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Abstract: We consider the joint sparsity Model 1 (JSM-1) in a decentralized scenario, where a number
of sensors are connected through a network and there is no fusion center. A novel algorithm, named
distributed compact sensing matrix pursuit (DCSMP), is proposed to exploit the computational
and communication capabilities of the sensor nodes. In contrast to the conventional distributed
compressed sensing algorithms adopting a random sensing matrix, the proposed algorithm focuses on
the deterministic sensing matrices built directly on the real acquisition systems. The proposed DCSMP
algorithm can be divided into two independent parts, the common and innovation support set
estimation processes. The goal of the common support set estimation process is to obtain an estimated
common support set by fusing the candidate support set information from an individual node and
its neighboring nodes. In the following innovation support set estimation process, the measurement
vector is projected into a subspace that is perpendicular to the subspace spanned by the columns
indexed by the estimated common support set, to remove the impact of the estimated common
support set. We can then search the innovation support set using an orthogonal matching pursuit
(OMP) algorithm based on the projected measurement vector and projected sensing matrix. In the
proposed DCSMP algorithm, the process of estimating the common component/support set is
decoupled with that of estimating the innovation component/support set. Thus, the inaccurately
estimated common support set will have no impact on estimating the innovation support set. It is
proven that under the condition the estimated common support set contains the true common support
set, the proposed algorithm can find the true innovation set correctly. Moreover, since the innovation
support set estimation process is independent of the common support set estimation process, there is
no requirement for the cardinality of both sets; thus, the proposed DCSMP algorithm is capable of
tackling the unknown sparsity problem successfully.

Keywords: distributed compressed sensing; JSM-1; distributed compact sensing matrix pursuit
(DCSMP) algorithm

1. Introduction

Compressed sensing has received considerable attention recently and has been applied
successfully in diverse fields, e.g., image processing [1], speech enhancement [2], sensor network [3,4]
and radar systems [5]. As an important branch of compressed sensing, distributed compressed sensing
(DCS) theory [6,7] rests on a new concept called the joint sparsity of a signal ensemble. A signal
ensemble is composed of different signals from the various sensors of the same scene. Three joint
sparsity models (JSM) are presented in [6]: JSM-1, JSM-2 and JSM-3. In JSM-1, each signal consists of
a sum of two components: a common component that is present in all of the signals and an innovation
component that is unique to each signal. In JSM-2, all signals are constructed from the same sparse
set of basis vectors, but with different coefficient values. JSM-3 extends JSM-1 so that the common
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component needs no longer to be sparse in any basis. The readers can refer to [6] for more details
about JSM-1, JSM-2 and JSM-3.

In this paper, we focus on the JSM-1, and such signals may arise in a sensor network where
large-scale phenomena affect all sensors and local phenomena affect individual sensors. The first
example would be a network of temperature sensors in a forest, where the sun has a global effect, and
shade, water and animals have more local effects [6]. The second example comes from distributed
spectrum sensing in cooperative cognitive networks, which consists of the estimation of a common
component (due to the so-called primary users) and innovation components (due to secondary
users) [8]. The third example is about joint detection and tracking of multiple targets using a multistatic
radar system, where different individual receivers observe the same surveillance region with different
detection probabilities. Till recently, much research work has been carried out on data aggregation,
data collection and data processing in wireless sensor networks [9–11].

Algorithms for the distributed compressed sensing problem can be developed either in a central
manner or a distributed manner [12]. The central recovery methods assume the presence of a fusion
center that gathers all of the information from the network, while the decentralized recovery methods
perform the reconstruction in network, with no fusion center. The decentralized recovery methods have
the advantages of convenience (for implementation) and robustness (to failures), over the central ones.

Centralized reconstruction for JSM-1 has already been addressed in the literature [13–16]. In this
paper, in contrast, we study a decentralized approach to JSM-1. To the best of our knowledge, there are
limited literature works about the JSM-1 in a decentralized network. In [17], a distributed alternating
direction method of multipliers (ADMM) is applied in the JSM-1 framework to recover both the
common and the individual components. In [12], the authors develop a distributed parallel pursuit
(DIPP) algorithm based on the exchange of information about estimated support sets at sensors.

In the above work, the random matrix (e.g., the random Gaussian matrix) is chosen as the
sensing matrix, which provides the worst case performance guarantees in the context of an adversarial
signal/error model. In this work, we focus on the deterministic sensing matrices built directly on the real
acquisition systems. These kinds of matrices eliminate the need for additional measurement matrices,
reduce memory storage and accelerate the reconstruction algorithm. However, the deterministic sensing
matrices often encounter the high coherence problem due to the high resolution of the sensors [18].
In our previous work [19], a general similar sensing matrix pursuit (GSSMP) algorithm is proposed to
cope with the high coherence problem, which obtains much better performance compared with the
subspace pursuit (SP) and basis pursuit (BP) algorithms. However, the GSSMP algorithm can only
tackle a single sparse signal.

In this work, the GSSMP algorithm is extended to tackle the JSM-1 in a decentralized scenario. The
individual sensing matrix for each sensor is constructed based on the real acquisition system. A compact
sensing matrix is built based on the original sensing matrix using similarity analysis. The compact
sensing matrix has a far smaller size compared with the original sensing matrix and is proven to have
low coherence. For the signal model, we use the recent proposed mixed support set model of [12],
which consists of a common support set and an innovation support set. Thus, the purpose of the
proposed algorithm is to estimate both the common and innovation support sets, for the reconstruction
of the sparse signal of each individual sensor. The proposed algorithm is referred to the distributed
compact sensing matrix pursuit (DCSMP) algorithm, and it comprises two main parts: common
support set estimation and innovation support set estimation processes.

In the common support set estimation process, a candidate support set is calculated based on
the compact sensing matrix and the measurement vector, for each individual sensor. We prove that
the candidate support set contains the true support set. Considering that the common support set is
a subset of all individual support sets of all sparse signals, we can obtain an estimated common support
set by fusing the candidate support set information from an individual node and its neighboring nodes.

Next, we are to pursue the innovation support set based on the estimated common support set,
for each individual sensor. The measurement vector is projected into a subspace that is perpendicular
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to the subspace spanned by the columns indexed by the estimated common support set, to remove the
impact of it. We can then search for the innovation support set using an OMP algorithm based on the
projected measurement vector and projected sensing matrix.

