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Abstract: Spectrum sensing (SS) enables the coexistence of non-coordinated heterogeneous wireless
systems operating in the same band. Due to its computational simplicity, energy detection (ED)
technique has been widespread employed in SS applications; nonetheless, the conventional ED may
be unreliable under environmental impairments, justifying the use of ED-based variants. Assessing
ED algorithms from theoretical and simulation viewpoints relies on several assumptions and
simplifications which, eventually, lead to conclusions that do not necessarily meet the requirements
imposed by real propagation environments. This work addresses those problems by dealing
with practical implementation issues of adaptive least mean square (LMS)-based ED algorithms.
The paper proposes a new adaptive ED algorithm that uses a variable step-size guaranteeing the LMS
convergence in time-varying environments. Several implementation guidelines are provided and,
additionally, an empirical assessment and validation with a software defined radio-based hardware
is carried out. Experimental results show good performance in terms of probabilities of detection
(Pd > 0.9) and false alarm (Pf ∼ 0.05) in a range of low signal-to-noise ratios around [−4, 1] dB, in
both single-node and cooperative modes. The proposed sensing methodology enables a seamless
monitoring of the radio electromagnetic spectrum in order to provide band occupancy information
for an efficient usage among several wireless communications systems.

Keywords: energy detection; SDR implementation; USRP; cooperative networks

1. Introduction

An important bottleneck in current broadband wireless communication systems is spectrum
scarcity. Among the proposals to address this issue, the continuous sensing of particular spectrum
bands in order to detect the so-called white spaces is quite promising. Users that otherwise would not
be able to communicate can leverage this knowledge to opportunistically use the available spectrum
portions. The sensing stage here is of paramount importance and, in this context, it is implemented by
devices with built-in antenna (or antenna array), down converters, analog-to-digital converters (ADCs),
and digital processors that are fed by the resulting digital samples and may perform additional expert
processing. The devices capable of performing those tasks are called cognitive radio (CR) nodes; in
fact, following an intelligent sensing framework, the main challenges regarding spectrum sensing by
CR nodes can be cast within the digital signal processing context, as will be further clarified.

Current wireless communication models state new ecosystems such as 5G in order to integrate
different wireless communication solutions into a unified structure that connects people, machines
and devices on a massive scale, besides offering a variety of ubiquitous services and applications [1].
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In order to favor this model, the shared use of radio spectrum resources is also promoted [2] by
providing alternatives for the coexistence of non-coordinated heterogeneous wireless systems operating
in the same band. At this point, spectrum sensing is the first stage of the dynamic spectrum access cycle
that enables a virtually harmless coexistence. The basic functioning principle of this solution relies
on a usually unlicensed or secondary user (SU), capable of observing whether a specific frequency
band is being utilized by a primary, or licensed, user (PU). If the frequency band is available, then the
secondary user can occupy it without interfering with primary terminals. In addition, if the authorized
terminal restarts transmission, the secondary terminal jumps off into a different band, or modifies its
transmission scheme, while staying in the same frequency band, in order to minimize interference [3–5].
Several wireless technologies such as Zigbee, WiFi and Bluetooth already coexist in unlicensed bands
(i.e., Industrial, Scientific and Medical (ISM) bands), employing spectrum sensing as a listen-before-talk
strategy in order to minimize mutual interferences in the spectrum sharing scenario. In addition, other
wireless schemes such as Long Term Evolution (LTE)-unlicensed extend LTE to unlicensed spectrum by
aggregating unlicensed carriers with licensed ones through carrier aggregation or solely operating in
unlicensed bands [6], where spectrum sensing will play an important role. Lastly, we can also mention
the recently emerged concept named licensed shared access (LSA) [7,8]. LSA is a supervised shared
access proposal based on an exclusive regime of spectrum sharing among incumbents—i.e., PUs, which
have the right to commercially exploit a given wireless spectrum portion—and LSA licensees—i.e.,
licensed users that leased an incumbent’s spectrum band, which can then be used when permission
is granted. The entity responsible for granting permissions is a denominated LSA controller, whose
decisions are taken based on spectrum availability information provided by incumbents to the LSA
repositories [9]. In this context, spectrum sensing technologies facilitate the decisions of LSA controllers
by providing LSA repositories with dynamic and up-to-date radio-environment maps (REMs) [1,10].
More specifically, this dynamic knowledge and update of REMs is acquired via processing of spectrum
measurements collected from intelligent sensors, consisting of measurement-capable devices (MCDs)
with geo-location information.

A plethora of spectrum sensing techniques can be found in the literature, where energy detection
(ED) plays a key role in low-complexity applications due to its inherent computational simplicity
in terms of implementation and no need of prior information about PUs [5,11–14]. Variants of the
ED technique, including adaptive ED solutions, have been proposed in order to address those cases
in which the conventional energy detector is unreliable due to environmental circumstances, such
as insufficient signal strength, rapid noise-power fluctuations, or background interferences [15,16].
Whenever possible, cooperative strategies are employed to increase the detection reliability in either
centralized or distributed manners [17,18]. In this context, distributed least-mean-squares (LMS)-based
algorithms have been widely employed for adaptive ED purposes [19–24]. Commonplace among
those skeptical researchers and practitioner engineers is the fact that most of the works in this area are
analyzed from theoretical and simulation viewpoints solely, thus relying on several assumptions and
simplifications which, eventually, lead to conclusions that do not necessarily meet the requirements
imposed by real propagation environments. Exceptions to this rule include [25,26] and references
therein, which consider some practical issues of conventional ED, and [27–29], which consider practical
opportunistic spectrum access from a cross-layer perspective, analyzing medium access control (MAC)
and other layers of the protocol stack.

