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Abstract: With the goal of supporting close-range observation tasks of a spherical amphibious
robot, such as ecological observations and intelligent surveillance, a moving target detection and
tracking system was designed and implemented in this study. Given the restrictions presented by
the amphibious environment and the small-sized spherical amphibious robot, an industrial camera
and vision algorithms using adaptive appearance models were adopted to construct the proposed
system. To handle the problem of light scattering and absorption in the underwater environment,
the multi-scale retinex with color restoration algorithm was used for image enhancement. Given the
environmental disturbances in practical amphibious scenarios, the Gaussian mixture model was used
to detect moving targets entering the field of view of the robot. A fast compressive tracker with a
Kalman prediction mechanism was used to track the specified target. Considering the limited load
space and the unique mechanical structure of the robot, the proposed vision system was fabricated
with a low power system-on-chip using an asymmetric and heterogeneous computing architecture.
Experimental results confirmed the validity and high efficiency of the proposed system. The design
presented in this paper is able to meet future demands of spherical amphibious robots in biological
monitoring and multi-robot cooperation.

Keywords: spherical amphibious robot; Gaussian mixture model; moving target detection;
system-on-chip (SoC); visual tracking

1. Introduction

With the increased interest in ocean exploitation activities, amphibious robots have become
essential tools for applications such as ecological observations and military reconnaissance in littoral
regions [1,2]. Compared with legged, finned, and snakelike amphibious robots, spherical amphibious
robots generate less noise and water disturbance, providing better stealth ability and bio-affinity [3,4].
Driven by pendulums [5], propellers [6] or rollers [7], most spherical amphibious robots are able to
move flexibly in mud, snow or water with a zero turning radius. In 2012, our team proposed a novel
spherical amphibious robot [8]. With a deformable mechanical structure, it walked on land with
legs and swam in water with vectored propellers, which provided better overstepping ability and
adaptability in littoral regions.

Moving target detection and tracking is a fundamental function for spherical amphibious robots
to complete missions such as multi-robot formation, biological investigations, target localization,
and navigation. The detection and tracking system recognizes an approaching target and then
successively calculates its motion trajectory. Due to the restrictions presented by the environment,
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few sensors are suitable for detection and tracking applications of small-sized amphibious robots
which have limited carrying capacities and battery power. As a fundamental telemetry device for most
autonomous underwater vehicles (AUVs), acoustic sensors (e.g., side-scan sonar, single-beam sonars,
and multi-beam sonars) can be effective over medium-to-long distances, however, most acoustic
sensors are heavy and not suitable for observations at short distances (i.e., within 10 m) [9,10]. Optical
and sonic tags broadcasting specific codes can be used to mark targets of interest (e.g., fish) for precise
tracking over long distances [10,11]. However, this method is limited by the target size and provides
few details on the surroundings or the target. Optical sensors, based on scanning light detection
and ranging (LiDAR), laser-line scanning, structure light, and photometric stereo, have been used
for underwater three-dimensional (3D) reconstruction [12]. However, most optical 3D reconstruction
solutions require sophisticated optical structures and data processing devices, making it difficult to
integrate such systems into a sub-meter-size spherical amphibious robot. With advantages in terms
of weight, flexibility, and environmental adaptability, a visual detection and tracking system has
been the key sensing equipment for small-scale spherical amphibious robots in executing close-range
observation or inspection tasks in amphibious scenarios.

Although great progress has been achieved in the field of ground robotic vision, it still remains a
challenging task to design a robotic detection and tracking system for spherical amphibious robots.
First, image degradation is a major problem in underwater environments, which greatly impacts the
performance of robotic visual systems. Second, interfering factors such as partial object occlusion, light
variance, and pose changes are common in the potential application scenarios of amphibious robots,
which may lead to detection or tracking failures. Third, most amphibious robots are small-sized and
have relatively weak image processing power. Thus, both the visual algorithms and processing circuits
must be carefully designed and optimized. As far as we know, most studies on robotic vision systems
were conducted in terrestrial environments. Some visual detection and tracking systems have been
designed for underwater robots or underwater surveillance networks, but few studies have involved
amphibious robots.