The main contribution of the paper has three components. First, in contrast to the conventional
distributed compressed sensing algorithms adopting a random sensing matrix, the proposed DCSMP
algorithm focuses on the deterministic sensing matrices built directly on the real acquisition systems,
which eliminate the need for additional measurement matrices, reduce memory storage and accelerate
the reconstruction algorithm. Secondly, in most algorithms addressing the JSM-1, the process of
estimating the common component/support set is coupled with that of estimating the innovation
component/support set; thus, the inaccurately estimated common support set will lead to failure in
estimating the innovation support set. In this paper, the two processes are decoupled by projecting the
measurement vector into a subspace that is perpendicular to the subspace spanned by the columns
indexed by the estimated common support set, to remove the impact of it. It is proven that under the
condition that the estimated common support set contains the true common support set, the proposed
algorithm can find the true innovation set correctly. Thirdly, since the innovation support set estimation
process is independent of the common support set estimation process, there is no requirement for the
cardinality of both sets; thus, the proposed DCSMP algorithm is capable of tackling the unknown
sparsity problem successfully.

The paper is organized as follows. Section 2 introduces the JSM-1 model in distributed compressed
sensing. The proposed DCSMP algorithm is introduced in Section 3, which is the main contribution of
this paper. The complexity and scalability analysis of the proposed DCSMP algorithm is in Section 4.
In Section 5, we consider a simulation example of identifying multiple targets in a multistatic radar
system, where different individual receivers observe the same surveillance region with different
detection probabilities. A JSM-1 model is constructed based on the multistatic radar system, and
sparse recovery is carried out in a decentralized manner across various receivers. Finally, the paper is
summarized in Section 6.

1.1. Notation

For a set T ⊂ {1, 2, · · · , n}, we use |T| to denote its cardinality, i.e., the number of elements in T.
We use Tc to denote its complement w.r.t. {1, 2, · · · , n}, i.e., Tc := i ∈ {1, 2, · · · , n} : i /∈ T.

For a vector v, v(i) denotes the i-th entry of v, and vT denotes a vector consisting of the entries of
v indexed by T. We use ||v||p to denote the lp norm of v. The support set of v, supp(v), is the set of
indices at which v is nonzero, supp(v):= {i : v(i) 6= 0}. We say that v is s-sparse if |supp(v)| ≤ s.

For a matrix B, B∗ denotes its conjugate transpose and B† its pseudo-inverse. For a matrix with
linearly-independent columns, B† = (B∗B)−1B∗.

We use I to denote an identity matrix of appropriate size. For an index set T and a matrix B, BT is
the sub-matrix of B containing columns with indices in the set T. Notice that BT = BIT . For a tall
matrix P, span(P) denotes the subspace spanned by the column vectors of P.

2. Problem Formulation in the JSM-1 Framework

Consider a decentralized sensor network where a number of sensors acquire signals and
communicate with neighbor nodes to reconstruct the original signals. Each individual sensor (e.g., the
p-th sensor node) is not aware of the full network topology, and instead, it knows two sets of
local neighbors; the incoming neighbor connections Lin

p and outgoing neighbor connections Lout
p .

Here, incoming and outgoing connections correspond to communication links where a node can
receive or send information, respectively. In particular, it is assumed that the signals sensed by these
sensors exhibit both intra-sensor correlation and inter-sensor correlation. This correlated sensing
model corresponds to the JSM-1 model, which is described as follows.
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The p-th sensor monitors a discrete signal xp ∈ <N according to the following relation:

yp = Φpxp + ep, ∀ p ∈ Γ, (1)

where yp ∈ <M is the measurement vector, Φp ∈ <M×N is the sensing matrix, ep ∈ <M is the
measurement noise and Γ is a global set containing all nodes in the network. This setup describes
an underdetermined system, where M < N. The signal vector xp is K-sparse, and its support set is
defined as Sp. The goal of the proposed algorithm is to reconstruct the original signal observed at each
sensor node, i.e., to reconstruct xp at the p-th node (p ∈ Γ).

In the JSM-1, each sensor has its own signal; that means signals across sensors are not the same,
but have correlations. The sparse signal xp can be represented as:

xp = zc + zp, (2)

where zc ∈ <N denotes the common component of the sparse signal xp, which captures the inter-signal
correlation and is common to all signals, and zp ∈ <N(p ∈ Γ) denotes the innovation component of
the sparse signal xp, which captures the intra-signal correlation and is specific to the p-th sparse vector
xp. We further define J and Ip as the support set of zc and zp, respectively, and have:

Sp = J ∪ Ip and J
⋂

Ip = ∅, ∀ p ∈ Γ. (3)

Here, the partial support set J is common to all sparse signals, which is defined as the common
support set. The partial support set Ip is specific for the p-th node and defined as the innovation
support set.

3. Distributed Compact Sensing Matrix Pursuit Algorithm

The goal of this section is to introduce the proposed DCSMP algorithm. A block diagram of the
DCSMP algorithm is shown in Figure 1, which comprises four stages: (1) rough estimation, (2) data
fusion, (3) innovation support set estimation and (4) final estimation. The estimated common support
set is generated at the first and second stage; the estimated innovation support set is obtained at the
third stage; and finally, we can obtain the final estimates of the support set and the original sparse
signal at the fourth stage.

Figure 1. Block diagram of the DCSMP algorithm.

3.1. Rough Estimation

The goal of this section is to calculate the candidate support set for each individual sensor. In order
to tackle the high coherence problem due to the high resolution of the sensors, we consider constructing
a compact sensing matrix for each individual sensing matrix at each node, which is a compact version
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of the original sensing matrix and has low coherence. The readers can refer to [19] for details of the
construction process of the compact sensing matrix. An OMP algorithm is then utilized to calculate
a rough estimate of the true support set, based on which we can obtain the candidate support set F̂p in
the original sensing matrix. Finally, we prove that the candidate support set contains the true support
set for each individual sensor. The detailed procedures of the candidate support set estimation (CSSE)
algorithm are presented in Algorithm 1.

Algorithm 1: Candidate support set estimation (CSSE).
Input: Φp, yp

Output: F̂p

1. Ψp ← ConstructCompact(Φp).
2. âp ← OMP(Ψp, yp).
3. Ξ̂ini

p ←MapToSubspace(âp).
4. F̂p ← FindCandidateSupportSet (Ξ̂ini

p ).