In this work, we analyze the distributed LMS-based ED technique proposed in [24] from a
practical viewpoint. In theoretical works, environment parameters, such as signal-to-noise ratio (SNR)
and noise variance, are initially fixed to analyze the performance of the algorithm. Based on those
predefined values, the step-size of the LMS algorithm, which controls the convergence speed of the
algorithm, is accordingly chosen. In real scenarios, shadowing due to moving objects or people along
with other environmental impairments make the environment time-varying. As a consequence, those
parameters which are considered constant in theoretical works are no longer time-invariant and must
be updated online. These reasons motivated this work to deal with the implementation issues of the
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previously-proposed adaptive ED algorithm and present a new practical proposal of the theoretical
LMS-based ED algorithm. The proposed modifications make the original algorithm practical to work
with minimal tuning in heterogeneous wireless scenarios. In addition, an empirical assessment and
validation with a software defined radio (SDR)-based hardware implementation is carried out.

Thus, the main contributions of the paper are: (1) a new proposal of a variable step-size (VSS)
LMS ED algorithm which computes online the step-size in order to ensure the convergence of the
adaptive solution proposed in [24] for time-varying SNR environments; (2) practical solutions for
noise variance and SNR estimations as well as data sharing; (3) implementation guidelines of the
VSSLMS-based ED algorithm for single-node and cooperative modes; (4) an implementation of the
practical VSSLMS-based ED scheme in an SDR-based framework using Universal Software Radio
Peripheral (USRP) platforms for both single-node and cooperative ED; and, finally; (5) the evaluation
of the sensing system using lab measurements in a real indoor radio-propagation scenario.

The ED-based sensing methodology proposed in this paper pursues an actual seamless monitoring
of the radio environment through the received electromagnetic signal strength processing in MCDs
(i.e., USRP devices). The ED-based sensing solutions are given for stand-alone or cooperative modes,
in which the latter provides a more accurate and reliable monitoring in areas with low SNR. The
described sensing procedure can be employed for different purposes such as opportunistic spectrum
access in spectrum sharing scenarios or generation of REMs.

The paper is organized as follows. Section 2 briefly reviews the LMS-based ED algorithm proposed
in [24]; Section 3 deals with the three main implementation issues of the algorithm, namely noise
variance and SNR estimation, variable step-size computation, and cooperative issues; in Section 4, the
SDR-based testbench is described. The results corresponding to the lab measurements and further
discussions are presented in Section 5, in which transient and steady-state analyses are firstly performed
in Section 5.1, while the detection performance for different schemes is analyzed in Section 5.2. Finally,
conclusions are drawn in Section 6.

2. Review of Adaptive ED Algorithm

Let us consider a cognitive radio network where secondary users spatially distributed perform
spectrum sensing in a selected frequency band in order to detect the presence of licensed or primary
users. The primary-user signal and the input noise at the secondary-user receiver are assumed random
and zero-mean Gaussian distributed with covariance matrices Σs = σ2

s IN and Σw = σ2
wIN , respectively.

Thus, the received signal x = [x1, ..., xN ]
T can be expressed as

x = βs + w, (1)

where s = [s1, ..., sN ]
T is the PU signal, w = [w1, ..., wN ]

T denotes the input noise, and β works as a
selector of the environment characteristic under the hypotheses H0 (absence of PU signal, i.e., β = 0)
and H1 (presence of PU signal, i.e., β = 1). The energy detector of the m-th secondary user computes a
local test statistic ym,k from N received samples at the time slot k as

ym,k = ‖x‖2 =
N

∑
n=1
|xn|2 . (2)

The local test statistic is then used to compute an adaptive LMS-based test statistic (cf. [24] for
more details), which can then be employed in both cooperative and single-node contexts. As a result,
the update equation of the test statistic ωm,k to be used in a distributed detection process at the m-th
SU can be expressed as

ωm,k+1 = ωm,k + µm ∑
i∈Nm

ciεi,kũi,k , (3)
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where ũi,k =
∣∣yi,k − γi

∣∣ represents the adaptive filter input associated with the i-th neighboring user
within the neighborhood of the m-th user, denoted asNm. It is worth noticing that (3) is the generalized
expression for single-node and distributed cooperative detection. When cooperation is possible, the
LMS-based test statistic uses the local test statistics obtained from the m-th node and their neighboring
SUs, i.e., yi,k for i ∈ Nm. When single-node operation is chosen, the LMS-based test statistic uses
only the test statistic of the m-th SU, i.e., ym,k since card(Nm) = 1. The value γi is the threshold over
the test statistic yi,k for a predefined probability of false alarm Pf = Pr(yi,k > γi |H0). In general,
γi can be computed by considering yi,k as being Gaussian distributed, a reasonable approximation
for sufficiently high N in practice [24,30]. The parameter µm represents the step-size of the adaptive
algorithm and the output-error coefficient εi,k is computed as

