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Abstract: The simultaneous extraction of optical navigation measurements from a target celestial body
and star images is essential for autonomous optical navigation. Generally, a single optical navigation
sensor cannot simultaneously image the target celestial body and stars well-exposed because their
irradiance difference is generally large. Multi-sensor integration or complex image processing
algorithms are commonly utilized to solve the said problem. This study analyzes and demonstrates
the feasibility of simultaneously imaging the target celestial body and stars well-exposed within a
single exposure through a single field of view (FOV) optical navigation sensor using the well capacity
adjusting (WCA) scheme. First, the irradiance characteristics of the celestial body are analyzed. Then,
the celestial body edge model and star spot imaging model are established when the WCA scheme is
applied. Furthermore, the effect of exposure parameters on the accuracy of star centroiding and edge
extraction is analyzed using the proposed model. Optimal exposure parameters are also derived by
conducting Monte Carlo simulation to obtain the best performance of the navigation sensor. Finally,
laboratorial and night sky experiments are performed to validate the correctness of the proposed
model and optimal exposure parameters.

Keywords: optical navigation sensor; well capacity adjusting; star centroid estimation; edge
extraction; exposure parameter optimization

1. Introduction

Optical autonomous navigation is a key technology in deep space exploration. This process
is usually accomplished by multi-sensor integration, such as star sensors, navigation cameras,
inertial measurement devices, and other equipment. The attitude information of a spacecraft is
obtained by a star sensor and inertial measurement element. The navigation camera captures the
target celestial image with background stars and extracts the target celestial line-of-sight (LOS) vector
according to the current spacecraft attitude. Then, the spacecraft position can be calculated by
integrating these optical navigation measurements according to the geometric relationship. An optical
navigation system with multi-sensor integration is not only complicated in structure and has high cost
and power consumption but also has installation errors between sensors, which further restricts the
improvement of navigation accuracy. The best solution for deep space exploration missions is when
a single navigation sensor can simultaneously obtain the attitude and LOS vector from the sensor
to the centroid of the target celestial body. This approach requires the sensor to image the stars and
target celestial body and to extract their navigation measurements simultaneously. However, a large
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gap exists between the irradiance of stars and the target celestial body. For reference, standard image
sensors have a dynamic range of 40 dB to 70 dB [1], which is insufficient to ensure that the target
celestial body and stars are well-exposed simultaneously. The problem of insufficient dynamic range
for image sensors can be generally solved in three ways.

The design of optical systems to lower the incident flux of a celestial body is first considered.
In Reference [2], the combined Earth-/star sensor for attitude and orbit determination of geostationary
satellites is investigated. The combined Earth-/star sensor has two fields of view (FOV) for the
observation of the Earth and stars. The two FOVs are combined on the detector through a beamsplitter.
The partially transmissive mirror reflects 91% of starlight onto the detector, while transmitting only 9%
of the Earth’s brightness. The Earth’s incident flux is further reduced by a filter. This method directly
lowers the incident flux of the high irradiance target from the source, which is convenient for the
subsequent image processing. A disadvantage of this approach is the complexity of the optical system
design, higher weight, and higher costs.

The second method enhances the dynamic range by image processing algorithms. In [3–6],
multi-exposure fusion techniques are adopted to enhance the dynamic range. A set of different
exposure images is obtained. Then, these images are fused into an image where all scenes or areas of
interest appear well exposed. The advantage of the multi-exposure technique is that it can enhance the
dynamic range without degrading the signal-to-noise ratio (SNR) [7]. The main drawback of exposure
fusion is its limitation to static scenes, and any object movement incurs severe ghosting artifacts in
the fused result. Given that a spacecraft is always in the motion state, this method is inapplicable in
such condition.

New image sensor designs are also proposed to attain an extended dynamic range.
The photocurrent in logarithmic response image sensors is fed to a resistor with a logarithmic
current-voltage characteristic [8–10]. Logarithmic-response image sensors can obtain a wide dynamic
range, but it has several disadvantages (i.e., image lag, low SNR, large fixed pattern noise, and poor
image quality). This undesired lag effect is most pronounced at low light conditions, and it is caused by
a long settling time constant that can exceed the frame time. Another wide dynamic image sensor based
on time-to-saturation information was reported in [11–14]. The pixel attains its saturation level and
extrapolates the incident light by measuring and recording the time required to attain the saturation
state. The light intensity is derived by the information on the time stored in the memory of each pixel
and then the final image can be reconstructed. However, each pixel of the detector requires a signal
detection circuit, comparator, digital memory, and other components to detect the saturation state and
storage time information. This condition results in large pixel sizes and low fill factor, which limit
the sensor resolution. The well capacity adjusting (WCA) scheme described by Knight [15] and
Sayag [16] and implemented by Decker [17] compresses the sensor’s current versus charge response
curve using a lateral overflow gate. This technology is currently widely employed by integrating a
lateral overflow integration capacitor in a pixel in complementary metal-oxide-semiconductor (CMOS)
detectors [18–20]. The well capacity is monotonically increased once or multiple times to its maximum
value during integration. The accumulated photoelectrons of the high irradiance signal are suppressed,
but the low irradiance signal is unaffected. The WCA scheme enhances the dynamic range, but at the
expense of substantial degradation in SNR.

In [21], the navigation camera used a sequence of long and short exposures for optical navigation.
A short exposure in which the celestial body is not saturated will permit determination of the celestial
body’s location within the image. A long exposure will permit determination of the stars’ location
within the image. Setting a long exposure time to ensure that the dim stars satisfy the detection SNR
limit is necessary to ensure that the navigation sensor has a reliable attitude determination function.
However, a long exposure time can lead to the overexposure of the target celestial body, which results
in the expansion of the image shape because the apparent diameter increases and high stray light effect
which will overwhelm the natural response to the target stars. Given that the WCA scheme is widely
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utilized in CMOS image sensors, high dynamic range images can be obtained by a single exposure
with this technique.

This study first analyzes the irradiance characteristics of a celestial body. Then, the celestial
body edge model and star spot imaging model are established when the WCA scheme is applied.
The effect of exposure parameters on the accuracy of star centroid estimation and edge detection is
analyzed based on the proposed model. The exposure parameters are optimized to ensure that the
optical navigation measurements satisfy the requirement of navigation accuracy. Comparing with the
conventional navigation sensors, this study provides a feasible method for the study of a miniaturized
single FOV optical navigation sensor, which is less cost, less weight, simple to design and can obtain
attitude information and LOS vector from the sensor to the centroid of the target celestial body
simultaneously. This navigation sensor has a strong applicability and can be utilized for a variety of
navigation tasks.