The candidate support set estimation algorithm consists of four steps. The first step uses the
“ConstructCompact” function, which constructs the compact sensing matrix Ψp based on the original
sensing matrix Φp. The process is the same as that described in Section 2.3 in [19]. At the second
step, the OMP algorithm is used to find an estimate of the true support set, which is represented as
âp = {â1

p, · · · , âk
p, · · · , âK′

p }, K′ ≤ K, where âk
p denotes the k-th element of âp. At the third step, in the

“MapToSubspace” function, each element in the estimated support set âk
p corresponds to a condensed

column of the compact sensing matrix. For example, âk
p(βj

p) indicates that the k-th element of âp

corresponds to the j-th condensed column βj
p. This column is defined as a contributing column.

We can then obtain an initial estimate of the correct subspace, Ξ̂ini
p , spanned by K′ contributing

columns {βi
p, · · · , βj

p, · · · , βl
p}, as Ξ̂ini

p =span(βi
p, · · · , βj

p, · · · , βl
p). The final step uses the function

“FindCandidateSupportSet”, which is to find the candidate support set in the original sensing matrix
Φp. Each contributing column corresponds to a similar column group in Φp, which is named
the contributing similar column group. We can then obtain a set Λ̂p containing the indices of K′

contributing similar column groups. All of the columns in each contributing similar column group
from Λ̂p are listed out, and their indices form a candidate support set F̂p.

Proposition 1. The true support set Sp is a subset of the candidate support set F̂p, i.e., Sp ⊂ F̂p.

Proof. According to Proposition 2 in [19], the vectors spanning the true subspace are contained in K′

contributing similar column groups. Thus, the true support set is contained in the candidate support
set F̂p, which is the union of the indices of the columns contained in the K′ contributing similar
column groups.

At the end of the rough estimation stage, the p-th node sends its own candidate support set
to its neighboring nodes, as well as receives the candidate support sets from its neighboring nodes.
The candidate support sets from both the p-th node and its neighboring nodes are sent to the data
fusion stage, where the estimated common support set is generated by using some fusion strategy.

3.2. Data Fusion

For the p-th node, its true support set Sp (including the common support set J and innovation
support set Ip) is contained in the candidate support set F̂p, according to Proposition 1. Considering that
the common support set is joint to the p-th node and its connected neighboring nodes, it can be obtained
by fusing the candidate support sets from both the p-th node and its neighboring nodes in the network.
For fusion, we use a democratic voting strategy [12].



Sensors 2017, 17, 907 6 of 21

The data fusion algorithm is presented in Algorithm 2. The p-th node has access to the candidate
support sets {F̂q}q∈Lin

p
from neighbors and the local estimate F̂p. The estimated common support set

Ĵ is formed (Step 5) such that each index in the estimated common support set is present in at least
two candidate support sets from {{F̂q}q∈Lin

p
, F̂p}. Having more votes for a certain index increases the

probability of this index being correct.

Algorithm 2: Data fusion.

Input: {F̂q}q∈Lin
p

, F̂p

Output: Ĵ
Initialization: z← 0N×1

1: z← vote1(z, F̂p)

2: for each q ∈ Lin
p do

3: z← vote1(z, F̂q)

4: end for
5: Choose Ĵ s.t. (z(i) ≥ 2) ∀ i ∈ Ĵ

In the above algorithm, “vote1” denotes the voting procedure [12]. Since an index present in two
nodes’ candidate support sets will be treated as an element of the estimated common support set, the
probability of the event that the estimated common support set contains the true common support
set is very high. Thus, it is reasonable to assume that the true common support set is a subset of the
estimated common support set.

3.3. Innovation Support Set Estimation

We consider a general condition that the true common support set is a subset of the estimated
common support set. The related assumptions are listed as follows.

Assumption 1. The true common support set J and the innovation support set Ip, satisfy the
following conditions:

1. The true common support set J is a subset of the estimated common support set Ĵ, i.e., J ⊆ Ĵ.
2. The innovation support set Ip is a proper subset of the complement of Ĵ, i.e., Ip ⊂ Ĵc.

The second assumption holds considering that the cardinality of Ip is far less than that of Ĵc.
The goal of the innovation support set estimation stage is to calculate Ip. We prove Lemma 1

before we proceed to the detailed procedures of the proposed algorithm.

Lemma 1. Assuming that | Ĵ| ≤ 2K, define the projection matrix Pp as:

Pp = I− (Φp) Ĵ [(Φp)
∗
Ĵ (Φp) Ĵ ]

−1(Φp)
∗
Ĵ , (4)

and the projected measurement vector ỹp as:

ỹp = Ppyp. (5)

The projected measurement vector ỹp can be represented in a standard equation in compressed sensing as:

ỹp = Ap(xp) Ĵc + e′p, (6)

where Ap = Pp(Φp) Ĵc is the projected sensing matrix and e′p = Ppep is the equivalent noise. Moreover, the
innovation support set Ip can be calculated using an OMP algorithm, based on the projected measurement vector
ỹp and projected sensing matrix Ap.
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Proof. The proof consists of three parts. First, we prove that (Φp) Ĵ has full column rank under the
condition that the cardinality of the estimated common support set Ĵ is less than or equal to 2K, i.e.,
| Ĵ| ≤ 2K, where K is the sparsity level of xp.

According to Theorem 2.13 in [20], a unique s-sparse solution of the system y = Ax implies
that every set of 2s columns of A is linearly independent, where s indicates the sparsity level of x.
Theorem 2.13 applies to the deterministic sensing matrix in this work, since the system has a unique
K-sparse solution. Thus, every set of 2K columns of Φp is linearly independent. Under the condition
that | Ĵ| ≤ 2K, the submatrix (Φp) Ĵ contains at most 2K columns. Since every set of 2K columns of Φp

is linearly independent, (Φp) Ĵ has full column rank.
Secondly, we prove that the projected measurement vector ỹp can be represented in a standard

equation in compressed sensing.

ỹp = Ppyp

= Pp

(
Φpxp + ep

)
= Pp

[(
Φp

)
Ĵ

(
xp

)
Ĵ
+
(

Φp

)
Ĵc

(
xp

)
Ĵc
+ ep

]
(7)

= Pp

(
Φp

)
Ĵc

(
xp

)
Ĵc
+ Ppep,

= Ap(xp) Ĵc + e′p

The fourth equality of (7) holds considering that the contribution of Ĵ to yp can be nullified, by
projecting yp into a perpendicular space using the projection matrix Pp.