εi,k = d̃i,k −ωm,kũi,k , (4)

where d̃i,k = di,k − γi, with di,k being the desired signal, which can be computed at each instant k as

di,k = (1− α)yi,k + αdi,k−1 , (5)

in which α is a scalar close to but less than 1 (α = 0.95 is widely used). Moreover, the coefficients
ci must satisfy ∑i∈Nm ci = 1 and are chosen in order to perform uniform or weighted cooperation.
When cooperation is uniform, weights are computed as ci = 1/card(Nm). Weighted cooperation is
carried out as a function of parameters such as number of linked nodes [31], noise variance, or SNR
estimates [24]. The selection of the weighted strategy shall depend on the available shared information
from the neighbors at the m-th SU.

Following the update process in (3), the detection test is then performed:

ωm,k

H1

R
H0

γ̃m , (6)

where γ̃m is the new detection threshold for the neighborhood Nm. Assuming that the distribution of
ωm,k at steady state can be approximated to a Gaussian distribution [24], we can express the probability
of false alarm of the detector for a certain threshold γ̃m as

Pf = Pr(ωm,k > γ̃m |H0) = Q

 γ̃m − E [ωm,k]H0√
Var [ωm,k]H0

 , (7)

where E [ωm,k]H0
and Var [ωm,k]H0

are the expectation and variance of ωm,k, respectively, when
hypothesis H0 holds. The derivations of those values can be found in [24]. The Q-function is defined

as Q (z) =
∫ ∞

z
1√
2π

e−
x2
2 dx.

Consequently, from (7), the threshold γ̃m can be obtained for a predefined Pf as

γ̃m = E [ωm,k]H0
+ Q−1 (Pf)

√
Var [ωm,k]H0

. (8)

3. Implementation Issues of Adaptive ED

This section deals with the main practical issues arising from the implementation of the previously
described algorithm. In real applications, the parameters which are usually assumed known or
computed offline in theoretical works need to be updated online to make the algorithm practical and
self-adjustable. In this sense, we present a series of pragmatical solutions which enable the actual
implementation of the adaptive ED algorithm described in the previous section in an SDR-based
platform. Firstly, a practical method for the noise variance σ2

m and SNR estimation is presented.
Secondly, we will propose a new version of the LMS-based ED algorithm based on a variable step-size
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strategy in order to ensure the convergence of the algorithm in time-varying environments. In addition,
the behavior of the VSS proposal is analyzed in the transient states. Finally, some aspects of data
sharing in cooperative detection are addressed along with a general view of the new practical proposal.

3.1. Noise Variance and SNR Estimation

In practical scenarios, it is necessary to estimate the noise variance in order to compute the
thresholds γ and γ̃ (sometimes, we shall omit the index that identifies the SU node (e.g., m)
for the sake of notation simplicity). Such a task can be conducted before running the adaptive
algorithm by considering that ym,k is drawn from a Gaussian distribution whose parameters depend
on the particular hypothesis. More specifically, ym,k ∼ N (Nσ2

m, 2Nσ4
m) if H0 holds, whereas

ym,k ∼ N ([N + Nηm,k] σ2
m, 2 [N + 2Nηm,k] σ4

m) if H1 holds. As dm,k ≈ E [ym,k] in the steady state,
it immediately follows that dm,k ≈ E [ym,k]H1

when H1 holds and dm,k ≈ E [ym,k]H0
when H0. Hence,

one can estimate the SNR during PU’s transmissions as:

η̂m,k =
dm,k

Nσ2
m
− 1. (9)

When the channel is idle, noise variance can be estimated from dm,k since dm,k ≈ E [ym,k]H0
= Nσ2

m
after some iterations, while η̂m,k in (9) will tend to zero. The SNR estimates can be used to gauge the
strength of the signal and decide the cooperation strategy when neighbors are available. In addition,
estimated values η̂m,k can be used for the proposed SNR-based weighted cooperative method proposed
in [24].

3.2. A Variable Step-Size LMS-Based ED Proposal

One of the main challenges associated with the use of LMS algorithms is the proper choice of
their step-size parameter. When the step-size is chosen close to its maximum value (that guarantees
convergence), the algorithm converges rapidly but the resultant error floor is high. In contrast, reducing
the step-size enhances the error performance, but the transient state of the algorithm becomes longer.
In order to overcome this effect, variable step-size (VSS) strategies have been suggested in the literature
for different purposes [32–34]. The many possible choices for the adaptation of the step-size come from
the multitude of scenarios where adaptive algorithms can be applied [32]. We shall analyze in this
section the time-varying ED problem in order to propose a balanced VSS strategy in terms of stability
and performance.