Yahyaa et al. [13] proposed a visual detection and tracking system to guide an AUV towards its
docking station. A tracker using color thresholding and morphological operations was designed to
track artificial objects, but the robotic vision system could only recognize and track specific red light
sources. Zhang et al. [14] presented a multi-target tracking system using multiple underwater cameras.
An extended Kalman filter was initialized to track the moving targets. Speed up robust features (SURF)
and random sample consensus (RANSAC) algorithms were used to match the target objects across the
overlapping fields of view, but the cameras used were static and the visual system had poor real-time
performance, which made it unsuitable for robotic applications. Chen et al. [15] proposed a novel 3D
underwater tracking method in which haze concentration was used to estimate the distance between
the target and the camera. However, this only provides the motion trends of underwater objects rather
than precise measurements. Chuang et al. [16] proposed a robust multiple fish tracking system using
Viterbi data association and low-frame-rate underwater stereo cameras. But it could only work in
dark environments and provide a frame rate as low as 5 frame per second (fps). Chuang et al. [17]
proposed a novel tracking algorithm on the basis of the deformable multiple kernels to track live fish
in an open aquatic environment. Inspired by the deformable part model technique, the algorithm
outperformed the recent tracking-by-detection algorithms for tracking one or multiple live fish in
challenging underwater videos. But it could also provide a frame rate lower than 1 fps, which limited
its applications in mobile robotic platforms.

In general, most existing robotic detection and tracking systems adopted vision algorithms
using static or coarse appearance models [13,18], making them only capable of effectively processing
specific targets such as fish and beacons under the specific scenes. There were some detection and
tracking systems which adopted state-of-the-art visual algorithms and was capable of processing
generic targets [16,17,19]. Given the real-time performance of these sophisticated algorithms, these
systems have to be built upon high performance computers, making them only suitable for large-scale
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underwater robots or ground robots. Thus, existing solutions cannot be used directly in the small-sized
amphibious spherical robot, which has limited load space and computational capabilities.

Focusing on the tasks of ecological observations and intelligent surveillance in littoral regions,
a moving target detection and tracking system was proposed for our amphibious spherical robot in
this study. Given the potential application scenarios of the robot, an industrial camera and vision
algorithms using adaptive appearance models were used to construct the designed system. To handle
the problem of light scattering and absorption in the underwater environment, the multi-scale retinex
with color restoration (MSRCR) algorithm was used for image enhancement. In the detection stage,
the amphibious spherical robot lurked in the surveyed region in hibernation mode and sensed the
surroundings by capturing 320 × 240 color images at 15 fps. The Gaussian mixture model (GMM)
was used to sense moving targets entering the robot’s view field. Once a moving target had been
detected, the robot was woken up to the tracking stage. A fast compressive tracker (FCT) with a
Kalman prediction mechanism was launched to locate the target position successively. Considering the
limited load space and power resources of the robot, the designed visual detection and tracking system
was implemented with a low-power system-on-chip (SoC). A novel asymmetric and heterogeneous
computing architecture was used to ensure the real-time performance of the system. Experimental
results confirmed that the proposed system was capable of detecting and tracking moving targets in
various amphibious scenarios. In comparison with most relevant detection and tracking systems, the
proposed system outperformed in terms of processing accuracy, environmental adaptability, real-time
performance, and power consumption. It was able to meet future demands of the amphibious spherical
robot in biological observation and multi-robot cooperation. The study in this paper provided a
reference design to vision systems of small-sized amphibious robots.

The rest of this paper is organized as follows. An overview on our amphibious spherical robot
and its vision application requirements is introduced in Section 2. The structure of the proposed
vision system is presented in Section 3. Details of the underwater image enhancement subsystem and
the detection-then-tracking subsystem are described in Sections 4 and 5. Experimental results under
various scenarios are reported in Section 6. Section 7 provides our conclusions and relevant follow-up
research work.

2. Previous Work and Application Requirements

2.1. An Amphibious Spherical Robot

Figure 1 shows the amphibious spherical robot, which consisted of an enclosed hemisphere hull
(diameter: 250 mm) and two openable quarter-sphere shells (diameter: 266 mm). Electronic devices and
batteries were installed inside the hemispherical hull, which was waterproof and provided protection
from collisions. Four legs, each of which was equipped with two servo motors and a water-jet motor,
were installed symmetrically in the lower hemisphere of the robot. Driven by the two servo motors,
the upper joint and lower joint of a leg were able to rotate around a vertical axis and a horizontal axis,
respectively. The water-jet motor was fixed in the lower joint and could generate a vectored thrust in a
specific direction in water. In underwater mode, the openable shells closed to form a ball shape, and
the robot was propelled by vectored thrusts from four water jets. In land mode, the openable shells
opened and the robot walked using the four legs.