Pp

(
Φp

)
Ĵ

(
xp

)
Ĵ

=

{
I−

(
Φp

)
Ĵ

[(
Φp

)∗
Ĵ

(
Φp

)
Ĵ

]−1(
Φp

)∗
Ĵ

}(
Φp

)
Ĵ

(
xp

)
Ĵ

(8)

= 0

Thus, we can obtain (6), a standard equation in compressed sensing.
Finally, we will prove that Ip is the support set of the sparse vector (xp) Ĵc . The support set of xp

can be represented as:
Sp = J ∪ Ip and J

⋂
Ip = ∅, ∀ p ∈ Γ. (9)

According to Assumption 1, J is a subset of Ĵ and, thus, is the set of indices at which (xp) Ĵ is
nonzero. Similarly, Ip is the proper subset of Ĵc and is the set of indices at which (xp) Ĵc is nonzero.
Thus, Ip is the support set of the sparse vector (xp) Ĵc .

In summary, (6) is a standard equation in compressed sensing, and we can calculate Ip using
an OMP algorithm based on the projected measurement vector ỹp and projected sensing matrix Ap.

Algorithm 3: Innovation support set estimation (ISSE).

Input: Φp, yp, Ĵ
Output: Îp

1. Pp←I− (Φp) Ĵ

[
(Φp)∗Ĵ (Φp) Ĵ

]−1
(Φp)∗Ĵ .

2. ỹp←Ppyp.
3. Ap←Pp(Φp) Ĵc .
4. Îp← OMP(ỹp, Ap).
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In the above algorithm (Algorithm 3), the first step is to construct the projection matrix Pp, while
the second and third steps are to construct the projected measurement vector ỹp and projected sensing
matrix Ap. Finally, the innovation support set Îp can be calculated using an OMP algorithm, based on
ỹp and Ap.

3.4. Final Estimation

The goal of this section is to estimate the support set Sp and the sparse vector xp, given the
estimated common support set Ĵ and the estimated innovation support set Îp. First, a combinational
search is performed in Ĵ to find the true common support set J. Each combination together with Îp

forms an estimate of the true support set, which is denoted as Ŝj
p, j = 1, 2, · · · , Nco, where Nco indicates

the number of combinations. Based on each estimated support set, we can obtain an estimate of the
sparse vector xp (denoted as x̂j

p), using the pseudo-inverse operation. Among the obtained estimated

sparse vectors x̂j
p, j = 1, 2, · · · , Nco, we can find the one with the least residual, which is termed as the

final estimate of the sparse vector xp. The detailed procedures are as follows.
The combinational search algorithm consists of six steps. The first step uses the “ListCombinations”

function, which lists C1
E, C2

E, · · · , CE
E combinations based on the indices in Ĵ, where E = | Ĵ|.

Each combination is represented as J I j, j = 1, 2, · · · , Nco. At the second step, each combination
together with Îp forms an estimate of the true support set, i.e., Ŝj

p = J I j ⋃ Îp, j = 1, 2, · · · , Nco. At the
third step, the proposed algorithm solves a least squares problem to approximate the nonzero entries
((x̂j

p)Ŝj
p
←[(Φp)Ŝj

p
]† yp) and sets other entries as zero ((x̂j

p)(Ŝj
p)c←0), resulting in an estimate of the

sparse vector, x̂j
p, j = 1, 2, · · · , Nco. The fourth step is to calculate the residual rj

p (j = 1, · · · , Nco).

The l2 norm of rj
p is indicated as ||rj

p||2. The fifth step uses the “MinimumResidual” function, which
finds the residual with the least l2 norm among the residuals, and denotes it as rmin

p . Concurrently,
we can find its associate sparse signal and support set, denoted as x̂min

p and Ŝmin
p , respectively. Finally,

we can obtain the final estimates of the sparse signal and the true support set, by setting x̂p←x̂min
p

and Ŝp←Ŝmin
p .

Proposition 2. The proposed combinational search algorithm (Algorithm 4) can find the true support set Sp,
provided that Îp is correctly estimated.

Proof. In Algorithm 4, C1
E, C2

E, · · · , CE
E combinations are listed based on the indices in Ĵ, where

E = | Ĵ|. Each combination is represented as J I j, j = 1, 2, · · · , Nco, where Nco indicates the number of
combinations. Since J ⊆ Ĵ, J is contained in J I j, j = 1, 2, · · · , Nco. Thus, Sp = J

⋃
Ip is contained in

J I j ⋃ Îp provided that Îp is correctly estimated. Therefore, we can find the true support set Sp via the
combinational search algorithm.

Algorithm 4: Combinational search.

Input: Φp, yp, Ĵ, Îp

Output: Ŝp, x̂p

1. J I j ← ListCombinations ( Ĵ), j = 1, 2, · · · , Nco.
2. Ŝj

p←J I j ⋃ Îp, j = 1, 2, · · · , Nco.
3. (x̂j

p)Ŝj
p
←[(Φp)Ŝj

p
]† yp, (x̂j

p)(Ŝj
p)c←0, j = 1, 2, · · · , Nco.

4. rj
p←yp −Φpx̂j

p, j = 1, 2, · · · , Nco.
5. rmin

p ←MinimumResidual ({r1
p, r2

p, · · · , rNco
p }). Concurrently, find x̂min

p and Ŝmin
p .

6. x̂p←x̂min
p , Ŝp←Ŝmin

p .
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3.5. DCSMP Algorithm

Using Algorithms 1∼4, we now develop the DCSMP algorithm presented in Algorithm 5.
The inputs to Algorithm 5 for the p-th node are the measurement signal yp and the sensing matrix
Φp. Furthermore, Algorithm 5 knows Lin

p and Lout
p . We assume that some underlying communication

scheme is provided for the transmit and receive functionality.
In Algorithm 5, local candidate support set estimates are exchanged over the network (Steps 2

and 3). The data fusion algorithm merges the local and neighboring candidate support set estimates to
produce the estimated common support set Ĵ (Step 4). At Step 5, the contribution of Ĵ to yp is nullified,
by projecting yp into a subspace perpendicular to the space spanned by the columns of Φp, indexed
by Ĵ. We can then calculate the estimated innovation support set Îp using an OMP algorithm based
on the projected measurement vector and projected sensing matrix. Finally, a combinational search is
performed in Ĵ to find J, and thus, we can obtain the final estimates of the support set and the original
sparse vector.

Algorithm 5: Distributed CSMP.