Convergence of the parameter ωm,k in (3) is ensured when 0 < µm < 1
E
[
ũ2

m,k

] . As the adaptive

filter input can fluctuate between two states, namely presence and absence of signal, a good choice of
µm can be performed following the criterion given by:

0 < µm < min
{

E
[
ũ2

m,k

]−1

H0
, E
[
ũ2

m,k

]−1

H1

}
. (10)

In Figure 1, the values of E
[
ũ2

m,k

]−1
for hypotheses H0 and H1 are depicted for SNRs within the

interval [−10, 10] dB and Pf within the interval [10−4, 10−0.5], considering the measured value of noise
variance as σ2

w = 5.6× 10−16. One can observe that the maximum limit of the step-size is given by the
statistics of hypothesis H0 when SNR is negative and the probability of false alarm is low. However,
when SNR increases, E

[
ũ2

m,k

]
under H1 is dominant, and, consequently, the step-size upper bound is

given by E
[
ũ2

m,k

]−1

H1
. As the sensed environment is usually time-varying due to ubiquitous shadowing

effects, SNR can fluctuate during the sensing, eventually modifying the convergence criterion of the
algorithm. In this context, the use of an adaptive strategy to compute µm allows for dealing with this
time-varying effect.
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As mentioned before, several VSS algorithms have been previously proposed to increase the
speed of convergence or to reduce the mean square error depending on the particular application.
In detection problems, one cannot usually estimate offline the noise variance of the equipment, for
we do not know a priori which hypothesis holds. As we have seen in Figure 1, the step-size upper
bound may depend on H1 statistics in some particular scenarios. For that reason, we need an adaptive
strategy to compute a step-size satisfying the convergence criterion. In order to do that, we propose
computing the following ancillary parameters for each i ∈ Nm:

pi,k = (1− α)ũ2
i,k + αpi,k−1

µi,k = min
{

µi,k−1 , 2−dlog2(pi,k)e
} (11)

and then choose the step-size as
µm,k = min

i∈Nm

{
µi,k

}
. (12)

(a) Step-size upper bound and its dependency
on signal-to-noise ratio (SNR) and Pf

(b) Egions where step-size is upper-bounded by
hypotheses H0 (blue area) and H1 (red area)

Figure 1. Step-size upper bound analysis.

At this point, it is worth highlighting that the threshold γ̃ in (8) must be updated when µm,k
changes—it is actually a parameter γ̃m,k, depending on the time-instant k as well. In addition,
reinitialization of (11) is recommended when significant changes are observed in the surrounding
environment, i.e., different number of neighboring SUs or important differences in the estimated
SNR conditions.

Additionally, the speed of convergence in the transient state can be approximated as 1
µm,kE

[
ũ2

m,k

]
iterations to decrease to 1/e of the initial value [35]. Since E

[
ũ2

m,k

]
are different for H0 and H1, transient

states of both hypotheses would be different if the step-size were the same. Consequently, the overall
probability of detection and the overall probability of false alarm will be degraded depending on
the length of transient states compared with the length of steady state for the minimum lengths of
hypotheses H1 and H0 given by the sampling rate of the adaptive ED algorithm. From Figure 1 and
taking the convergence criterion in (10) into account, the variable step-size will be selected according

to µm,k < E
[
ũ2

m,k

]−1

H0
when SNR is negative. If we compute the 1/e-th transient periods, we see
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1
µm,kE

[
ũ2

m,k

]
H0

< 1
µm,kE

[
ũ2

m,k

]
H1

, and, consequently, the overall probability of detection, Pd, could be more

affected due to a longer transient state of H1 when compared with the steady state. In contrast, when
SNR conditions correspond to values in the red area depicted on the right-hand side of Figure 1, the

step-size µm,k is upper-bounded by E
[
ũ2

m,k

]−1

H1
and transient time in H0 will be higher than in H1.

As a result, the probability of false alarm will be degraded as compared to the target Pf. In Figure 2,
we show the number of iterations that takes to decay 1/e-th of the initial value for H0 and H1 using a
step-size computed as in (12), for the same parameters of SNR, Pf, and noise variance as in Figure 1.
As mentioned before, one can observe that the 1/e-th transient period will be much greater for H0

(≈[103, 4× 103] iterations) than for H1 (≈[1, 10] iterations) when SNR > 5 dB and target Pf > 10−2.
In contrast, when Pf and SNR correspond to values in the blue area depicted on the right-hand side of
Figure 1, transient states for both H0 and H1 become much smaller (≈[1, 100] iterations). As a result,
since transient states must be negligible compared with steady states in order to achieve reasonable
performance in terms of real Pf and Pd, then the sampling rate associated with the signals feeding the
adaptive algorithm must be chosen according to estimated SNR, target Pf, and the minimum average
length between hypotheses H0 and H1. Otherwise, transient states are not negligible and overall
performance is deteriorated.
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Figure 2. Number of iterations to decrease to 1
e of the initial value as a function of signal-to-noise ratio

(SNR) and Pf for hypotheses H0 and H1.