2. Irradiance Characteristics of a Celestial Body

The study of the irradiance characteristics of a celestial body is the prerequisite for the optimization
of the exposure parameters of navigation sensors. The irradiance of a celestial body received by the
detector is analyzed in this section.

Figure 1 shows the spatial position relationship between the navigation sensor and the observed
target. A planet typically emits energy in a manner that reflects solar radiation energy. The irradiance
of the sun is assumed to be isotropic because the irradiance is inversely proportional to the square of
the distance [22]. Thus, the irradiance received at the target celestial surface is expressed as:

IP = Isun(rS/RSP)
2 (1)

where Isun is the irradiance of the sun, rS is the radius of the sun, and RSP is the distance between
the sun and the target celestial body. The incident energy on the surface of a planet is only partially
reflected back into cosmic space, whereas the rest is absorbed by the surface. rP is defined as the
radius of the celestial body, A is the Bond albedo that represents the fraction of energy incident on
an astronomical body scattered back into space at all wavelengths and phase angles. Thus, the total
radiant flux reflected by the surface of the celestial body is expressed as:

LR =
πAr2

Pr2
S

R2
SP

· Isun (2)

We consider that navigation sensor observes the planet at a distance of RPC. Only a part of the
illuminated area of the celestial body can be observed in most cases. If the surface of a planet is
assumed to be homogeneous, then the distribution of the reflected radiant energy only depends on two
factors, distance RPC and phase angle ξ which is the angle at the celestial body object between the Sun
and the observer. Phase function is the ratio of the reflected radiant flux at phase angle ξ to the radiant
flux at zero phase angle, which is denoted as P(ξ). When ξ = 0

◦
, P(ξ) = 1. Thus, the irradiance

received by the navigation sensor is expressed in the following form:

IC = CP(ξ) · LR

4πR2
PC

=
CAr2

Pr2
S

4R2
PCR2

SP
· P(ξ) · Isun (3)

where C is a constant. The total reflected energy of the celestial body is distributed on a spherical
surface. As the distance increases, the radiant flux density decreases, but the total radiant flux remains
the same. Therefore, the total radiant flux on the sphere from the center of the celestial body of radius
RPC is expressed as:

LR =
∫
S

ICdS =
∫
S

CP(ξ)LR

4πR2
PC

dS (4)



Sensors 2017, 17, 915 4 of 23Sensors 2017, 17, 915 4 of 23 

 

SPR

PCR

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Figure 2 shows that the area dS can be expressed in terms of its coordinates as dS = R2
PC sin ξdϕdξ.

Therefore, C is derived as:

C =
4πR2

PC∫
S

P(ξ)dS
=

4π∫ ϕ=2π
ϕ=0

∫ ξ=π
ξ=0 P(ξ) sin ξdϕdξ

=
2∫ π

0 P(ξ) sin ξdξ
(5)

In astronomy, the Bond albedo (A) is related to the geometric albedo (ρ) by the expression
A = ρq [23], where:

q = 2
∫ π

0

I(ξ)
I(0)

sin ξdξ = 2
∫ π

0
P(ξ) sin ξdξ (6)

Thus, the constant C must obey the following relationship:

C =
4ρ

A
(7)

The previously analysis shows that the irradiance received by the sensor can be expressed as:

IC =
ρr2

Pr2
S

R2
PCR2

SP
· P(ξ) · Isun (8)

Equation (8) shows that IC is the function of RPC, RSP, and phase angle ξ. Visual magnitude is
the relative quantity generally adopted to measure the irradiance of a celestial object. For example,
when the Moon is observed in a geosynchronous orbit, the visual magnitude varies from −2.5 to
−12.74. The irradiance of a celestial body is commonly higher than that of stars.
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Figure 2. Reflected radiation flux over a sphere.

3. Celestial Object Imaging Model based on the Well Capacity Adjusting Scheme

The WCA scheme is widely employed in CMOS image sensors. During integration period of
the WCA scheme, well capacity of a certain pixel is increased several times to extend the range of
incident signal. The dynamic range which is defined as the ratio of the largest nonsaturating signal
to the standard deviation of the noise under dark conditions is enhanced in WCA scheme. Figure 3a
plots the accumulated photoelectrons versus the integration time for three different irradiance signals
in normal integration mode. The accumulated photoelectrons increase linearly with the increase in
integration time until they reach the full well capacity. The accumulated photoelectrons of a pixel can
be expressed as:

Q =

{
I · T if I ≤ QMAX/T

QMAX otherwise
(9)

where I is the photocurrent of the incident signal. The largest photocurrent of nonsaturating incident
signal is given by, IMAX = QMAX/T.
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Figure 3. (a) Accumulated photoelectrons versus time in normal integration mode; and (b) accumulated
photoelectrons versus time using the WCA scheme.

The total integration time is divided into several time segments when the WCA scheme is
utilized. The well capacity is adjusted to a higher value at the beginning of each time segment until
it increases to the full well capacity. The accumulated photoelectrons are a piecewise linear function
with respect to the integration time. Figure 3b shows that the integration time is divided into two
segments, namely, TS and T − TS. TS is designated as the adjusting integration time (AIT) at this
point. The well capacity is adjusted from QS to the full well capacity QMAX at time TS. Notably,
when the accumulated photoelectrons reach QS (e.g., the high irradiance signal (IH) case in the figure),
the output photoelectrons are clipped until time TS. The excess photoelectrons will spill over from the
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lateral overflow gate. However, the accumulated photoelectrons of the low irradiance signal (IL) are
unaffected. Therefore, the accumulated photoelectrons of a pixel when using the WCA scheme can be
expressed as:

Q =


I · T if I ≤ QS/TS
QS + I · (T − TS) if QS/TS < I ≤ (QMAX −QS)/(T − tS)TS
QMAX otherwise

(10)

The largest photocurrent of incident signal when using the WCA scheme is given by,
I′MAX = (QMAX −QS)/(T − TS). The standard deviation of the noise under dark conditions is the
same. Thus, dynamic range is enhanced by a factor:

λ =
I′MAX
IMAX

=
(QMAX −QS)T
QMAX(T − TS)

(11)

For a signal that does not saturate after integration, Equation (10) can also be expressed as:

Q = IT − ε

(
I − QS

TS

)
· (ITS −QS) (12)

where ε(t) =

{
1 t ≥ 0

0 t < 0
is the unit step function. As shown in Equation (12), the exposure parameters

QS and TS explicitly show the effects of output photoelectrons. Therefore, celestial body edge model
and star spot imaging model are first established in this study. Then, the influence of exposure
parameters on the accuracy of the extraction of optical navigation measurements is analyzed.