Restricted by the narrow load space and limited power resources of the small-scale robot, the
robotic electronic system was fabricated around an embedded computer (Xilinx XC7Z045 SoC, 512 MB
DDR3 memory, Linux 3.12.0), as shown in Figure 2. The robot was powered by a set of Li-Po batteries,
with a total capacity of 24,000 mAh. Sensors including a global positioning system (GPS) module,
an inertial measurement unit (IMU), and an industrial camera were used to achieve adaptive motion
control of the robot [20]. An acoustic modem and a universal serial bus (USB) radio module were used
for communication on land and in water, respectively [21].
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Figure 1. Mechanical structure of the amphibious spherical robot. (a) The amphibious spherical robot
in the underwater mode; (b) The amphibious spherical robot in the land mode; (c) Bottom view of the
amphibious spherical robot; and (d) The mechanical structure of a leg.
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2.2. Vision Application Requirements

Due to the special working environment, a vision method is the preferred solution to realize
intelligent functions of the spherical robot in amphibious scenarios. Compared with intelligent
automobiles and large-scale AUVs, the amphibious spherical robot has higher requirements for the
robotic vision system in terms of robustness and efficiency.

First, due to the uneven illumination and the optical properties of water, the captured image may
be blurred and dusky. Thus, image pre-processing is essential to enhance visibility before implementing
vision algorithms. Second, many interfering factors in amphibious environments, including swaying
aquatic plants, suspended organic particles, illumination changes, and a cluttered background, may
mislead the detector and the tracker. Thus, the robustness and precision of the adopted computer
vision algorithms should be acceptable to meet the requirements of robotic applications. Third, the
robot has a limited velocity and cruising ability. Thus, the captured image should be processed in real
time to avoid missing a target or omitting information. Moreover, considering the narrow enclosed
load space of the spherical robot, the hardware platform of the robotic vision system should be highly
efficient to reduce power consumption and heat dissipation issues. Furthermore, the implementation
of the adopted vision algorithms should be optimized carefully in accordance with characteristics of
the hardware platform.

In 2015, a prototype moving target detection system was designed and constructed for the
amphibious spherical robot [22]. A single Gaussian background model (GBM) was adopted to sense
moving objects getting close to the robot and the heterogeneous computing technology was used to
enhance the real-time performance. However, the prototype system did not perform well in practicality
experiments because the illumination problem and the interfering factors in amphibious environments
were not taken into consideration yet. Moreover, due to the principle of the adopted algorithm, the
detection system could work normally only when the robot was static, which was not the case. Besides,
the coarse system architecture led to a slower respond speed of the control system, which affected the
performance of the robot.

3. Visual Detection and Tracking System

3.1. Workflow of the System

Benefiting from its ball shape, the amphibious spherical robot generated fewer disturbances to
the surroundings, which is meaningful in ecological and military applications [23]. Moreover, the
symmetric mechanical structure contributed to the stable and flexible motion characteristics of the
robot, making it a platform suitable for amphibious data acquisition. However, the compact size
and the spherical shape of the robot also resulted in a limited cruising speed and a short continuous
operating time. Thus, it was unable to complete search or investigation tasks over a large region.
Indeed, it was more appropriate to use the robot as an intelligent and movable monitoring node for
close-range ecological observations or security surveillance.

A potential application scenario is shown in Figure 3. The working process was divided into
the moving target detection stage and the visual tracking stage. In the moving target detection stage,
the small-scale robot lurked in the survey region in hibernation mode. Most of its functional units,
including motors, the data recording subsystem, and the acoustic modem, were shut down to avoid
exhausting the batteries and storage resources too early. Enhanced images of surroundings were
entered into the visual detection subsystem to search for moving targets, such as fish and swimmers.
Once a moving object entered the view field of the robot and was marked as a target, the robot would
be activated and switched to visual tracking mode. In the visual tracking stage, a visual tracker was
launched to track the specified target. The tracking results were then used to guide the movement and
follow-up operations of the robot.
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Figure 3. Application scenario of the visual detection and tracking system. (a) The moving target
detection stage; and (b) The visual tracking stage.

3.2. Structure of the System

The entire visual detection and tracking systems were integrated on a Xilinx XC7Z045 SoC,
as shown in Figure 4. As the center of the robotic electronic system, the SoC consists of the processing
system (PS), which is centered on a dual-core ARM processor, and the programmable logic (PL), which
is equivalent to a field-programmable gate array (FPGA) [24]. The PL served as a customized peripheral
of the PS and communicated with programs running on the PS through advanced extendable interface
(AXI) ports.
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Figure 4. Hardware structure of the visual detection and tracking system.

To ensure balance between the power consumption of the electronic system and the real-time
performance of the robotic vision system, an asymmetric and heterogeneous computing architecture
was used to develop the visual detection and tracking system. The CPU0 ran the Linux operating
system (OS), which provided a multi-task platform for basic robotic functions, such as motion control
and battery management. The CPU1 ran bare-metal programs for real-time detection and tracking.
Customized accelerators deployed on the PL assisted the bare-metal programs to ensure real-time



Sensors 2017, 17, 870 7 of 21

performance. The application programs running in the Linux OS communicated with the bare-metal
programs through a shared on-chip memory. The 320 × 240 color images to be processed were
captured by an industrial camera mounted on a USB port of the SoC. To address the problem of
image degradation, an image-enhancement module using the MSRCR algorithm was implemented
on the PL for real-time image pre-processing. A customized accelerator for the naïve Bayes classifier
was deployed on the PL to speed up the bare-metal visual tracking program. Two pairs of direct
memory access (DMA) channels were used to read unprocessed data from the PS and then transmit
the processed results back to the bare-metal programs.