3.3. Cooperative Detection Issues

When cooperative detection is performed at a given node m, the SUs belonging to the
neighborhood Nm (i.e., those users which can communicate with m using the control channel) must
share some parameters with the m-th node. As shown in [24], the local noise variance and the test
statistic of each neighboring user are the necessary parameters to share. Additionally, if weighted
strategies are used, local SNRs could be also shared. In order to compute ωm,k, a series of additional
operations must be carried out in order to get the inputs ũi,k and desired signals d̃i,k from the local
noise variances and the test statistics of each neighboring user in the neighborhood Nm. Reducing the
number of those extra operations at each node necessarily calls for a more efficient sharing strategy
consisting of sharing directly the inputs ũi,k and desired signals d̃i,k instead of the local noise variance
and the test statistics; this is indeed an efficient strategy since the proposed ũi,k and d̃i,k are computed
at each node anyway, i.e., there is no extra computational burden for the rest of neighboring users.
On the other hand, due to the use of variable step-size algorithm, extra data must be shared in the
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proposed setup. In Table 1, we show the proposed shared data compared with the original algorithm
in [24].

Table 1. Shared parameters at each time slot k in cooperative detection.

Theoretical LMS-Based ED [24] Practical VSSLMS-Based ED

Mandatory σ2
m, ym,k ũm,k, d̃m,k, µm,k

Optional η̂m,k η̂m,k

Taking all the previous considerations into account, the flowchart of the practical ED algorithm
is drawn in Figure 3. Firstly, the m-th SU must be initialized estimating the input noise variance σ2

m,
which will be later used to calculate γm and statistics of ωm,k. Once the algorithm is initialized, the
receiver can gather local and neighboring energy estimates, when cooperation is active, to perform the
detection process. The computation of several parameters of the adaptive algorithm are conducted
using yi,k i ∈ Nm and the initialization values. If the cooperation mode is active, the parameters shown
in Table 1 are shared. Afterwards, the VSSLMS-based ED is executed and the detection threshold γ̃m,k
is updated. Finally, the detection test is carried out.

Initialized? 

 

Run LMS-based adaptive ED: 

 

 

 

1: Estimate input noise 

variance 

2: Compute γ 

Detection 

Compute energy estimate 

Compute variables for LMS-based ED: 

 

 

 

 

 

 

 

 

 

 

 

1: Compute statistics: 

 

 

2: Compute threshold 

Neighbors? 

Neighbors? 

Share local variables 

YES 

NO 

YES 

YES 

Shared data acquisition 

Figure 3. Flowchart of the adaptive variable-step-size-least-mean-squares (VSSLMS)-based energy
detection (ED) algorithm.

4. Experimental SDR Testbench

The adaptive VSSLMS-based ED algorithm has been implemented by using three USRP devices
(N-210 + Radio frequency (RF) daughterboard WBX, Ettus Research) and the LabVIEW software
(version 14.0f1 (32 bits), National Instruments Corporation, Austin, TX, USA). The setup consists of
1 PU, which can transmit in a random manner maintaining each hypothesis state active during a
minimum length, and 3 SUs, which can sense the environment in both single-node or cooperative
modes. As shown in Figure 4, each transmitter or receiver antenna is connected to one USRP platform,
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which is controlled with LabVIEW software via Ethernet from one laptop or computer. All equipments
are interconnected using Ethernet as a control channel in order to share data in cooperative mode. In
Figures 5 and 6, different parts of the LabVIEW control panel, used to configure the USRP device, are
shown. From the panel in Figure 5, data acquisition physical layer (PHY) parameters can be controlled
and target Pf can be selected. USRPs receive IQ data with 33.3 MSamples/s centered at 682 MHz. IQ
data stream is split into frames of 1000 time-domain samples to be converted to frequency domain.
Furthermore, detection thresholds are also displayed for the selected channels. In Figure 6, we can
set up the VSS in (12), PU/SU roles of the USRP, weighting strategy in cooperative mode, ED modes
(single-node mode or cooperative mode), channel frequencies, and saving data. Additionally, the panel
displays the power spectrum and the ED decisions for the selected channels.

(a) Lab SDR testbench

PRIMARY 
TRANSMITTER 

PU 

Secondary 
Receiver 

SU2 

Secondary 
Receiver 

SU3 

Control Channel 

Secondary 
Receiver 

SU1 

(b) Block diagram of the SDR framework

Figure 4. SDR framework formed by 1 primary user (PU) and 3 secondary users (SUs) which can work
in stand-alone or cooperative modes. On the left-hand side, the PU antenna is marked by a yellow
solid-line circle and SU antennas are marked by brown dashed-line circles.

Figure 5. The depicted control panel allows for configuring Pf and the parameters of receiving the data
acquisition process. In addition, the panel shows on the left the computed detection thresholds for the
selected channels.
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The PU transmitter and SU receivers are operating in white spaces of the television (TV) band,
i.e., free channels within the TV band (470–794 MHz). The receiver collects N = 65 samples in the
frequency domain from the selected channel bandwidth and computes the local energy estimates. The
generated data traffic from PU consists of video transmission. The pre-defined probability of false
alarm is fixed to 0.001. The hardware configuration and the parameter setting of the PHY layer of PU
and SUs are summarized in Table 2. The selected channel is free of external RF interfering sources
since they have been chosen from TV white spaces at that location. The minimum time length of each
hypothesis is 10 s. In cooperative mode, the variables shown in Table 1 are shared with all users.