Input: yp, Φp, Lin
p , Lout

p

Output: Ŝp, x̂p

1. F̂p ← CSSE(Φp, yp);
2. Transmit: send F̂p to its neighboring nodes;
3. Receive: Receive {F̂q}q∈Lin

p
from the neighboring nodes;

4. Ĵ← DataFusion({F̂q}q∈Lin
p

, F̂p);

5. Îp ← ISSE(Φp, yp, Ĵ);
6. (Ŝp, x̂p)← CombinationalSearch(Φp, yp, Ĵ, Îp)

Discussion: Two additional settings are considered when information from all sensors can be
fused. The first setting is that each sensor has the capability of communicating with all other sensors in
the network, and the second one is that the measurements of all sensors are sent to a fusion center,
which generates an estimate of the original signal using information from all sensors.

It is straightforward to extend the proposed DCSMP algorithm to the above two settings. To deal
with the first condition, we need only change the inputs of the data fusion algorithm (Algorithm 2).
For instance, for the p-th node, change the original inputs of the data fusion algorithm, the candidate
support sets from its neighbors, {F̂q}q∈Lin

p
, to the candidate support sets from all other sensors in the

network, {F̂q}q 6=p. For the second one, when the measurements from all of the sensors in the network
are sent to the fusion center, we need only change the inputs of the data fusion algorithm (Algorithm 2)
to the candidate support sets from all of the sensors in the network.

4. Complexity and Scalability Analysis

4.1. Complexity Analysis

The proposed DCSMP algorithm consists of two main parts: offline processing and online
processing. The offline processing transforms the individual sensing matrix Φp to a compact sensing
matrix Ψp using similarity analysis. The computational complexity of the offline processing mainly
focuses on the computation of the similarity between any two columns of the individual sensing
matrix, which is of the order of O(N(N−1)

2 M) [19]. M and N are the numbers of the rows and columns
of Φp, respectively.

The online processing procedure consists of four parts: (1) rough estimation; (2) data fusion;
(3) innovation support set estimation; and (4) final estimation. First, for the rough estimation process,
an OMP algorithm is used to find a rough estimate of the true support set for each individual signal.
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The computational complexity is of the order of O(MDp) for the p-th node, where Dp is the number of
columns of the compact sensing matrix Ψp [19].

Secondly, for the data fusion process, we use a democratic voting strategy [12], which is very
simple and has negligible complexity compared with the other three processes.

In the innovation support set estimation process, first, the measurement vector yp is projected
into the subspace that is perpendicular to the space spanned by the columns of Φp, which are indexed
by the estimated common support set Ĵ, as:

ỹp = Ppyp

=

{
I−

(
Φp

)
Ĵ

[(
Φp

)∗
Ĵ

(
Φp

)
Ĵ

]−1(
Φp

)∗
Ĵ

}
yp (10)

= yp −
(

Φp

)
Ĵ

(
Φp

)†

Ĵ
yp.

The complexity of this step concentrates on the pseudo-inverse operation, i.e., computing (Φp)†
Ĵ
yp,

using the least squares algorithm. Thus, the computational cost focuses on the least squares estimation
and is of the order of O(| Ĵ| ·M), according to [21]. Secondly, the estimated innovation support set Îp is
calculated using an OMP algorithm, and the complexity of this step is O(M · | Ĵc|). Thus, the complexity
of entire innovation support set estimation is O(| Ĵ| ·M)+O(M · | Ĵc|).

In the final estimation process, C1
E, C2

E, · · · , CE
E combinations are listed out based on the indices

in Ĵ, where E = | Ĵ|. Each combination is represented as J I j, j = 1, 2, · · · , Nco, where Nco = C1
E +

C2
E + · · · + CE

E . Each combination together with Îp forms an estimate of the true support set, i.e.,

Ŝj
p = J I j ⋃ Îp, j = 1, 2, · · · , Nco. Based on each estimated support set, the nonzero entries of the

estimated sparse vector are calculated using the least squares algorithm. The computational cost of the
final estimation process is of the order of C1

E ·O(|Ŝ1
p| ·M)+C2

E ·O(|Ŝ2
p| ·M)+ · · ·+CE

E ·O(|ŜE
p | ·M) [21].

Furthermore, since max(|Ŝ1
p|, |Ŝ2

p|, · · · , |ŜE
p |) ≤ K, we have:

C1
E ·O(|Ŝ1

p| ·M) + · · ·+ CE
E ·O(|ŜE

p | ·M) < C1
E ·O(KM) + · · ·+ CE

E ·O(KM) (11)

Considering that C1
E ·O(KM) + · · ·+ CE

E ·O(KM) = Nco ·O(KM), the computational cost of the
final estimation process can be approximated as the order of Nco ·O(KM).

In summary, the complexity analysis for online processing is listed in Table 1, and the computational
complexity of the whole DCSMP algorithm is listed in Table 2.

Table 1. Complexity analysis for online processing.

Rough Estimation Data Fusion Innovation Support Set Estimation Final Estimation

O(MDp) Negligible O(| Ĵ| ·M)+O(M · | Ĵc|) Nco ·O(KM)

Table 2. Computational complexity of the DCSMP Algorithm.

Offline Processing Online Processing

O( N(N−1)
2 M) O(MDp) + O(| Ĵ| ·M)+O(M · | Ĵc|) + Nco ·O(KM)

4.2. Scalability Analysis

In a typical wireless sensor network (WSN) scenario, signals are sampled at source nodes and
aggregated at sink nodes. The correlation between source nodes causes redundancy. Many methods
are proposed to reduce the redundancy, such as the structure fidelity data collection approach [11] and
distributed compressed sensing [22].
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This paper considers a decentralized sensor network where a number of densely-placed sensors
acquire signals and communicates with neighbor nodes to reconstruct the original signals. All of the
sensor nodes are equivalent. Each individual sensor (e.g., the p-th sensor node) is not aware of the full
network topology, and instead, it knows two sets of local neighbors: the incoming neighbor connections
Lin

p and outgoing neighbor connections Lout
p . Here, incoming and outgoing connections correspond to

communication links where a node can receive or send information, respectively. The sparse signal
is sampled and reconstructed at each sensor node, by exploiting the correlation between the sensor
nodes. In particular, at the p-th node, the DCSMP algorithm fuses the candidate support set estimates
from both the p-th node and its neighboring nodes, to enhance the reconstruction performance.

In the conventional sensor network, as the size of the network expands, the transmission burden
and the computational cost of the data fusion process increase dramatically at each node. However,
in the DCSMP algorithm-based sensor network, the candidate support sets are transmitted over the
network, rather than the transmitted measurements as in the conventional network. This significantly
reduces the transmission burden on the links. Moreover, the computational cost of the data fusion
process grows linearly with the number of incoming neighboring connections. The computational
complexity of the data fusion process is negligible since a very simple democratic voting strategy [12]
is adopted in this work. Thus, the DCSMP algorithm provides a desirable structural scalability.