3.1. Celestial Body Edge Model

The edge of a celestial body can ideally be modeled as a step function on 1D section. Given the
effects of the point spread function (PSF) of the optic system, the real edge adjusts to the blurring effect
and is called the blurred edge model. The parameter Gaussian PSF radius σPSF indicates the extent
of the blurring effect. The celestial body image is assumed to be an ideal disk, such that the radial
energy distribution along the direction normal to the edge is isotropic. Therefore, the 2D imaging
model can be regarded as having been formed by 1D edge model that rotates 360◦ around the center
of the disk. A 1D celestial body edge model is established, and the subsequent analyses are based on
the said model to simplify the theoretical analysis and calculation. The blurred edge (Figure 4) can be
modeled by convolving the ideal step edge with the PSF, which is expressed as [24]:

f (x) =
k
2

(
er f
(

x− l√
2σPSF

)
+ 1
)
+ h (13)
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This model has four parameters, namely, background intensity h, edge contrast k, edge location l
and Gaussian PSF radius σPSF. The background intensity is zero regardless of the random noise. Then,
the 1D celestial body edge model is expressed as:

f (x) =
φPηQET

2

[
er f
(

x− l√
2σPSF

)
+ 1
]

(14)

Thus, the 1D edge gradient model is derived as:

f ′(x) =
φPηQET√

2πσPSF
exp

[
− (x− l)2

2σ2
PSF

]
(15)

where T is the integration time, φP is the incident flux density of the celestial body on the image plane,
and ηQE is the quantum efficiency of the imager sensor. Equation (15) implies that the gradient is
maximized at the edge location x = l.

In Figure 5, the small amplitude blue solid line denotes the intensity distribution with a short
integration time, and the central area is under-saturated. The edge location can be obtained at
half the amplitude intersection point. The large amplitude light blue dashed line denotes the
intensity distribution where the long integration time should have been. However, the actual intensity
distribution is denoted as the blue solid line because the central area is oversaturated. This scenario
will result in an extension of the apparent diameter of the celestial body. Therefore, the real edge
location cannot be extracted.

Sensors 2017, 17, 915 7 of 23 

 

This model has four parameters, namely, background intensity h , edge contrast k , edge 
location l  and Gaussian PSF radius PSF . The background intensity is zero regardless of the 
random noise. Then, the 1D celestial body edge model is expressed as: 

  1
2 2

P QE

PSF

T x l
f x erf

 



  
         

(14) 

Thus, the 1D edge gradient model is derived as: 

 
 2

2
exp

22

P QE

PSFPSF

T x l
f x

 



 
   

    
(15) 

where T  is the integration time, P  is the incident flux density of the celestial body on the image 
plane, and QE  is the quantum efficiency of the imager sensor. Equation (15) implies that the 
gradient is maximized at the edge location x l . 

In Figure 5, the small amplitude blue solid line denotes the intensity distribution with a short 
integration time, and the central area is under-saturated. The edge location can be obtained at half 
the amplitude intersection point. The large amplitude light blue dashed line denotes the intensity 
distribution where the long integration time should have been. However, the actual intensity 
distribution is denoted as the blue solid line because the central area is oversaturated. This scenario 
will result in an extension of the apparent diameter of the celestial body. Therefore, the real edge 
location cannot be extracted. 

 

Figure 5. 1D profile of the celestial body image in normal integration mode. 

The WCA scheme is used to avoid oversaturation of the celestial body. Let the total integration 
time be T  and AIT be ST . The well capacity is adjusted at time ST  from SQ  to MAXQ . In Figure 6, 
the red solid line denotes the intensity distribution at time ST  and the accumulated photoelectrons 
in the central area are clipped at SQ . The dark blue solid line denotes the intensity distribution at the 
end of the integration. Compared with Figure 5, the central area of the celestial body image is under-
saturated, which avoids the extension of the apparent diameter of the celestial body. However, Figure 
6 shows that a shallow energy ring forms around the central area. Therefore, the 1D celestial body 
edge model becomes a piecewise function when the WCA scheme is applied and can be expressed as: 

Figure 5. 1D profile of the celestial body image in normal integration mode.

The WCA scheme is used to avoid oversaturation of the celestial body. Let the total integration
time be T and AIT be TS. The well capacity is adjusted at time TS from QS to QMAX . In Figure 6, the red
solid line denotes the intensity distribution at time TS and the accumulated photoelectrons in the
central area are clipped at QS. The dark blue solid line denotes the intensity distribution at the end of
the integration. Compared with Figure 5, the central area of the celestial body image is under-saturated,
which avoids the extension of the apparent diameter of the celestial body. However, Figure 6 shows
that a shallow energy ring forms around the central area. Therefore, the 1D celestial body edge model
becomes a piecewise function when the WCA scheme is applied and can be expressed as:
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f (x) =


φPηQET

2

[
er f
(

x− l√
2σPSF

)
+ 1
]

x ≤ xc

QS +
φPηQE(T − TS)

2

[
er f
(

x− l√
2σPSF

)
+ 1
]

x > xc

(16)

where xC is the solution of er f
(

x− l√
2σPSF

)
=

2QS
φPηQETS

− 1, which denotes the inflection point of the

intensity distribution. The irradiance of a celestial body is commonly high, such that φPηQETS � QS.
Therefore, xC < l is derived.

The 1D edge gradient model when the WCA scheme is utilized can be derived as:

f ′(x) =



φPηQET√
2πσPSF

exp

[
− (x− l)2

2σ2
PSF

]
x ≤ xC

φPηQE(T − TS)√
2πσPSF

exp

[
− (x− l)2

2σ2
PSF

]
x > xC

(17)

when x = l, the second term of Equation (17) obtains the maximum value. Therefore, the true edge
location can be extracted when the WCA scheme is adopted.
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3.2. Star Spot Imaging Model

Establishing an accurate star spot imaging model is the first step to achieving high star centroiding
accuracy. Stars can be considered point sources at infinity. Stellar rays can be approximated to parallel
light rays. Incident stellar lights pass through the optical lens and are focused at a point in the focal
plane. However, the lens is generally slightly defocused to improve the centroiding accuracy of
a star spot, which spreads to several pixels in the image plane. The profile of a star spot can be
described by the Gaussian PSF, whereas the parameter Gaussian PSF radius σPSF indicates the extent
of dispersion. When σPSF is high, the region where a star spot spreads out is large. The star spot
imaging model in normal integration mode commonly assumes a 2D Gaussian function (Figure 7a)
and can be expressed as:

Enor(x, y) =
φSTηQE

2πσ2
PSF

exp

[
− (x− x0)

2 + (y− y0)
2

2σ2
PSF

]
= ΦS(x, y)T (18)
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where (x0, y0) is the true centroid of the star and φS is the incident flux of the star on the image plane.