4. Image Pre-Processing Subsystem

4.1. Principle of the Image Pre-Processing Algorithm

Due to the short sensing range and the image degradation problem, cameras have not been
at the center of attention as underwater robotic sensors. The degradation of underwater images is
caused primarily by multiple factors including light attenuation, light scattering, and suspended
organic particles [18]. Existing underwater enhancement algorithms can be divided loosely into four
classes. The time domain algorithms and the frequency domain algorithms enhance image quality
using ‘classical’ digital image processing techniques such as histogram equalization and homomorphic
filtering. The physics-based algorithms build an optical model of underwater imaging devices and
recover the image visibility using optical components [25,26]. The algorithms based on the theory of
color constancy were inspired by the human vision system and seek to depress image degradation
caused by illumination factors [27,28]. Among these algorithms, the MSRCR algorithm provides a
good processing effect by taking advantage of multi-scale analysis and color recovery.

The MSRCR algorithm was inspired by the model of lightness and color perception of human
vision. The retinex theory holds that the image projected onto the retina I(x, y) is determined by the
illumination component L(x, y) and the relative reflectance component R(x, y):

I(x, y) = L(x, y) · R(x, y), (1)

where x and y represent the coordinate of an image. Thus, the negative influence of light scattering
and absorption can be excluded by estimating L(x, y). As shown in Figure 5c, an estimate of L(x, y) can
be acquired using a Gaussian low-pass filter:

L̂(x, y) = I(x, y) ∗ k exp(− x2 + y2

σ2 ), (2)

where σ represents the scale of the Gaussian filter. Then, the relative reflectance component R(x, y) can
be represented as

R(x, y) = log(I(x, y))− log(F(x, y) ∗ I(x, y)), (3)

where F(x, y) represents the Gaussian filter.
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Figure 5. Diagram of the image pre-processing algorithm. (a) The original 320 × 240 image;
(b) The enhanced image; (c) Estimate of L(x, y) using the 5 × 5 Gaussian filter; (d) Estimate of L(x, y)
using the 24 × 24 Gaussian filter; and (e) Estimate of L(x, y) using the 48 × 48 Gaussian filter.

The value of σ is important for the retinex algorithm, especially for an image with non-uniform
background illumination. A small σ works better on dark regions of the image, and a large σ leads to
better color constancy, as shown in Figure 6b–e. To make use of the strength of multi-scale synthesis,
the MSRCR algorithm combining multiple scales is commonly used with linear weighting:

R(x, y) = log(I(x, y))−
nS

∑
i=1

wi log(Fi(x, y) ∗ I(x, y)), (4)

where nS represents the number of adopted filter scales. Both the details and the color constancy of the
processed image can be ensured using a nS > 3, as shown in Figure 6f–h. A larger nS may lead to better
algorithm performance and higher computational needs. Given the characteristics of the robot and the
size of images to be processed, the proposed system adopted three scales (σ1 = 5, σ2 = 24, and σ3 = 48),
which balanced the image contrast, color constancy, and computational efficiency.
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Figure 6. Comparison of the multi-scale retinex with color restoration (MSRCR) algorithm with
different parameters. (a) The original 852 × 480 image; (b) Enhanced image (nS = 1, σmax = 50);
(c) Enhanced image (nS = 1, σmax = 100); (d) Enhanced image (nS = 1, σmax = 200); (e) Enhanced image
(nS = 1, σmax = 300); (f) Enhanced image (nS = 2, σmax = 300); (g) Enhanced image (nS = 3, σmax = 300);
and (h) Enhanced image (nS = 4, σmax = 300).
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4.2. Image Pre-Processing Subsystem

The MSRCR algorithm involves large amounts of multiplication operations, which are
time-consuming. To ensure real-time performance of the proposed robotic vision system, a customized
IP core was designed to implement the MSRCR algorithm using high-level synthesis (HLS) tools.
A 320 × 240 24-bit color image was read serially from the DMA channel into the IP core through an
AXI-Stream port, as shown in Figure 7. The color image was converted to an 8-bit gray image and
then buffered into a slice of block RAM (BRAM). Next, three convolution operations were executed
in parallel. Then, logarithmic transformations were carried out serially over the calculated L̂(x, y).
Finally, the enhanced image R(x, y) was sent out through an AXI-Stream port after a linear color
correction operation.
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The low-pass filtering and standard deviation calculation functions were designed with C++,
referring to their counterparts in the OpenCV library. In the convolution operation, the input image
was extended at the boundary with the edge pixel not duplicated. Because the quality of synthesis
results provided by HLS tools are less than ideal, it was essential to conduct design optimization.
To reduce resource consumption of the PL, the filter parameters were represented in the accelerator by
fixed-point approximations. The synthesis report showed that the operation time of the designed IP
core was ~48.0 ms, which was 3.7 times faster than the software implementation on the PS.