5. Simulation Results and Analysis

In this section, we consider a distributed multistatic radar system, which consists of a transmitter
and a number of receivers (Figure 2). The transmitter emits the transmitted signal; the receivers receive
the echoes from the targets. It is assumed that different individual receivers observe a same surveillance
region with different detection probabilities. A JSM-1 is constructed based on the multistatic radar
system, and sparse recovery is carried out in a decentralized manner across various receivers.

Figure 2. Multistatic radar system.

5.1. Sparse Representation in State Space

We consider NT targets moving within the surveillance region. The state vector of the d-th target

(d = 1, · · · , NT) at the k-th scan is defined as xd
k =

[
pxd

k , vxd
k , pyd

k , vyd
k , pzd

k , vzd
k

]T
, where pxd

k and vxd
k

denote respectively the position and velocity of the d-th target along the x axis of Cartesian frame at
scan k; pyd

k and vyd
k along the y axis and pzd

k and vzd
k along the z axis.

In the multistatic radar system, a transmitter Tr is at a known position tr = [x0, y0, z0]
T ; a number

of receivers Ri (i = 1, · · · , NR) are placed at known locations ri = [xi, yi, zi]
T , i = 1, · · · , NR, in

a Cartesian coordinate system, where NR denotes the number of receivers.
In practice, the number, locations and velocities of the targets are unknown during the tracking

process. The state space at scan k is divided into Ng grids (possible values), listed as gl
k, l = 1, · · · , Ng.

An auxiliary parameter, namely grid reflection, is attached to each grid. If a grid is occupied by a target,
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its grid reflection parameter is set as the reflection coefficient of the target; otherwise, it is set as zero.
All of the grid reflection parameters are mapped into a grid reflection vector ξk, which is an indicator
vector that contains the true reflectivity of targets at each grid location. Considering that the number of
grids occupied by targets is much smaller than that of the total grids in state space, ξk is a sparse vector.

Each grid in the state space represents a state vector of a potential target. The l-th grid gl
k is

transformed to a delay-Doppler set (τi,l
k , f i,l

k ), according to Equations (12) and (13), under the condition
of receiver Ri,

τi,l
k =

1
c

(
||Pl

k − tr||+ ||Pl
k − ri||

)
, (12)

f i,l
k =

fc

c

(〈
Vl

k, ui,l
k 〉 − 〈V

l
k, utr,l

k

〉)
, (13)

where Pl
k = [pxl

k, pyl
k, pzl

k]
T and Vl

k = [vxl
k, vyl

k, vzl
k]

T denote the position and velocity of the l-th grid
at scan k, respectively; utr,l

k and ui,l
k denote the unit vector from the transmitter to the l-th grid and the

unit vector from the l-th grid to the i-th receiver, respectively.
Note: From (12) and (13), it can be seen that a grid in the state space, gl

k, corresponds to different
delay-Doppler set (τi,l

k , f i,l
k ), under the condition of different receivers Ri, i = 1, · · · , NR.

5.2. Compressed Sensing Model for an Individual Receiver

At the i-th receiver Ri, the received measurement signal can be represented via the grids in target
spate space, as:

ri
k(t) =

Ng

∑
l=1

{
αi,l

k ·
W

∑
n=1

p
(

t−
(

n− 1
)

ε−
(

k− 1
)

∆T − τi,l
k

)
· ej2π f i,l

k ·t
}
+ wi

k(t), (14)

where αi,l
k denotes the reflection coefficient corresponding to the l-th grid between the transmitter and

the i-th receiver; τi,l
k is the l-th grid originated delay, and f i,l

k is the Doppler shift frequency of the l-th
grid, both measured by the i-th receiver; wi

k(t) is the complex envelope of the overall disturbance at
the i-th receiver.

The state vector corresponding to the l-th grid, gl
k, contributes to the received signal if it is

occupied by a target. We define ϕi,l
k (t) as the l-th grid’s contribution to the received signal, as:

ϕi,l
k (t) =

W

∑
n=1

p
(

t−
(

n− 1
)

ε−
(

k− 1
)

∆T − τi,l
k

)
ej2π f i,l

k ·t. (15)

At the i-th receiver, a sequence of discrete outputs of the received signal is sampled, which forms
a measurement vector yi

k, as:

yi
k =

[
ri

k

(
1
)

, ri
k

(
2
)

, · · · , ri
k

(
W
)]T

, (16)

where ri
k(n), n = 1, · · · , W are discrete output samples collected by the i-th receiver, at scan k.

The measurement vector yi
k can be represented in a compressed sensing framework, as in (17),

yi
k = Φi

kξi
k + ei

k, (17)

where Φi
k is a sensing matrix and ξi

k is a sparse grid reflection vector at the i-th receiver. We have:

Φi
k =

[
ϕi,1

k · · ·ϕ
i,l
k · · ·ϕ

i,Ng
k

]
, (18)
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where ϕi,l
k is the l-th column of the sensing matrix, i.e., ϕi,l

k = [ϕi,l
k (1), ϕi,l

k (2), · · · , ϕi,l
k (W)]T . It can be

seen from (15) that ϕi,l
k is the l-th grid’s contribution to the received signal and is deterministic in the

condition of fixed grids. Since the division of the state space with grids is assumed fixed prior in this
work, the sensing matrix is deterministic in nature.

5.3. General JSM-1 in a Multistatic Radar System

In the multistatic radar system, assume that the i-th receiver Ri has bi-directional communication
links with a number of neighboring nodes (receivers), which are denoted as U j

i , j = 1, · · · , NEi,
i = 1, · · · , NR, where NEi denotes the number of neighboring nodes of the i-th receiver. For each
neighboring node U j

i , we can obtain a standard equation in compressed sensing, as:

yj
k = Φ

j
kξ

j
k + ej

k, j = 1, · · · , NEi, (19)

where yj
k, Φ

j
k, ξ

j
k and ej

k denote the measurement vector, sensing matrix, sparse grid reflection vector
and noise vector, respectively, for the j-th neighboring node of the i-th receiver.

It is assumed that the i-th receiver and its NEi neighboring nodes observe a surveillance area.
For each individual receiver, it cannot “see” all of the targets at a time. This is reasonable in practice
considering that the receivers are located at different positions with different viewing angles, and each
receiver has a different detection probability (less than one). Therefore, some targets are observed by
all of the receivers, namely common targets; and the others are observed by individual receiver, which
are named as innovation targets.