ΦS(x, y) =
φSηQE

2πσ2
PSF

exp

[
− (x− x0)

2 + (y− y0)
2

2σ2
PSF

]
is defined as the energy distribution function at this

point. The accumulated photoelectrons of a bright star are suppressed when utilizing the WCA scheme,
and the excess photoelectrons are drained via the overflow gate. The star spot imaging model when
the WCA scheme is applied (Figure 7b) can be expressed as:

EWCA(x, y) = ΦS(x, y)T − ε

(
ΦS(x, y)− QS

TS

)
(ΦS(x, y)TS −QS) (19)

The celestial body edge model and star spot imaging model when utilizing the WCA scheme
have been established so far. In the subsequent section, the effect of exposure parameters on the
accuracy of star centroiding and edge detection is analyzed using the proposed models. Then,
the exposure parameters are optimized to obtain the best performance of the navigation sensor
utilizing the WCA scheme.
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Figure 7. (a) Star signal intensity distribution utilizing normal integration mode; and (b) star signal
intensity distribution using the WCA scheme.

4. Celestial Object Image Feature Extraction Accuracy Performance Utilizing the WCA Scheme

The navigation measurements of deep space optical navigation systems are generally combined
to calculate the LOS direction and spacecraft location [25]. The accuracy of the apparent diameter
and celestial body centroiding is determined by the precision of edge detection. The accuracy of the
LOS direction of the navigation sensor is determined by the attitude measurement precision, that is,
the centroiding accuracy of the background stars. In this section, the effect of exposure parameters
on the accuracy of star centroiding and edge detection is analyzed using the proposed image model,
which provides theoretical support for parameter optimization.

4.1. Edge Detection Accuracy Performance Utilizing the WCA Scheme

The edge is the part of the image where brightness changes sharply. The edge points based on
the blurred edge model are given by the maxima of the first image derivative or zero crossing point
of the second image derivative. Steger proposed a subpixel edge extraction algorithm in his doctoral
thesis [26]. The basic principle of the algorithm is to perform the second-order Taylor expansion about
the pixel where the local gradient is maximized in the direction of the edge normal and to determine
the subpixel location of the zero crossing point of the second derivative. In this study, the edge of the
celestial body is extracted using this algorithm, which is essentially a fitting interpolation algorithm.

Given that the edge detection algorithm is based on image derivative information, it is highly
sensitive to noise. Therefore, the image derivatives must be estimated by convolving the image with
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the derivatives of the Gaussian smoothing kernel. Edges appear as bright lines in an image that
contains the absolute value of the gradient. The second-order Taylor expansion about the maximized
gradient pixel in the direction of the edge normal is expressed as:

r′(x) = r′(x0) + r′′ (x0)x +
1
2

r′′′ (x0)x2 (20)

where x0 is the pixel center. The subpixel location of the edge where r′′ (x) = 0 is expressed as:

l0 = x0 −
r′′ (x0)

r′′′ (x0)
(21)

The 1D celestial body edge model is a piecewise function when the WCA scheme is applied. The
gradient of the edge model is derived by convolving the edge model with the first derivative of the
Gaussian smoothing kernel and expressed as:

r′(x) = f (x) ∗ g′(x) =
∫ ∞
−∞ f ′(τ)g(x− τ)dτ

=
∫ xc
−∞

φPηQET√
2πσPSF

exp

[
−
(

τ − l√
2σPSF

)2
]
· 1√

2πσ
exp

[
−
(

x− τ√
2σ

)2
]

dτ+

∫ ∞
xc

φPηQE(T − TS)√
2πσPSF

exp

[
−
(

τ − l√
2σPSF

)2
]
· 1√

2πσ
exp

[
−
(

x− τ√
2σ

)2
]

dτ

=
φPηQE√

2π(σ2
PSF + σ2)

exp

[
− (x− l)2

2
(
σ2

PSF + σ2
)]{T − TS

2
+

TS
2

er f [Θ(x)]
}

(22)

Thus, the second derivative of edge model is derived as:

r′′ (x) = −
φPηQE(x− l)√

2π(σ2
PSF + σ2)(σ2

PSF + σ2)
exp

[
− (x− l)2

2
(
σ2

PSF + σ2
)]{T − TS

2
+

TS
2

er f [Θ(x)]
}

−
φPηQETSσPSF

2πσ(σ2
PSF + σ2)

exp

[
− (x− l)2

2
(
σ2

PSF + σ2
)] exp

{
−Θ2(x)

} (23)

where Θ(x) =
σ2

PSF(xc − x) + σ2(xc − l)√
2(σ2

PSF + σ2)σPSFσ
. The edge location is the zero crossing point of the second

derivative, which indicates that the solution of Equation (23) and r′′′ (x)r′(x) < 0 are required.
Given that the analytical solution cannot be calculated, the effect of exposure parameters on the edge
detection accuracy is analyzed by numerical simulations. The edge localization error is the function
of the Gaussian radius σPSF, well capacity QS, total integration time T, AIT TS, Gaussian smoothing
kernel radius σ, and edge location l. For a given optical system, σPSF is constant, σ is a parameter of
the edge detection algorithm, and T is determined by the limiting detectable star visual magnitude for
the navigation sensor. This study focuses on analyzing the edge detection error caused by QS and TS.
Systematic error in edge detection is also introduced by pixelization. However, l is a random variable
in practice that is uniformly distributed over a pixel. The root mean square error is defined as the error
of edge detection, which is expressed as:

δE(QS, TS) =

[∫ 0.5

−0.5
δ2(QS, TS, l)dl

]2

(24)

σPSF = 0.67 pixels, σ = 0.55 pixels, T = 30 ms are set at this point. Then, the simulated
celestial body images with temporal noise and fixed pattern noise are generated. Sources of noises
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which are taken into consideration include photon shot noise, dark current noise, readout noise,
quantization noise, dark signal non-uniformity and photon response non-uniformity. The full well
capacity is set to QMAX = 15, 000e− consist with the image sensor we utilized. The edge detection
error simulation results are shown in Figure 8.

First, the relationship between edge detection error δE and AIT TS is discussed. The black line
indicates that δE is evidently affected by TS. An interval exists wherein δE is significantly small.
The second segment of the integration time T− TS is relatively long when TS is short, which leads to
the oversaturation of the central region pixels and extension of the apparent diameter of the celestial
body. However, T − TS is relatively short when TS is excessively long, which leads to a small intensity
contrast between the central region and the energy ring. The algorithm will extract the edge of the
“rings” instead of the actual edge location. Therefore, δE initially reaches the minimum number and
then increases with the increase in TS.