5. Detection and Tracking Subsystem

5.1. Moving Target Detection Subsystem

As mentioned in Section 3, the robot sensed moving objects entering its observation field and
then specified an eligible one as a target to be tracked. A common method for moving target detection
is using background subtraction or motion detection algorithms that have been used successfully in
intelligent surveillance systems. State-of-the-art background subtraction algorithms, such as most
reliable background mode (MRBM) and effect components description (ECD) demand large amounts
of memory and/or computing time [29], making them unsuitable for use in the amphibious spherical
robot. Moreover, ‘classical’ algorithms, such as the frame difference algorithm and the weighted
moving mean algorithm, may easily be misled by interfering factors, including swaying aquatic plants
and suspended organic particles in practical applications [30].

Thus, the adaptive Gaussian mixture model for foreground detection proposed by
Kaewtrakulpong et al. [31,32], which has good detection precision and is able to neglect noises
caused by background jitter, was adopted in the proposed robotic vision system. An overview on the
principles of the adopted moving target detection algorithm is shown in Algorithm 1. Each pixel of the
input image was modeled with a mixture of K Gaussian distributions:

R(x, y) ~wx,y,k N(µx,y,k, σx,y,k), (5)
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where µx,y,k, σx,y,k, and ωx,y,k are parameters of the kth Gaussian component. The K Gaussian
distributions are ordered based on the fitness value ωx,y,k/σx,y,k. The top B distributions constituted
the background model where B was defined as:

B = arg min
b

(
b

∑
k=1

wx,y,k > T). (6)

If an input pixel was less than d standard deviations away from any of the distribution of the
background model, it was regarded as belonging to the background scene. Otherwise, it was regarded
as part of the potential moving target. Algorithm parameters were updated with the learning rate α to
adapt to environmental changes. The detected foreground image was processed with erode and dilate
operations to filter noise. A moving object larger than AreaThresh would be specified as the target to be
tracked in the following processes.

Algorithm 1. Gaussian mixture model-based moving target detection

input: the enhanced image Rx, y and parameters of Gaussian mixture model µx,y,k, σx,y,k and ωx,y,k,
where x ∈ [1,Width], y ∈ [1,Height], k ∈ [1,K]
output: the foreground image Fx, y, where x ∈ [1,Width], y ∈ [1,Height]
procedure GaussianMixtureModelDetection(R, µ, σ, w)

Step #1 Initialize the parameters of Gaussian mixture model
µx,y,k←rand(), σx,y,k←σ0, ωx,y,k←1/K

Step #2 Try to match the Gaussian mixture model with the n-th image
for k = 1 to K do

if Rx,y,n − µx,y,k < d·σx,y,k then
matchk = 1
ωx,y,k = (1 − α)·ωx,y,k + α

µx,y,k = (1 − α/ωx,y,k)·µx,y,k + α/ωx,y,k·Rx,y,n

σx,y,k =
√
(1− α/wx,y,k) · σ2

x,y,k
+ α/wx,y,k · (Rx,y,k − µx,y,k)

2

else
ωx,y,k = (1 − α)·ωx,y,k

end if
end
Step #3 Normalize the weight ωx,y,k and sort the model with ωx,y,k/σx,y,k
Step #4 Reinitialize the model with minimum weight if there is no matched model,

if
K
∑

k=1
matchk = 0 then

µx,y,0 = pixelx,y,n

σx,y,k = σ0

end if
Step #5

for k = 1 to K do
if ωx,y,k > T and Rx,y,n − µx,y,k < d·σx,y,k then

Fx, y = 0
break

else
Fx, y = 255

end if
end

Step #6 Execute 3 × 3 erode and dilate operations over R(x, y)
Step #7 Execute connected region analysis and list potential moving target
Step #8 Specify the object larger than AreaThresh as the target

end procedure

The designed moving target detection subsystem was implemented as a bare-metal program
running on CPU1. The number of Gaussian distributions was set to 4. The NEON engine was used to
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optimize the floating-point arithmetic of the bare-metal program, which increased the detection rate
from 7.4 fps (135.16 ms/f) to 19.7 fps (50.8 ms/f). If a moving object was detected, the detector would
inform CPU0 by writing the coordinate of the target to a specific memory location. Then, the tracking
subsystem would be launched to handle the target.