Figure 6. This control panel allows for configuring the variable step-size in (12), PU/SU roles,
weighting strategy between uniform and SNR weighted, ED modes (single-node/cooperation), channel
frequencies, and data saving. The power spectrum and the ED decisions for the selected channels are
also depicted. In the snapshot, one can observe a PU transmission is detected in 670 MHz; cooperative
mode (mode 2) with uniform weighting strategy is active; The Universal Software Radio Peripheral
(USRP) device is working as PU transmitter from the transmission (TX) antenna (TX indicator on) and
the SU receiver from the reception (RX) antenna (Detector (DX) indicator on); VSS is active (“ceil” and
“min” flags on) and, finally, data is not saved.

Table 2. Physical layer (PHY) parameters of primary (PU) and secondary users (SU).

User Parameter Value

PU & SU Channel bandwidth 2 MHz
Channel frequencies 670, 678, 688, 696 MHz

PU
Modulation scheme QPSK

Symbol rate 1 MBaud
Waveform Single carrier

SU

IQ sampling rate 33 MHz
Carrier frequency 682 MHz

FFT 1000 samples
ED sampling period 20 ms

α in (5) and(12) 0.95

5. Results and Discussion

In this section, the proposed practical solutions in Section 3 are analyzed through lab
measurements with the previously detailed SDR-based hardware implementation. Firstly, we assess
in Section 5.1 how the transient-state affects the overall performance of the algorithm for different
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environments compared with the steady-state performance in terms of Pd and Pf. Additionally,
a comparison with the conventional ED method is also performed. In Section 5.2, the performances
of the algorithm in real conditions are presented and compared with a theoretical benchmark for
single-node and two-node cooperative ED.

5.1. Transient and Steady State Analysis

As we have seen previously, the length of transient states highly depends on the SNR at hypothesis
H1. We have analyzed this behavior in Figures 7 and 8 using single-node detection in different
environments where SNR varies in the ranges [−4, 0.5] dB and [3, 5] dB, respectively. The performance
values in terms of Pd and Pf are shown in Table 3, where we have computed the overall detection
performance and probability of false alarm, both in steady state, i.e., Pd and Pf after the adaptive ED
algorithm converges. In addition, we have compared the results with conventional ED.

500 1000 1500 2000 2500 3000
−10

−5

0

5

η̂
m
,k
(d
B
)

k

 

 

(a) Instantaneous SNR estimates

500 1000 1500 2000 2500 3000
−1.5

−1

−0.5

0

0.5

1

1.5

k

 

 
ωm,k

γ̃

PU state

(b) Adaptive algorithm

Figure 7. Behavior of the VSSLMS-based adaptive ED algorithm according to the PU states for
single-node detection at SNRs in the range of [−4, 0.5] dB.
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Figure 8. Behavior of the VSSLMS-based adaptive ED algorithm according to the PU states for
single-node detection at SNRs in the range of [3, 5] dB.
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If we pay attention to Figure 7, we can see how the VSSLMS-based ED algorithm adapts their
values to the time-varying nature of a receiving signal in real conditions. In addition, we observe
that the transient state can be neglected compared with the steady state. In this sense, this effect
is confirmed with results from Table 3 for the SNR range [−4, 0.5] dB; transient state is similar in
H0 and H1, and, consequently, the overall Pf and Pd are slightly increased and reduced, respectively.
The ratio of false alarm is increased 0.035 and 0.038 compared with the traditional ED and steady-state
Pf, respectively. In contrast, the Pd performance is much higher than conventional ED despite the Pd
degradation induced by the transient state.

Table 3. Empirical Pd and Pf performances of variable-step-size-least-mean-squares (VSSLMS)-based
and conventional energy detection (ED) with and without transient state performance taken
into account.

SNR Range (dB) States Adaptive ED (Pd/Pf) Conventional ED (Pd/Pf)

[−4, 0.5] Transient+Steady 0.955/0.038 0.508/0.005
[−4, 0.5] Steady 1/0.000
[3, 5] Transient+Steady 0.993/0.236 0.904/0.013
[3, 5] Steady 1/0.000

In Figure 8, we have measured time-varying PU signals in the interval [3, 5] dB. On one hand,
one can see that the transient state is much longer now than the one in Figure 7, thus inducing a
degradation of Pd and Pf empirical values. As we have observed in Figure 2, a greater value of SNR
leads to a major difference between the transient state lengths of the H0 and H1. In this context,
that behavior can be observed in Figure 8b where transient state in H0 is longer than H1. Hence,
the effect on the overall performance cannot be neglected compared with steady state, as shown in
Table 3. This situation generates an important increase of Pf (0.236) compared with the false alarm in
steady-state (0.000) or in the conventional ED (0.013). It is worth noticing that both VSSLMS-based
ED algorithm and conventional ED technique do not reach the target Pf (i.e., 0.001), the former due to
transient-state behavior and the latter due to the error at the noise variance estimation (The error in
the noise variance estimation also affects the VSSLMS-based ED algorithm. However, its effect into the
overall performance is negligible compared with that arisen from transient behavior.).

As a final remark, we can highlight that the practical proposal outperforms by far the conventional
ED technique in low SNRs. However, despite the Pd performance in SNRs above the interval [3, 5] dB
being better than conventional ED, their values are similar since traditional ED achieves good results
in high SNRs. Furthermore, Pf in adaptive ED is highly affected by transient states, providing an
inefficient use of the idle channel. In this sense, a blended solution which could switch between
adaptive and conventional ED for low and high SNRs, respectively, would be an interesting strategy
to deal with all types of environments.