Sensors 2017, 17, 915 11 of 23 

 

which are taken into consideration include photon shot noise, dark current noise, readout noise, 
quantization noise, dark signal non-uniformity and photon response non-uniformity. The full well 
capacity is set to 15,000MAXQ e  consist with the image sensor we utilized. The edge detection error 
simulation results are shown in Figure 8. 

First, the relationship between edge detection error E  and AIT ST  is discussed. The black line 
indicates that E  is evidently affected by ST . An interval exists wherein E  is significantly small. 
The second segment of the integration time ST T  is relatively long when ST  is short, which leads 
to the oversaturation of the central region pixels and extension of the apparent diameter of the 
celestial body. However, ST T  is relatively short when ST  is excessively long, which leads to a 
small intensity contrast between the central region and the energy ring. The algorithm will extract 
the edge of the “rings” instead of the actual edge location. Therefore, E  initially reaches the 
minimum number and then increases with the increase in ST . 

 
Figure 8. Edge detection error E (left) versus well capacity SQ  and AIT ST (right).  

Second, the relationship between edge detection error E  and well capacity SQ  is discussed. 
Setting the AIT to an appropriate value leads to a relatively small E . 29.6 msST   is set at this point. 
The red line indicates that E  varies slightly and remains nearly constant at the beginning with the 
increase in SQ . As SQ  continues to increase, E  increases sharply. The reason for this relationship 
is provided in Figure 9, which shows the simulated images of the celestial object and the second 
derivative of the edge model expressed in Equation (23) when the well capacity values are 1000 e , 
5000 e and 14,000 e .  

In Figure 9, the purple color represents the saturated pixels, whereas the cyan color represents 
the pixels with zero intensity. The yellow arc represents the true edge of the celestial body. The red 
cross symbol indicates the zero-crossing point of the second derivative, which is located at the true 
edge location, whereas the blue circle symbol indicates the zero-crossing point that deviates from the 
true edge location. Figure 9a shows that the intensity of the energy ring is small when the well 
capacity SQ  is small and that the zero-crossing points can be extracted at the actual edge location. 
Figure 9b shows that the intensity of the energy ring increases with the increase in SQ  and that the 
zero crossing points exist at the location of the energy ring. The algorithm extracts double edges, and 
the false edge can be rejected. Figure 9c shows that the intensity of the energy ring is higher with a 
larger SQ  and that no zero-crossing points are obtained at the actual edge location. The extracted 
edge deviates from the true location. Thus, a large SQ  value results in false edge extraction.  

Figure 8. Edge detection error δE (left) versus well capacity QS and AIT TS (right).

Second, the relationship between edge detection error δE and well capacity QS is discussed.
Setting the AIT to an appropriate value leads to a relatively small δE. TS = 29.6 ms is set at this point.
The red line indicates that δE varies slightly and remains nearly constant at the beginning with the
increase in QS. As QS continues to increase, δE increases sharply. The reason for this relationship
is provided in Figure 9, which shows the simulated images of the celestial object and the second
derivative of the edge model expressed in Equation (23) when the well capacity values are 1000e−,
5000e−and 14,000e−.

In Figure 9, the purple color represents the saturated pixels, whereas the cyan color represents the
pixels with zero intensity. The yellow arc represents the true edge of the celestial body. The red cross
symbol indicates the zero-crossing point of the second derivative, which is located at the true edge
location, whereas the blue circle symbol indicates the zero-crossing point that deviates from the true
edge location. Figure 9a shows that the intensity of the energy ring is small when the well capacity QS
is small and that the zero-crossing points can be extracted at the actual edge location. Figure 9b shows
that the intensity of the energy ring increases with the increase in QS and that the zero crossing points
exist at the location of the energy ring. The algorithm extracts double edges, and the false edge can be
rejected. Figure 9c shows that the intensity of the energy ring is higher with a larger QS and that no
zero-crossing points are obtained at the actual edge location. The extracted edge deviates from the true
location. Thus, a large QS value results in false edge extraction.
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Thus, the well capacity and AIT are the main factors that affect the edge detection error.
TS evidently influences on the accuracy of edge detection. The edge detection error initially reaches
the minimum number and then increases with the increase in TS; QS must not be excessively large.
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Figure 9. Effect of different well capacity values on the edge detection results when: (a) QS = 1000e−;
(b) QS = 5000e−; and (c) QS = 14, 000e−.

4.2. Star Centroiding Accuracy Performance Utilizing the WCA Scheme

Star centroiding accuracy is the basis for attitude accuracy. The star centroiding accuracy
performance is analyzed when the WCA scheme is employed to ensure attitude accuracy. The total
centroiding error is decomposed into the x-and y-component errors. The errors in each case can be
proven to be the same. Thus, this study focuses on analyzing the x-component errors as an example.

The centroiding error of the x-component δx when the WCA scheme is applied is expressed as:

δx =
∑i ∑j xi Iij

∑i ∑j Iij
− x0

=
∑i ∑j ΦS

(
xi, yj

)
Txi −∑i ∑j xi · ε

(
ΦS
(
xi, yj

)
− QS

TS

)
·
[
ΦS
(
xi, yj

)
TS −QS

]
φSηQET −∑i ∑j ε

(
ΦS
(

xi, yj
)
− QS

TS

)
·
[
ΦS
(
xi, yj

)
TS −QS

] − x0

(25)

In Equation (25), δx is the function of the Gaussian radius σPSF, well capacity QS, total integration
time T, AIT TS, incident flux of the star on the image plane φS, and actual star location x0. T is
determined by the limiting detectable star visual magnitude for the navigation sensor. If x0 moves
within a pixel, then δx changes periodically. However, x0 is a random variable that is uniformly
distributed over a pixel within the range [−0.5, 0.5) in practice. The root mean square error is defined
as the error of x, as:

δx,S(QS, TS) =

[∫ 0.5

−0.5
δ2

x(QS, TS, x0)dx0

]2

o (26)

After adding temporal noise and fixed pattern noise to the simulated star image, the relationship
among δx,S, QS, and TS is analyzed with different star magnitudes. Figure 10 shows the simulated
results when the star magnitude is 2, 4, 5, and 6. First, the relationship between star centroiding error
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δx,S and AIT TS is discussed. Figure 10a shows that the centroiding error of the star magnitude = 2
slowly increases with the increase in TS. Figure 10b–d shows that the centroiding error variation
caused by TS can be neglected. Thus, δx,S is less affected by TS. Second, the relationship between star
centroiding error δx,S and well capacity QS is discussed. Figure 10a–c shows that δx,S decreases with
the increase in QS. However, the centroiding error variation of a dim star (Figure 10d) caused by well
capacity can be neglected.