5.2. Visual Tracking Subsystem

The major task of the visual tracking subsystem was successively marking the position of the
specified target for robotic applications. As an active research field in the area of computer vision,
visual tracking is the basis of high-level robotic functions, such as automatic navigation, visual
servoing, and human–machine interactions [33,34]. Many state-of-the-art tracking algorithms, built
on tracking-by-detection [35], correlation filtering [36], and convolutional neural networks [37], have
been proposed in recent years. However, it is still challenging to ensure both high tracking precision
and real-time performance, limiting their use in small-scale mobile robot platforms.

The fast compressive tracking (FCT) algorithm was selected in the visual tracking subsystem as it
offers the advantages of effectiveness and efficiency [38]. As a tracking-by-detection algorithm with
online learning mechanisms, the FCT algorithm contains a training stage and a detection stage. In the
training stage at the nth frame, the tracker densely crops positive samples Spos and negative samples
Sneg around the current target position In, as shown in Figure 8a:

Spos = {s|‖s− In‖ < α}, (7)

Sneg = {s|ζ < ‖s− In‖ < β}, (8)

where α < ζ < β. Then, random Haar-like features of samples were extracted using a static sparse
matrix. Affected by the optical properties of water, it is not easy to extract local invariant image features
in underwater vision applications. Thus, a global feature like the random Haar-like features was more
effective in the designed system. After that, a naïve Bayes classifier was trained using feature vectors
of the samples. In the detection stage at the (n + 1)th frame, candidate samples Scan were densely
cropped around In using a coarse-to-fine mechanism:

Scan = {s|‖s− In‖ < γ} (9)

The candidate with the maximum classifier response was selected as the current target In+1.
Regarding the vision application of the amphibious spherical robot, there are two potential problems
that may affect the performance of the FCT algorithm. One is that the FCT algorithm is not good at
maneuvering target tracking due to its sampling mechanism. Moreover, the tracker may lose the target
in this robotic vision system with its relatively low frame rate. To address this, a second-order Kalman
filter was used to predict the target position at the (n + 1)th frame in the detection stage.

Xn+1 = ΦXn + βWn

În+1 = HXn+1 + αVn

Φ =



1 0 ∆t 0 ∆t2/2 0
0 1 0 ∆t 0 ∆t2/2
0 0 1 0 ∆t 0
0 0 0 1 0 ∆t
0 0 0 0 1 0
0 0 0 0 0 1


H =

(
1 0 0 0 0 0
0 1 0 0 0 0

)
Xn =

(
xn, yn, vx,n, vy,n, ax,n, ay,n

)T

În = (x̂n, ŷn)
T

, (10)
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where (xn, yn), (vx,n, vy,n), and (ax,n, ay,n) are the position, the velocity, and the acceleration of the target
in the nth frame, respectively. The candidate samples Scan would be sampled around the estimate
position În+1 rather than In, as shown in Figure 8b:

Scan = {s|‖s− În+1‖ < γ} (11)

Because most moving objects in water have a stable trajectory, the improved tracker was able to
adapt to the motion by predefining appropriate parameters.
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algorithm; and (b) Improved FCT algorithm.

Another problem was that the floating-point arithmetic processes of the FCT algorithm, especially
the naïve Bayes classification process, could not be processed efficiently by CPU1:

Hpos,i(v) =
exp(−(vi − µpos,i)

2/(2σ2
pos,i + 10−30))

µpos,i + 10−30 , (12)

Hneg,i(v) =
exp(−(vi − µneg,i)

2/(2σ2
neg,i + 10−30))

σneg,i + 10−30 , (13)

H(v) =
m

∑
i=1

(log(Hpos,i(v) + 10−30)− log(Hneg,i(v) + 10−30)), (14)

where v ∈ Rm represents the feature vector of a candidate sample and µpos, µpos, σpos, and σneg

represent classifier parameters. As described by Equations (12)–(14), the naïve Bayes classification
process primarily concerns the exponent and logarithm, which are equivalent to iterative multiplication
operations. Thus, a customized accelerator may perform better than a general-purpose accelerator in
speeding up these calculations.

A customized accelerator of the naïve Bayes classifier was designed and implemented on the PL
section using HLS tools, as shown in Figure 9. The sampled feature vectors and classifier parameters
were read from the bare-metal program running on the PS through a DMA channel and then buffered
into BRAM slices. Then, a three-stage pipeline was designed to complete the classifier response
calculation loop in parallel. Finally, the maximum response and the number of the candidate sample
were found and sent back to the PS through a DMA channel. Using the customized accelerator, the
average processing rate of the heterogeneous tracking subsystem was 56.3 fps (17.8 ms/f), which was
4.1 times faster than the software implementation on the PS (13.6 fps or 73.5 ms/f).
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Figure 9. Diagram of the accelerator of naïve Bayes classifier for the tracking subsystem.

