(−y) − 1, Aw = 0.3, Bw = 4; thus we have

wr(0, 0) = ww(0, 0) = 2 and wr(10, 10) = ww(10, 10) = 3. We first compare the ZD strategy with
the ALLC strategy corresponding to pt(x−1, y−1, hr) = 1, the ALLD strategy corresponding to
pt(x−1, y−1, hr) = 0, and the Random strategy corresponding to pt(x−1, y−1, x) = 1/(hr − lr), applied
by the requestor. As shown in Figure 6, when the requestor adopts the ZD strategy, the social welfare
becomes stable no matter whether the worker adopts the ALLC strategy (qt(x−1, y−1, hw) = 1), the
ALLD strategy (qt(x−1, y−1, hw) = 0), or the Random strategy (qt(x−1, y−1, y) = 1/(hw− lw)). However,
when the requestor employs any other classical strategy, the social welfare is related to the strategies
of both sides. When TFT and WSLS strategies are employed, the results are presented in Figure 7.
It can be seen that when the requestor takes the ZD strategy, no matter what strategies (TFT or WSLS)
the worker adopts, the social welfare stays in the same stable value. However, when the requestor
adopts either TFT or WSLS , the social welfare is also affected by the worker’s strategy. Furthermore,
from the above two figures, one can see that even though the social welfare with some other pairs of
strategies can reach stability, it is always less than that can be achieved when the requestor adopts the
ZD strategy.
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Figure 6. Social welfare with different strategy pairs (requestor vs. worker) among ZD, ALLC, ALLD,
and Random in the continuous model. (a) requestor adopts the ZD strategy; (b) requestor adopts the
ALLC strategy; (c) requestor adopts the ALLD strategy; (d) requestor adopts the Random strategy.
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Figure 7. Social welfare with different strategy pairs (requestor vs. worker) among ZD, TFT, and WSLS
in the continuous model. (a) requestor adopts the ZD strategy; (b) requestor adopts the TFT strategy;
and the (c) requestor adopts the WSLS strategy.

We also examine the payoffs of the requestor and the worker, as well as the total payoff (i.e., social
welfare), under different strategy pairs they adopt. When the requestor adopts the ZD strategy and the
worker adopts ALLC, ALLD, or Random, the results are reported in Figure 8, which clearly shows that
the payoffs of the requestor and the worker are getting stable when the number of rounds increases,
so does the social welfare. Figure 9 reports the payoffs of the requestor and the worker as well as the
social welfare in each round under different strategy pairs (i.e., ZD versus TFT and ZD versus WSLS).
One can see that the payoffs and the social welfare are gradually becoming stable.
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Figure 8. Payoffs with ZD vs. ALLC/ALLD/Random in the continuous model. (a) requestor’s payoff;
(b) worker’s payoff; (c) social welfare.
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Figure 9. Payoffs with ZD vs. TFT/WSLS in the continuous model. (a) requestor’s payoff; (b) worker’s
payoff; (c) social welfare.

5. Related Work

Recently, a large number of works focusing on devising incentive schemes to motivate workers’
participation in mobile crowdsensing have been proposed. Generally speaking, there are three typical
classes of incentives, i.e., entertainment, service, and money. Entertainment-based incentive schemes are
always realized by delicately designing games with attractive rewarding and penalizing strategies.
In [12], Jordan et al. developed a location-based game called Ostereiersuche to collect the landmark
structural information by encouraging users to search for coupons with some navigation hints, which
is certainly an entertainment based incentive mechanism. Hoh et al. [13] proposed TruCentive, a service
incentive mechanism that employs the parking information as an incentive to stimulate the drivers
to report available parking time and places, by which the reporters could obtain corresponding
points for future parking information requests. Lan et al. [14,15] designed a virtual credit based
incentive mechanism for collecting mobile surveillance data, by which a participant could download
data only when he/she paid the amount of required virtual credit earned by uploading sensing
data or sharing bandwidth with others. The monetary incentives mostly rely on an economics tool,
i.e., auction. In [16], considering the opportunistic occurrences in the places of interest, several
online reverse-auction-based incentive mechanisms were put forward to achieve desired computation
efficiency, individual rationality, profitability, and truthfulness in mobile crowdsensing. Chen et al.
in [17] also took account of the participants’ dynamic arriving, based on which they devised a truthful
online auction mechanism with no requirement on the previous knowledge.