5.2. Detection Performance in Real Environments

In this subsection, the performance of the proposed practical VSSLMS algorithm is analyzed
for single-node and cooperative ED detections in real propagation conditions. Conventional ED
performance is also empirically measured. The experimental results are compared with theoretical
simulation-based results employing MATLAB (Version R2012b, MathWorks, Natick, MA, USA).
Theoretical results are computed using the same parameters as in the experimental setup for 5× 105

iterations.
Figure 9 shows Pd and Pf performances for different averaged measured levels of SNR in

single-node detection. The results are compared with theoretical performance values of the LMS-based
ED, selecting the step-size to satisfy the convergence criterion in (10), a theoretical VSSLMS-based
ED, and the real performance of the conventional ED technique. The SNRs are averaged from the
SNR estimates η̂m,k computed as in (9). On one hand, one can see in Figure 9a that the values of Pd
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performance of the proposed algorithm outperform the conventional ED technique for the measured
range of averaged SNR. It is worth noting that the experimental VSSLMS-based ED provides 0.86 < Pd
for averaged SNR greater than−3 dB. If one pays attention to the probability of false alarm in Figure 9b,
one can observe the negative effect of the transient states in the Pf values as SNR increases compared
with the conventional ED. On the other hand, when comparing the experimental results with theoretical
values, we see a degradation on the Pd values due to the time-varying environment in real conditions
and possible estimation errors. In the case of Pf performance, results are similar in the SNR interval
[−7, 1] dB and theoretical values are higher than experimental ones. This is due to the fact that, in
real conditions, SNR variations modify transient states being longer and shorter according to the
PU receiving signal fluctuations. However, in theoretical results, transient length is almost constant
for the Monte Carlo simulation according to the pre-defined SNR. In addition, we can also see how
the VSSLMS-based ED reduces Pf compared with the LMS-based ED, while maintaining the same
Pd performance.
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Figure 9. Performance comparison for different values of SNR for single-node detection.

In Table 4, we analyze the performance of cooperative detection employing two SUs in cooperation
mode with uniform weighting strategy (cf. [24] for more details) and we compare the performance
results with the optimal linear cooperative strategy presented in [36]. The averaged SNR in SU 2 has
been kept almost stable and the averaged SNR in SU 1 has been reduced using an attenuator at the
input of the receiving antenna. The performance of the linear cooperative strategy has been computed
using averaged SNR values of the SUs. One can observe that SU 2 with averaged SNR around
−8.5 dB highly improves their performances compared with the single-node detection in Figure 9, i.e.,
Pd < 0.1 for SNR < 7. In contrast, SU 1 maintains similar Pd and Pf as single-node performances when
averaged SNR > 3 dB, whereas its Pd values are degraded compared with single-node detection for
E [η1,k] < 3 dB. From these results, we can conclude that cooperation among SUs is adequate when
SNR levels are low, whereas SUs with high averaged SNR should share their local estimates with
their neighbors with worse environment conditions but not to employ neighboring data in their local
detection process proposed in Figure 3. The decision of cooperating could be performed comparing
their local SNR estimates in (9) with a minimum SNR threshold before taking sharing data from other
neighboring SUs. If we compare empirical and theoretical values, we can observe that experimental Pd
results are quite similar to the theoretical values for the SU 1’s SNR range [−4.21, 0.49] dB. When the SU
1’s SNR is lower, theoretical Pd becomes smaller. If we pay attention to the probability of false alarm, we
can clearly observe the effect of the transient state in the theoretical performance. In contrast, empirical
Pf is almost stable for all measured averaged SNRs excepting the case of SU 1’s SNR = −1.77 dB, whose
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Pf is abnormally high, i.e., Pf = 0.117. Finally, if we compare the VSSLMS-based ED performance
with the optimal linear cooperative ED presented in [36], we can observe that the proposed algorithm
outperforms the linear ED strategy in terms of Pd. Nonetheless, the linear ED strategy presents a stable
performance in terms of the desired Pf maintaining its value as 0.001 for all cases.

Table 4. Empirical and theoretical Pd and Pf performances for cooperative 2-node VSSLMS-based
energy detection. Performance comparison with the optimal linear ED cooperation algorithm in [36].

E
[
η1,k

]
(dB) E

[
η2,k

]
(dB) Exp. VSSLMS ED Theor. VSSLMS ED Optimal Linear ED [36]

(Pd/Pf) (Pd/Pf) (Pd/Pf)

0.49 −16.20 0.984/0.044 0.995/0.039 0.966/0.001
−1.48 −8.12 0.968/0.020 0.971/0.032 0.754/0.001
−1.77 −7.84 0.954/0.113 0.965/0.032 0.706/0.001
−2.72 −8.56 0.801/0.017 0.890/0.027 0.517/0.001
−4.21 −8.53 0.468/0.023 0.431/0.021 0.274/0.001
−4.88 −8.64 0.339/0.023 0.269/0.018 0.197/0.001
−6.80 −8.32 0.187/0.015 0.090/0.009 0.082/0.001
−7.48 −8.66 0.103/0.038 0.051/0.006 0.058/0.001