6. Experimental Results

The improved version of the amphibious spherical robot is shown in Figure 10. A core board
carrying the Xilinx SoC (XC7Z045) and an industrial CMOS camera were used to assemble the proposed
detection and tracking system. Then, the embedded robotic vision system was sealed in the upper
hemisphere of the spherical robot using a transparent shell. To confirm the validation of the proposed
robotic vision system, two phases of experiments were conducted to test its detection and tracking
precision, real-time performance, and power consumption.
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Figure 10. Picture of the proposed robotic vision system. (a) Installation of the vision system;
and (b) Picture of the robot in working state.

(1) In the parametric test phase, an Agilent 34410A multimeter, controlled by C# programs, was
used to evaluate the average power consumption of the proposed system by continuously measuring
the current and voltage values. The power consumption of the robot in idle mode was regarded as the
baseline. Test results showed that the dynamic power consumption of the proposed system was as low
as 4.57 W, which was able to provide a continuous working time more than 2.5 h. To test the process
rate of the proposed system, eight 320 × 240 image sequences (CarDark, Trellis, David, Couple, Fish,
Dog1, Sylvester, and ClifBar) of Visual Tracker Benchmark [39,40] were entered into the system using
debugging tools. The run time of each subsystem were measured using a hardware counter deployed
on the PL section, respectively. Test results indicated that the system was able to provide an average
pre-processing rate of 20.8 fps, an average detection rate of 19.7 fps, and an average tracking rate of
56.3 fps. Thus, it was able to process images captured by the industrial camera in amphibious scenarios
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in real time. As shown in Table 1, the proposed system had advantages in real-time performance,
power consumption, size and weight, which could fully meet the application requirements of the
amphibious spherical robot.

Table 1. Comparison of detection and tracking systems for underwater or amphibious applications.

Vision System Hardware Platform Image Size Maximum Frame Rate Working Scenarios

Proposed System SoC 320 × 240 56.3 fps Static and dynamic background
Shiau [19] et al. PC 640 × 480 20.0 fps Static background

Chuang [15] et al. PC 2048 × 2048 5.0 fps Dark environment
Lei [41] et al. PC 352 × 288 3.3 fps Swimming pool

Walther [42] et al. PC 720 × 480 30.0 fps Dark environment

(2) In the detection and tracking test phase, four images sequences captured in various amphibious
scenarios were used to evaluate functional performance of the system. The ground truth of detection
and tracking were annotated manually. The proposed detection subsystem was compared with
the GBM-based detection algorithm. The proposed tracking subsystem was compared with three
state-of-the-art discriminative tracking algorithms (CT [38], WMIL [35], and HOG-SVM [43]) and
five classical tracking algorithms (TemplateMatch, MeanShift, VarianceRatio, PeakDifference and
RatioShift [44]) which were widely used in robotics. Four metrics were used to evaluate the functional
performance of the detection and tracking system. The first metric is the percentage of wrong
classifications (PWC) of the detection process, defined as:

PWC = (FP + FN)/(TP + TN + FP + FN)× 100, (15)

where TP, TN, FP, and FN represent the number of true positive, true negative, false positive, and
false negative pixels, respectively. The second metric is the precision (Pr) of the detection process,
defined as:

Pr = TP/(TP + FP). (16)

The third metric is the success rate (SR) of the tracking process, defined as:

SR =
area(ROIT ∩ ROIG)

area(ROIT ∪ ROIG)
, (17)

where ROIT is the tracked bounding box, ROIG is the ground truth bounding box, and area(·) denotes
the number of pixels in the region. If the score is larger than the given threshold (0.5 in this study) in a
frame, it counts as a success. The fourth metric is the center location error (CLE), which is the Euclidean
distance between the central points of the tracked bounding box and the ground truth bounding box.