The total star centroiding error is expressed as:

δS,cen =
√

δ2
x,S + δ2

y,S (27)

The relationship between total star centroiding error and exposure parameters is consistent with
the x-component errors. Thus, the centroiding error of a dim star is unaffected by the WAC scheme.
The centroiding error of a bright star decreases with the increase in well capacity, and the AIT effect
can be ignored.
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Figure 10. δx,S versus well capacity QS and AIT TS for different star magnitudes: (a) star magnitude =
2; (b) star magnitude = 4; (c) star magnitude = 5; and (d) star magnitude = 6.

In the preceding sections, the centroiding accuracy performance of a single star is analyzed
when the WCA scheme is adopted. Many stars in the FOV are required to increase the attitude
determination accuracy in practice. More dim stars have been generally recorded than bright stars
in the FOV. The overall star centroiding error is defined as the weighted average of centroiding
errors for different star magnitudes at this point. The overall centroiding error can directly reflect the
attitude determination accuracy of the optical navigation sensor. The star magnitudes range from 0
to 7 at 0.5 intervals. The star magnitudes that range from mV − 0.25 to mV + 0.25 are considered
the magnitude mV to simplify the analysis process. Therefore, the overall star centroiding error is
expressed as:

δS,All =

7
∑

i=0
δS,MVi (NMVi ,FOV − NMVi−1,FOV)

NMV7,FOV
(28)
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where NMVi ,FOV is the average number of stars brighter than magnitude MVi in the FOV, and is
expressed as [27]:

NMVi ,FOV = 6.57 · e1.08MVi · 1− cos(A/2)
2

(29)

where A is the FOV size. The number of stars in the FOV increases exponentially with the increase
in star magnitude MVi. There are much more dim stars than the bright ones in the FOV. As a result,
the star centroiding error of dim star contributes more to the overall centroiding error. Figure 11
shows the relationship between overall centroiding error and well capacity QS when TS = 29.6 ms.
The overall centroiding error fluctuation is relatively stable with the increase in QS because variation of
star centroiding error of dim star caused by QS is less affected than bright star Therefore, the variation
of overall centroiding error caused by well capacity can be neglected.
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Figure 11. Overall star centroiding error versus well capacity.

In summary, the well capacity QS is mainly responsible for the centroiding error of a single star.
However, the attitude accuracy affected by well capacity can be neglected.

5. Exposure Parameter Optimization

In the preceding sections, the celestial body edge model and star spot image model are established.
Both models are piecewise functions, such that the analytical solution of the optimal exposure
parameter is difficult to obtain. Thus, the optimal exposure parameters are obtained by conducting
Monte Carlo simulation. The exposure parameters include the total integration time T, AIT TS, and well
capacity QS. An appropriate value of T ensures that sufficient stars are covered in the FOV for star
pattern recognition, which is a prerequisite for a reliable attitude measurement function. The total
integration time is generally set to a relatively longer value to ensure that dim stars can be identified as
reliable, which can cause the target celestial body to become overexposed. Therefore, the WCA scheme
is adopted, and the AIT and well capacity are optimized to obtain the best navigation performance.
The optical system employed in this study has the following parameters: aperture D = 40 mm,
focal length f = 100 mm, and optical transmission τ = 80%. The image sensor utilized is CMV20000,
the parameters of which are listed in Table 1.

Table 1. Parameters of the CMV20000 image sensor.

Parameter Value Parameter Value

Active pixels 5120 × 3840 PRNU 1%
Pixel pitch 6.4 µm × 6.4 µm DSNU 10e−/s

Full well capacity, QMAX 15, 000e− Read noise 8e−

Conversion gain 0.25DN/e− Quantization bits 12
Dark current 125e−/s Quantum efficiency, ηQE 0.45e−/photon
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5.1. Total Integration Time T

The total integration time is determined by the limiting detectable star visual magnitude for
the navigation sensor. Navigation sensors must conduct star pattern recognition to obtain attitude
information. A sufficient number of navigation stars must be present in the FOV to ensure the
effectiveness of the star pattern recognition algorithm. A star can be generally identified as reliable if
the SNR of at least five pixels are more than 5. Thus, T must satisfy that the SNR of the darkest pixel of
limiting detectable star is more than 5, which can be expressed as:

SNR =
KφSηQET

Nnoise
=

KφS0ηQET · 2.512−MV√
n2

Shot + n2
Dark + n2

PRNU + n2
DSNU + n2

read + n2
ADC

> 5 (30)

Thus, the following expression can be derived:

T >
5 ·
√

n2
Shot + n2

Dark + n2
PRNU + n2

DSNU + n2
read + n2

ADC

KφS0ηQE · 2.512−MV
(31)

where nShot, nDark, nPRNU , nDSNU , nread, and nADC denote the standard deviations of photon shot
noise, dark current noise, photon response non-uniformity noise (PRNU), dark signal non-uniformity
noise (DSNU), readout noise and quantization noise, respectively. Photon shot noise follows a Poisson
distribution and is dependent on incident flux on the pixel; its variance is equal to the counts of
photoelectrons in the imaging process. Dark current noise also follows a Poisson distribution, and its
variance is equal to the production of dark current and exposure time. The standard deviation of the
quantization noise is equal to nADC = 1/

√
12G, where G denote the conversion gain. These noise

terms can be derived from the parameters in Table 1. K is the ratio of the energy of the darkest pixel to
the total energy of the star signal. K = 0.0287 is set at this point. φS0 = 5.4 × 104photons/ms is the
incident flux of the star, whose magnitude is 0. MV is the limiting detectable star visual magnitude for
the navigation sensor. MV = 6 is set at this point. Equation (31) shows that the total integration time
must satisfy T > 25.4 ms. T = 30 ms is set to provide the system with a certain degree of redundancy.

5.2. Adjusting Integration Time TS

The AIT TS is one of the main factors that influences the edge detection accuracy performance of
the celestial body. The edge detection error initially reaches the minimum number and then increases
with the increase in TS based on the previous conclusion. However, the variation of star centroiding
error caused by TS can be neglected. Therefore, this study focuses on optimizing TS to minimize the
edge detection error.