The common targets’ states are the same as different observers (receivers) located at different
positions, when the targets’ states and receivers’ positions are defined in the same coordinate system.
Thus, for different receivers, their corresponding sparse grid reflection vectors share the same locations
of part of the nonzero reflection coefficients (corresponding to the common targets), i.e., having the
same common support set. However, the reflection coefficients of a common target observed by
different receivers are not the same due to different parameters of each individual receiver; thus, the
common components of different sparse grid reflection vectors are different, which does not fit the
standard JSM-1 (2) presented in Section 2.

A general JSM-1 is adopted in this work, which relies only on Equation (3), focusing on common
support set. In this condition, it is assumed that different sparse grid reflection vectors share a common
support set, while having different reflection coefficients. Since the proposed DCSMP algorithm focuses
on support set estimation instead of estimating the common component (the reflection coefficients),
the proposed DCSMP algorithm can cope with the general JSM-1 efficiently.

5.4. Simulation Environment Setup

A multistatic radar system consisting of a transmitter and three receivers are considered in
this simulation example. The transmitter is located at tr = [0, 0, 0]T km; the receivers are located at
r1 = [0, 8, 0]T km, r2 = [8, 0, 0]T km and r3 = [8, 8, 0]T km, respectively, in a 3D Cartesian coordinate
system. The three receivers are connected with bi-directional communication links. The carrier
frequency ( fc) for each receiver is 10 GHz. The number of discrete samples collected at each
receiver (W) is 80. The volume of the surveillance position space (represented in pxk, pyk, pzk) is
103 × 103 × 103 m3, which is divided into 10× 10× 10 grid points; the volume of the surveillance
velocity space (represented in vxk, vyk, vzk) is 60× 60× 60 (m/s)3, which is divided into 2× 2× 2 grid
points. Therefore, the total number of grids in state space (Ng) is 8× 103.

5.5. Identification of Multiple Targets’ States

The proposed DCSMP algorithm is used to identify multiple targets (including common and
innovation targets) in the state space. The achievable resolution of the sparse vector in state space
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obtained by the DCSMP algorithm is evaluated and compared with the DIPP algorithm. We focus
on the difference in position while assuming that all of the targets have the same velocity, for clarity
in representation.

Three cases are considered in the simulation example: (a) separately-distributed targets;
(b) closely-spaced common targets; (c) closely-spaced innovation targets observed by the receiver R1.
The addressed scenarios are characterized by the signal-to-noise ratio (SNR), which is set to 20 dB.
The simulation parameters for the three cases are listed in Tables 3–5.

Table 3. Case 1: Separately-distributed targets.

Target Number Reflected Amplitude (dB) Positions (m) Observer

C1 2 [1800, 2900, 18000]T R1,R2,R3
C2 6 [1900, 5100, 18100]T R1,R2,R3
I1 13 [4000, 1000, 18000]T R1
I2 2 [3500, 900, 17900]T R2
I3 6 [500, 500, 17500]T R3

Table 4. Case 2: Closely-spaced common targets.

Target Number Reflected Amplitude (dB) Positions (m) Observer

C1 2 [1800, 4900, 18000]T R1,R2,R3
C2 6 [1700, 5000, 18000]T R1,R2,R3
I1 13 [3600, 600, 18100]T R1
I2 2 [3000, 1800, 17800]T R2
I3 6 [510, 500, 17500]T R3

Table 5. Case 3: Closely-spaced innovation targets observed by R1.

Target Number Reflected Amplitude (dB) Positions (m) Observer

C1 2 [1800, 4900, 18000]T R1,R2,R3
C2 6 [1800, 2200, 18100]T R1,R2,R3
I11 13 [1800, 5000, 17900]T R1
I12 13 [1700, 4900, 17900]T R1
I2 2 [2500, 1500, 17400]T R2
I3 6 [500, 1500, 17500]T R3

The simulation results are shown in Figures 3–8. The estimated positions shown in each figure
are the combination of the results from three receivers, including the common targets observed by
all of the receivers and the innovation targets observed by the individual receiver. This is reasonable
since in practice, at the final stage of estimation, each receiver will send its estimated locations of the
innovation targets to its neighboring nodes, and all of the connected receivers will have a common
scene of the surveillance area.

5.5.1. Separately Distributed Targets

Figures 3 and 4 show the results of the identification of multiple separately-distributed targets in
the state space, using the DCSMP and DIPP algorithm, respectively. In Figure 3, the true positions of
targets are denoted as stars (“*”), with text indications “C1” and “C2” for common targets and
“I1”, “I2”, “I3” for innovation targets. The estimated positions of targets are denoted as circles
(“o”), with text indications “C1estimate” and “C2estimate” for estimated common targets and “I1estimate”,
“I2estimate”, “I3estimate” for estimated innovation targets. It can be seen from Figure 3 that the multiple
separately-distributed targets (including both the common and innovation targets) are accurately
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identified in the state space using the DCSMP algorithm, and similar results appear in Figure 4, for the
DIPP algorithm.
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Figure 3. Case 1: Separately-distributed targets. Estimated positions in 3D space using the
DCSMP algorithm.
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Figure 4. Case 1: Separately-distributed targets. Estimated positions in 3D space using the distributed
parallel pursuit (DIPP) algorithm.

5.5.2. Closely-Spaced Common Targets

The main challenge of this scenario arises from the small separation between two closely-spaced
common targets C1 and C2. Figure 6 shows that the DIPP algorithm fails in distinguishing C1 and C2.
This is due to the reason that the DIPP algorithm cannot efficiently cope with the sensing matrix with
high coherence due to the high resolution of the state space. Moreover, since the estimated common
support set (i.e., estimated positions of the common targets) is adopted as the side information to
calculate the innovation support set by the DIPP algorithm, the wrongly-estimated common support
set leads to failure in estimating the innovation support set, for each receiver. Therefore, the positions
of the innovation targets cannot be identified accurately (Figure 6).

In Figure 5, the common targets are accurately identified, which verifies that the proposed DCSMP
algorithm is capable of dealing with the sensing matrix with high coherence. As a consequence, the
innovation targets are accurately identified based on the correctly-estimated common support set.
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Figure 5. Case 2: Closely-spaced common targets. Estimated positions in 3D space using the
DCSMP algorithm.
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Figure 6. Case 2: Closely-spaced common targets. Estimated positions in 3D space using the
DIPP algorithm.