Considering that data quality is an essential factor affecting the performance of mobile
crowdsensing, more and more literature have turned to tackling the challenges of low task quality
offered by participants. In [7], a metric called quality of information (QoI) was considered in the design of
the incentive mechanisms for mobile crowdsensing and a reverse combinatorial auction was adopted
to realize a maximized social welfare for the requestor and all the participating workers. Each mobile
crowdsensing task was distributed by the requestor according to the bids of the workers along with the
sum of QoI they can provide, which was obviously an NP-hard (non-deterministic polynomial-time
hard) problem and could be only approximately solved. Another auction based and data quality
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accounted research work was reported in [8], in which an algorithm based on reverse Vickrey auction
was proposed to maximize the social welfare when choosing workers in mobile crowdsensing, where
the concept of data quality was mainly determined by the data type provided by a specific worker.
After the subset of winning workers was selected by the QDA algorithm, the independent payment
for each winner could be derived, along with some extra rewards proportional to the number of
requestors adopting the submitted sensing data. In order to further protect the crowdsensing system
from fake data attack during the auction-based working process, Xiao et al. [18] utilized game theory
to accommodate the data quality into the utility functions of the requestor and the workers, and then
derived the Nash Equilibrium according to the best responses. To be specific, all the submitted sensing
data were classified into several types indicating different data quality levels as well as different
payment levels, where the fake-data providers would be rated to be the lowest level and given the
lowest payment of zero.

Note that even though auction based schemes are effective for data quality sensitive situations,
such an approach could be unnecessary and burdensome for some simple mobile crowdsensing
applications with low limitations on budget or with strict requirement on promptness.

Different from the above schemes that evaluate the data quality after completing the receiving
process, data quality can be estimated in advance to help determine the best subset of workers
undertaking the sensing tasks. For example, an Expectation Maximization algorithm and Bayesian
inference were jointly taken by [19] to achieve data quality assurance in mobile crowdsensing: with
the estimated data quality, a relatively fair and appropriate payoff for each worker can be calculated
through a contribution quantification process with a Information Theory based model; and at the end
of each task round, the estimation of the data quality provided by each worker is updated so as to
evaluate data quality more precisely in the next round.

With the historical execution behavior of workers, some reputation based methods were proposed
to settle the low quality problem of submitted data in mobile crowdsensing. In [9], Ref. Amintoosi et al.
put forward a reputation framework for social participatory crowdsensing systems, rating workers via
a fuzzy inference system according to their contribution quality and social trustworthiness level. After
earning this reputation score, they utilized the PageRank algorithm to filter out the low quality data
contributors online.

In addition, historical records of the system feedback can also offer a possibility for some data
analysis techniques to improve the data quality in mobile crowdsensing. Kawajiri et al. [10] proposed
a framework named Steered Crowdsensing based on some commercial location-based services (LBSs) to
directly increase the job quality provided by the workers in crowdsensing, especially in opportunistic
crowdsensing scenario. A quality indicator was introduced into the machine learning settings to
optimally determine the payment of each sensing task, corresponding to a specific location, in a
feedback-system manner, and further determine the quality of services the whole crowdsensing system
can offer. This implies that there is a clear display of payment for each subtask at different locations,
and the workers only need to make decisions on whether or not to complete the data sensing task in
the required places.

On the other hand, the embedded sensors in the workers’s devices can not only help collect
data in mobile crowdsensing but also potentially leak private information of the workers, such
as location privacy indicated by GPS. Thus, the tradeoff between privacy preservation and data
contribution of the workers plays an important role in the stable and prosperous development of
mobile crowdsensing, which has been widely investigated in recent years [20–22]. In [20], Alsheikh et al.
proposed a mechanism based on Vickrey–Clarke–Groves auction, which can guarantee data accuracy
of mobile crowdsensing applications and simultaneously protect the workers’ privacy according to
their requirements. Furthermore, in [22], Gisdakis et al. extended their basic security and privacy
framework called SPPEAR [21] to resist as many attacks as possible, which could support various
incentive mechanisms for participants in mobile crowdsensing.
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From the above discussions, one can see that existing research related to mobile crowdsensing
mainly focuses on incentive mechanism design and data quality control, as well as privacy and security
protection. Incentive mechanisms are mostly based on providing entertainment, services, or money,
where money based incentives always rely on auctions, while data quality control schemes mainly
take advantage of auctions, game theory, data mining, and data analysis methods (e.g., Expectation
Maximization algorithm, machine learning). The privacy and security issues are attracting more and
more attention in recent years, which can be tackled by truthful actions and/or delicately designed
security systems.

6. Conclusions

In this paper, we investigate the issue of social welfare control in crowdsensing. With the
help of zero-determinant strategy, we propose a powerful approach for the requestor to unilaterally
control the social welfare, i.e., the sum of the expected payoffs of the requestor and the worker,
with no consideration on the strategy of the worker under both the discrete-strategy model and the
continuous-strategy model. More specifically, with a delicate computation of her strategy, the requestor
can achieve maximized and stable social welfare regardless of the worker’s strategy and complete the
payment process at the same time. The simulation results validate the effectiveness of our proposed
mechanisms, showing that the requestor adopting zero-determinant strategy can ensure the social
welfare to stay at a desired level on her own.
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