Monte Carlo simulation is performed through the following procedure: First, a total of 8000 groups
of celestial body images are generated using the proposed model. The well capacity values range from
3000e− to 5000e− at 25e− intervals. The AIT values range from 29.6 ms to 29.8 ms at 0.002 ms intervals.
Each group contains 100 celestial body images, whose individual center coordinates are fixed; then,
random noise is added. However, the radius of the celestial body obeys uniform distribution over a
pixel, which is equivalent to the edge location that changes uniformly over a pixel. Second, edge data
of the 100 celestial bodies are extracted using the edge detection algorithm. The absolute fitting
radius error is obtained by fitting these edge points utilizing the least square circle fitting algorithm.
The absolute radius error is a direct expression of the edge detection error. Then, the standard deviation
of these absolute radius errors in one group is considered the average edge detection error at certain
well capacity and AIT values. Finally, this procedure is repeated until all groups of celestial body
images are processed.

The simulation conditions are set as follows: the incident flux of the celestial body on the
image plane average in one pixel φP = 7.5 × 104 photons/ms, the total integration time T = 30 ms,
the Gaussian radius σPSF = 0.67 pixels, and the Gaussian smoothing kernel radius σ = 0.55 pixels.
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The AIT TS that corresponds to the minimum standard deviation of the edge detection error is selected
as the optimal TS at a certain well capacity, which is shown as a red scattered point in Figure 12.

The simulation results are shown in Figure 12. The blue solid line indicates the linear function
between well capacity QS and optimal TS fitted by MATLAB. The optimal TS increases with the
increase in well capacity. Therefore, the optimal AIT is derived as:

TS = T − QMAX −QS
φPηQE

(32)

The same conclusion can also be obtained under other simulation conditions. Thus, the optimal
AIT TS when utilizing the WCA scheme is given by Equation (32).
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5.3. Well Capacity QS

The optimization of well capacity QS is determined by two conditions. First, if QS is set excessively
low, then the SNR of a dim star decreases, which can cause the star identification failure of the limiting
detectable star. Therefore, providing the lower limit of the well capacity is necessary. Second, QS is
the main factor that affects the accuracy of edge detection when the WCA scheme is applied, and
the optimal QS must minimize the edge detection error. Therefore, the optimal well capacity QS is
comprehensively determined by the aforementioned conditions.

The intensity distribution of the limiting detectable star cannot be degraded to ensure that it is
identified reliably. Thus, the lower limit of well capacity is expressed as:

QS ≥ TSKBφS0ηQE · 2.512−MVt (33)

By substituting Equation (32) into Equation (33), the following expression is obtained:

QS ≥
(
φPTηQE −QMAX

)
KBφS0 · 2.512−MVt

φP − KBφS0 · 2.512−MVt
(34)

where KB is the ratio of the energy of the brightest pixel to the total energy of the star signal, KB = 0.2965
is set at this point. MVt is the star magnitude limit threshold, and the SNR of a star that is dimmer
than magnitude MVt does not decrease when the WCA scheme is employed. MVt = 5.5 is set at this
point, and QS ≥ 1400e− is obtained.

The well capacity QS is another factor that influences the edge detection performance of the
celestial body. Monte Carlo simulation is performed to obtain the optimal well capacity value.
Given that the relationship between optimal AIT and well capacity is already derived in the previous
section, the optimal exposure parameters under current imaging conditions are determined. A total
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of 300 groups of celestial body images were generated based on the celestial body edge model.
Then, random noise is added. The well capacity values range from 2000e− to 5000e− at 10e− intervals.
Each TS is derived using Equation (32) at a certain QS. Then, the edge data of the 100 celestial bodies
are extracted using the edge detection algorithm. The absolute fitting radius error is obtained by
fitting these edge points utilizing the least square circle fitting algorithm. The standard deviation of
these absolute radius errors in one group is considered the average edge detection error at a certain
well capacity. The well capacity QS that corresponds to the minimum standard deviation of the edge
detection error is selected as the optimal QS if it also satisfies the condition expressed in Equation (34).

The simulation results of the optical system in this study are shown in Figure 13. The abscissa
denotes the well capacity QS, whereas the values in the parentheses denote the optimal TS that
correspond to the current QS. The edge detection error initially reaches the minimum number and
then increases with the increase in QS. The symbol “*” indicates the optimal QS. Thus, the optimal
solutions for the exposure parameters are identified. The optimal well capacity of the navigation
sensor of the optical system employed in this study is 3750e−, whereas the optimal AIT is 29.67 ms.
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where BK  is the ratio of the energy of the brightest pixel to the total energy of the star signal, 
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Figure 13. Simulation results of the optimal QS.

6. Experimental Results and Analysis

Laboratorial single-star imaging and accuracy analysis experiment and night sky experiment
are conducted to validate the correctness of the proposed models, accuracy performance analysis,
and optimal exposure parameters. The image sensor of the navigation sensor adopted in these
experiments is CMV20000, the parameters of which are listed in Table 1.

6.1. Laboratorial Single-Star Imaging and Accuracy Analysis Experiment

A laboratorial single-star imaging and accuracy analysis experiment is performed to validate the
star spot imaging model and centroiding accuracy performance when the WCA scheme is employed.
The autocollimator in the laboratory is used to generate infinite distance star signals with different star
magnitudes. The navigation sensor is mounted on a turntable, as shown in Figure 14.
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Figure 14. Setup for the laboratorial experiment.

The exposure parameters of the navigation sensor are set as follows: total integration time
T = 30 ms, AIT TS = 29.67 ms, and well capacity QS = 3750e−. Figure 15 shows the star images of
different magnitudes using the normal integration mode and the WCA scheme. The brightness degree
of the bright star clearly degraded when the WCA scheme is applied. However, the energy distribution
of the dim star is unaffected. Therefore, the star point imaging model is validated by the experiment.
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Figure 15. (a–d) Star images of magnitudes 2, 4, 5 and 6 when using the normal integration mode; and
(e–h) star images of magnitudes 2, 4, 5 and 6 when using the WCA scheme.

The centroiding accuracy performance when utilizing the WCA scheme is validated. The exposure
parameters of the navigation sensor are set as follows: total integration time T = 30 ms,
AIT TS = 29.67 ms, and well capacity QS ranges from 2000e− to 8000e− at 500e− intervals. Then,
star centroiding is performed and experimental data are recorded. Although the true position of
the star is unknown, the average centroid position (xcen, ycen) of a bright unsaturated star image
can be considered the estimated value of the true position. Then, the standard deviations of the
centroiding error of each magnitude with respect to position (xcen, ycen) are calculated at each certain
QS. The experimental results are shown in Figure 16.
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In Figure 16, the experimental results are denoted with red solid lines, whereas the simulation
results are denoted with blue solid lines. The centroiding accuracy performance from the experiment is
consistent with the simulation results. Thus, the laboratorial single-star imaging and accuracy analysis
experiment validates the conclusions of this study.