5.5.3. Closely-Spaced Innovation Targets

The main challenge in this scenario arises from the small separation between two closely-spaced
innovation targets I11 and I12, observed by the receiver R1. Figure 8 shows that the DIPP algorithm
succeeds in estimating the positions of two separately-distributed common targets. The estimated
common support set is then input as the side information to calculate the innovation support set,
at three receivers, respectively. Figure 8 shows that the first receiver R1 fails in distinguishing the two
closely-spaced innovation targets I11 and I12, while the other two receivers R2 and R3 succeed in
identifying their corresponding innovation targets I2 and I3, respectively. In Figure 7, it can be seen
that the proposed DCSMP algorithm succeeds in identifying both the common and innovation targets.
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Figure 7. Case 3: Closely-spaced innovation targets observed by receiver R1. Estimated positions in 3D
space using the DCSMP algorithm.
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Figure 8. Case 3: Closely-spaced innovation targets observed by R1. Estimated positions in 3D space
using the DIPP algorithm.

5.6. Random Testing Cases

A sequence of random cases is tested where 20 targets (including common and innovation
targets) are randomly distributed in the three-dimensional position space. Five hundred Monte Carlo
simulations are performed for each trail. Considering that each individual receiver cannot “see”
all of the targets at a time, the numbers of common and innovation targets are set as 15 and 5,
respectively. Thus, we have the following parameter setup for the simulation: the signal dimensionality
N = 8× 103, the measurement dimensionality M = 80, the sparsity level K = 20, the common
support set J = 15, the innovation support set Ip = 5, the number of all nodes (receivers) NR = 3 and
the number of Monte Carlo trails NMC = 500.

Two metrics are utilized to evaluate the performance of the proposed algorithm. The first metric
is called distributed reconstruction error (DRE), which is defined as:

DRE =
1
|NR|

Σ|NR |
p=1

[ 1
NMC

ΣNMC
i=1

||x̂i
p − xi

p||2
||xi

p||2

]
, (20)
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where xi
p represents the true signal for the p-th receiver in the i-th Monte Carlo trail and x̂i

p represents
the estimated signal. Our objective is to achieve a lower DRE considering the whole decentralized
network. We also adopt the average support-set cardinality error (ASCE) as a direct evaluation of the
support-set recovery performance [12]. Note that the ASCE has the range [0, 1], and our objective is to
achieve a lower ASCE.

We now provide the average performance results using the performance measures DRE and ASCE,
which are shown in Table 6. The performance of OMP and SP algorithms is included in the simulation
as a benchmark characterizing a single-sensor (disconnected) scenario. From Table 6, it can be seen that
the proposed DCSMP algorithm obtains the lowest DRE and ASCE, which verifies that the proposed
DCSMP algorithm outperforms the three other algorithms (DIPP, SP and OMP), in reconstructing the
sparse vector with high resolution, in a decentralized network.

Table 6. Performance results. DRE, distributed reconstruction error; ASCE, average support-set
cardinality error.

Algorithm DRE ASCE

DCSMP 0.07 0.05
DIPP 0.23 0.17

SP 0.37 0.53
OMP 0.31 0.49

5.7. Simulation Results on a Large-Scale Sensor Network

This simulation is to validate the performance of the proposed DCSMP algorithm on a large-scale
sensor network. The network topology is built along the random geometric graph model, presented
by Penrose in [23], where a number of nodes are randomly distributed in an area. Each node
connects with its neighbor nodes located within a certain distance from it. Figure 9 shows a typical
setup of such a network consisting of 105 nodes. The proposed DCSMP algorithm is compared
to the compressed sensing-based algorithms, e.g., the SP, OMP and DIPP algorithms, as well as
non compressed sensing based algorithms, e.g., principal component analysis (PCA) [24] and the
distributed wavelet compression (DWC) algorithm [25].

Figure 9. The connectivity topology of the tested network comprised of 105 nodes.
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The signal model is constructed based on the multistatic radar system. The sparse grid reflection
vector is chosen as the original signal. For the conventional compressed sensing-based algorithms,
e.g., the SP and OMP algorithm, the measurements are compressed by a down-sampling measurement
matrix before transmitting to the neighboring nodes. For the non-compressed sensing-based
approaches, e.g., the PCA and DWC algorithm, the data compression is achieved after aggravating
signals from neighboring nodes. For the above two kinds of algorithms, the measurements are
transmitted in the network. In contrast, in the DCSMP and DDIP algorithm, only the estimated
candidate support sets are transmitted between nodes in the network, which significantly reduces the
transmission burden.

A sequence of random cases is tested where a number of targets (including common and
innovation targets) are randomly distributed in the three-dimensional position space. The simulation
parameters are the same as those in Section 5.6. Two metrics, DRE and ASCE, are utilized to evaluate
the reconstruction performance of different algorithms. Figure 10a shows the variation of DRE with
different number of nodes, for different algorithms. It can be seen from Figure 10a that the proposed
DCSMP algorithm achieves the lowest DRE. The non-compressed sensing-based algorithms (e.g., PCA
and DWC) cannot reconstruct the original signal perfectly at a down-sampling rate, thus they achieve
large DREs. Though the conventional compressed sensing algorithms (e.g., SP and OMP) and DIPP
algorithm can reconstruct the original signal accurately at a down-sampling rate, they cannot cope
with the sensing matrix with high coherence, thus achieving moderate DREs, compared with the
proposed DCSMP algorithm. Moreover, it can be seen from Figure 10a that the DREs of the two
algorithms, DCSMP and DDIP, slightly decrease with the increase of network size. This is due to the
reason that the information (the candidate support set or the measurements) received by each node
increases with the size of the network expands, thus resulting in a more accurate estimated signal.
Figure 10b shows the variation of ASCE with different numbers of nodes. The proposed DCSMP
algorithm achieves the lowest ASCE. This verifies that the proposed DCSMP algorithm outperforms
the three other algorithms (DIPP, SP and OMP) in dealing with the sensing matrix with high coherence.

Figure 10. Performance comparison of different algorithms with a varying number of nodes.
(a) Variation of DRE with different numbers of nodes; (b) variation of ASCE with different numbers
of nodes.

6. Conclusions

A novel DCSMP algorithm is proposed to tackle the JSM-1 in a decentralized scenario.
The proposed algorithm adopts deterministic sensing matrices built directly on the real acquisition
systems. In the proposed algorithm, the process of estimating the common support set is to decouple
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that of estimating the innovation support set. Thus, the inaccurately estimated common support set
will have no impact on estimating the innovation support set. The simulation results show that the
proposed algorithm can perform successful sparse recovery in a decentralized manner across various
receivers, in a multistatic radar system.
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