6. Conclusions

In this paper, we have addressed the implementation issues of adaptive LMS-based ED previously
proposed in [24] from a practical viewpoint. In this sense, a new practical VSSLMS-based ED proposal
has been presented in order to deal with the convergence of the algorithm in real time-varying
environments. Implementation guidelines of the new proposal for single-node and cooperative ED
have been provided along with practical solutions to locally estimate the noise variance and SNR. The
proposed VSSLMS-based ED has been implemented in an SDR-based hardware platform in order
to assess its performance in real radio-propagation conditions. Experimental results show a good
performance of the adaptive algorithm in terms of high Pd (Pd > 0.9) maintaining an adequate Pf
(Pf ∼ 0.05) for an SNR range of [−4, 1] dB in a single-node ED model. On the other hand, we have
seen that an SU with low SNR (SNR ∼ −8 dB) can achieve Pd performance higher than 0.9 by sharing
data with a neighboring SU with SNR ranges around [−2, 0.5] dB. Moreover, we have observed that
the practical proposal outperforms the optimal linear cooperative solution presented in [36] in terms
of Pd at a cost of a reduction of the opportunistic spectrum access when a channel is idle. A final
remark is that the proposed adaptive ED solution is ideal for SNR < 2 dB since the transient state of
the algorithm degrades the overall performance if ED sampling rate is not increased. In this sense,
blended solutions based on conventional ED in high SNRs and adaptive ED for low SNRs could be
interesting for future research.
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Abbreviations

The following abbreviations are used in this manuscript:

CR Cognitive radio
SU Secondary user
PU Primary user
LTE Long Term Evolution
LSA Licensed Shared Access
REM Radio-environment map
MCD Measurement-capable device
ED Energy detection
SNR Signal-to-noise ratio
SDR Software defined radio
USRP Universal Software Radio Peripheral
LMS Least mean squares
MAC Medium access control
VSS Variable step-size
RF Radio frequency
PHY Physical layer
TV Television
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25. Dobre, E.I.; Marţian, A.; Vlădeanu, C. USRP-based experimental platform for energy detection in cognitive
radio systems. In Proceedings of the 2016 International Conference on Communications (COMM), Bucharest,
Romania, 9–11 June 2016; pp. 185–188.

26. Gokceli, S.; Karabulut Kurt, G.; Anarim, E. Cognitive Radio Testbeds: State of the Art and an Implementation.
In Spectrum Access and Management for Cognitive Radio Networks; Matin, M.A., Ed.; Springer: Singapore, 2017;
pp. 183–210.

27. Khattab, A.; Perkins, D.; Bayoumi, M.A. Design, Implementation and Characterization of Practical
Distributed Cognitive Radio Networks. IEEE Trans. Commun. 2013, 61, 4139–4150.

28. Soltani, S.; Sagduyu, Y.; Shi, Y.; Li, J.; Feldman, J.; Matyjas, J. Distributed cognitive radio network architecture,
SDR implementation and emulation testbed. In Proceedings of the 2015 IEEE Military Communications
Conference (MILCOM 2015), Tampa, FL, USA, 26–28 October 2015; pp. 438–443.

29. Sobron, I.; Regueiro, C.; Eizmendi, I.; Gil, U.; Velez, M. Design and experimental evaluation of C-MAC
solutions for heterogeneous spectrum sharing. In Proceedings of the 2016 IEEE 27th Annual International
Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia, Spain, 4–7
September 2016; pp. 1–6.

30. Rugini, L.; Banelli, P.; Leus, G. Small Sample Size Performance of the Energy Detector. IEEE Commun. Lett.
2013, 17, 1814–1817.

31. Cattivelli, F.S.; Sayed, A.H. Diffusion LMS Strategies for Distributed Estimation. IEEE Trans. Signal Process.
2010, 58, 1035–1048.

32. Bismor, D.; Czyz, K.; Ogonowski, Z. Review and comparison of variable step-size LMS algorithms. Int. J.
Acoust. Vib. 2016, 21, 24–39.

33. Bin Saeed, M.O.; Zerguine, A.; Zummo, S.A. A variable step-size strategy for distributed estimation over
adaptive networks. EURASIP J. Adv. Signal Process. 2013, 2013, 135.

34. Kwong, R.H.; Johnston, E.W. A variable step size LMS algorithm. IEEE Trans. Signal Process. 1992, 40,
1633–1642.



Sensors 2017, 17, 932 17 of 17

35. Diniz, P.S.R. Adaptive Filtering: Algorithms and Practical Implementation, 4th ed.; Springer: New York, NY,
USA, 2013.

36. Quan, Z.; Cui, S.; Sayed, A.H. Optimal Linear Cooperation for Spectrum Sensing in Cognitive Radio
Networks. IEEE J. Sel. Top. Signal Process. 2008, 2, 28–40.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Review of Adaptive ED Algorithm
	Implementation Issues of Adaptive ED
	Noise Variance and SNR Estimation
	A Variable Step-Size LMS-Based ED Proposal
	Cooperative Detection Issues

	Experimental SDR Testbench
	Results and Discussion
	Transient and Steady State Analysis
	Detection Performance in Real Environments

	Conclusions