6.2. Night Sky Observation and Accuracy Analysis Experiment

A night sky observation and accuracy analysis experiment is performed to validate the correctness
of the celestial body edge model and optimal exposure parameters when the WCA scheme is applied.
Moreover, whether the optical navigation measurements of the stars and target celestial body from the
image by a single exposure with the optimal exposure parameters satisfy the requirements of navigation
accuracy is validated. In Figure 17, the navigation sensor is installed on a tripod. The hardware
configurations of the navigation sensor are the same as those previously mentioned.
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6.2.1. Observations of the Moon and Accuracy Analysis Experiment

The images of the Moon are obtained utilizing the normal integration and WCA schemes, as shown
in Figure 18. Figure 18b shows that the image is largely overexposed, and the apparent diameter of the
Moon is extended significantly. Figure 18c shows the Moon imaged with optimal exposure parameters
utilizing the WCA scheme. Compared with the image shown in Figure 18b, although the total
integration time is the same, the image of the Moon is well exposed, and the image exhibited suitable
performance of navigation measurement extraction when the WCA scheme is applied. Figure 18d
shows the image of the Moon when the well capacity is set to 6093e−. The energy ring around the
Moon is clearly visible. The observation results validate the correctness of the celestial body edge
model when the WCA scheme is adopted.
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Figure 18. Lunar images with different exposure parameters: (a) T = 0.4 ms utilizing the normal
integration mode; (b) T = 30 ms utilizing the normal integration mode; (c) T = 30 ms, TS = 29.67 ms,
QS = 3750e− utilizing the WCA scheme; and (d) T = 30 ms, TS = 29.67 ms, QS = 6093e− utilizing the
WCA scheme.

The theoretical value of the apparent diameter of the Moon is estimated to be 71.02 pixels on the
image plane by applying the STK software to simulate the distance from the observation location to the
Moon. The edge detection algorithm is employed to extract the edge of the Moon. The least squares
circle fitting is utilized to obtain the apparent radius and centroid of the Moon image. The results are
shown in Figure 19.
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In Figure 19, the red scatter points are the extracted edge points, the yellow circle is the fitting
circle, and “+” symbol is the centroid position. The minimum relative deviation of the apparent radius
with respect to the theoretical value is obtained when the optimal exposure parameters are adopted.
Table 2 shows the average extraction results of the apparent radius under different exposure conditions.
However, the apparent radius errors are larger than the simulation results. This phenomenon may
be attributed to atmospheric turbulence and lens calibration error, which are beyond the scope of
this study. Thus, these factors are not considered in the model. In summary, the Moon observations
validate the reliability of error analysis and parameter optimization.

Table 2. Apparent radius of the Moon under different exposure conditions.

Exposure Conditions Apparent Radius/Pixels Error/Pixels

Normal integration, T = 0.4 ms 71.44 0.42
Normal integration, T = 30 ms 75.36 4.34

WCA, T = 30 ms, TS = 29.65 ms, QS = 3046e− 71.46 0.44
WCA, T = 30 ms, TS = 29.67 ms, QS = 3750e− 71.36 0.34
WCA, T = 30 ms, TS = 29.69 ms, QS = 4453e− 71.60 0.58
WCA, T = 30 ms, TS = 29.74 ms, QS = 6093e− 72.12 1.10

6.2.2. Observations of the Moon and Stars in the Same FOV

Images of stars and the Moon in the same FOV are taken utilizing the WCA scheme and optimal
exposure parameters, as shown in Figure 20. The star pattern identification algorithm is applied,
and the identified stars are denoted with the yellow “+” symbol. A total of 12 stars are identified.
The brightest star magnitude is 3.0, whereas the dimmest star magnitude is 6.2. The centroid positions
and magnitude of the identified stars in the image are listed in Table 3.
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Table 3. Centroid positions and magnitude of the identified stars.

Number Centroid/Pixels Magnitude Number Centroid/Pixels Magnitude

1 (3439.886, 3084.843) 3.8 7 (57.533, 1493.233) 4.9
2 (2985.837, 2934.429) 3.0 8 (3045.821, 1069.692) 6.2
3 (1707.333, 2326.095) 4.4 9 (3131.244, 1017.171) 5.3
4 (2575.164, 2232.000) 5.2 10 (3624.311, 684.475) 4.8
5 (1012.179, 256.769) 5.5 11 (977.373, 675.311) 4.3
6 (3025.250, 1638.643) 5.4 12 (4056.727, 59.644) 3.1

Under the optimal exposure parameters, the navigation sensor can simultaneously identify the
stars that are dimmer than the limiting detectable star magnitude and extract the high-accuracy edge
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location of the celestial body (results listed in Table 2). In summary, by utilizing the WCA scheme,
the navigation sensor can image the stars and target celestial body well-exposed simultaneously within
a single exposure and can reliably extract high-accuracy optical navigation measurements that satisfy
the navigation demand. The night sky observation and accuracy analysis experiment validates our
study conclusions.

7. Conclusions

In this paper, we first analyze the irradiance characteristics of a celestial body. This study aims at
solving the problem that an optical navigation sensor is unable to image and expose the target celestial
body and stars well-exposed simultaneously. Given that their irradiance difference is generally large,
a solution that utilizes the WCA scheme is proposed. Then, celestial body edge model and star spot
imaging model are established when the WCA scheme is adopted. The effect of exposure parameters
on the accuracy of the star centroid estimation and edge extraction is analyzed based on the models.
The AIT TS and well capacity QS are the main factors that influence the edge detection accuracy
performance of the celestial body. The edge detection error initially reaches the minimum number
and then increases with the increase in TS. An interval exists that indicates that the edge detection
error is significantly small. The edge detection error initially reaches the minimum number and then
increases with the increase in QS when we set TS to an appropriate value. The well capacity is the
main factor that influences the centroiding accuracy performance of a single star. The star centroiding
error of a bright star decreases with the increase in QS. However, the centroiding error of a dim star
is mainly caused by random noise, and more dim stars are recorded than bright stars in the FOV.
Therefore, the overall centroiding error variation caused by the exposure parameters can be neglected.
The exposure parameters are optimized to ensure that the optical navigation measurements satisfy
the requirement of navigation accuracy. The optimal QS and analytical solution of the optimal TS are
obtained by conducting Monte Carlo simulation. The laboratorial and night sky experiments validate
the correctness of the models, the proposed optimal exposure parameters, and other study conclusions.
This study validates the feasibility of extracting attitude information and LOS vector from the sensor to
the centroid of the target celestial body simultaneously by utilizing a miniaturized single FOV optical
navigation sensor.
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