As shown in Table 2, the proposed detection subsystem provided the 47.7% lower PWC and the
17.2% higher Pr on average than the GBM-based detection algorithm. Thus, the proposed detection
subsystem was more robust to environmental disturbances. As shown in Table 3 and Figure 11, the
proposed tracking subsystem outperformed other tracking algorithms in terms of the SR and the CLE.
The five classical tracking algorithms were not able to steadily track underwater targets in the tests
of Sequence 1, Sequence 2, and Sequence 3 because they adopted static or coarse appearance models.
The CT and WMIL algorithms adopted adaptive appearance models, but they were lack of effective
motion prediction or dynamic update mechanisms. Thus, they did not perform well in some scenarios
due to the drift problem. The HOG-SVM algorithm adopted an effective feature extractor and a strong
classifier. Thus, it performed better than the proposed tracking subsystem in the tests of Sequence 1
and Sequence 4. But it was a non-real-time tracking algorithm and could only provide a processing
rate as low as 2.7 fps. Thus, it was not suitable for the applications of the amphibious spherical robot.
In general, the discriminative tracking algorithms using adaptive appearance models performed better
than the classical tracking algorithms, especially in the underwater environments.
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Table 2. Experimental results of the visual detection subsystem.

Sequences PWC (Proposed) Pr (Proposed) PWC (GBM) Pr (GBM)

Sequences 1 0.018 0.821 0.092 0.733
Sequences 2 0.069 0.675 0.183 0.484
Sequences 3 0.030 0.985 0.052 0.924
Sequences 4 0.254 0.784 0.382 0.564

Table 3. Experimental results of the visual tracking subsystem.

Algorithm Criteria Sequence 1 Sequence 2 Sequence 3 Sequence 4

Proposed SR (CLE) 100 (11.7) 91.8 (21.2) 100 (17.8) 100 (6.6)
CT SR (CLE) 98.8 (13.8) 87.1 (27.1) 71.3 (27.1) 100 (8.6)

WMIL SR (CLE) 100 (12.2) 77.3 (29.3) 98.7 (20.1) 92.1 (12.8)
HOG-SVM SR (CLE) 100 (6.5) 85.1 (27.4) 100 (18.7) 100 (3.7)

TemplateMatch SR (CLE) 100 (6.1) 84.7 (28.1) 80.3 (23.1) 100 (9.8)
MeanShift SR (CLE) 10.3 (58.1) 14.3 (53.2) 35.4 (62.3) 100 (9.8)

VarianceRatio SR (CLE) 12.2 (59.2) 50.6 (33.2) 56.3 (36.7) 100 (9.7)
PeakDifference SR (CLE) 12.0 (58.9) 72.1 (31.7) 16.3 (67.2) 100 (7.2)

RatioShift SR (CLE) 11.9 (45.6) 67.4 (28.2) 3.2 (87.3) 100 (8.4)
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As shown in Figures 12 and 13, two underwater videos of fishes provided by the Fish4Knowledge
project [19] were used to evaluate the performance of the proposed system towards underwater targets.
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Sequence 1 was collected from the underwater observatory at Orchild Island, Taiwan. A distant moving
fish with a stable motion trajectory was selected as the target. Due to the light scattering and absorption
effect of ocean water, the captured underwater images were blurry, and the appearance characteristics
of the target were not significant. In the test of Sequence 1, the proposed system was able to detect
and then track the small moving fish with high accuracy. Most trackers without image pre-processing
successively lost the target because the appearance characteristics were not so significant. Test results
of Sequence 1 demonstrated that the proposed system was capable of detecting and tracking practical
target in the undersea environment.
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Sequence 2 was collected from the underwater observatory at National Museum of Marine Biology
and Aquarium, Taiwan. A tropical fish moving randomly was selected as the target. The captured
images were clear, and the target had obvious texture features. However, the ever-changing motion
trajectory of the target and the swaying corals in the background would mislead the robotic vision
system. The disturbance of swaying corals in Sequence 2 was neglected in the detection process by
using the GMM-based method, ensuring the correct detection of the tropical fish. The GBM-based
method got disturbed and provided higher error rate. However, because the proposed tracking
subsystem as well as the three discriminative tracking algorithms do not have scale invariant and
affine invariance properties, the visual trackers finally lost the target when the fish changed poses.
The five classical tracking algorithms lost the target soon because the disturbances caused by similar
objects in the background. Test results of Sequence 2 verified that the proposed system could
provide relatively accurate detection and tracking results when working in the complex and cluttered
underwater environment.

Two videos captured by the amphibious spherical robot in underwater and terrestrial
environments were used for evaluation, as shown in Figures 14 and 15. Sequence 3 was collected
from the amphibious spherical robot in a tank. A small toy fish swimming fast was adopted as the
moving target. The image quality of Sequence 3 was better than that of Sequence 1. But the robotic
platform rocked slowly with the water in a practical underwater scenario, which would present
difficulties for the detection and tracking process. In the test of Sequence 3, the detection precision of
the proposed system was acceptable even though the robotic platform was not so steady. Because the
robot had a small view field and a low frame rate, the fish model swam at a relatively fast speed in
the video. By predefining appropriate parameters for the Kalman filter, the proposed system could
stably track the fish after detecting it. And the drift problem occurred when using the original CT
algorithm, which resulted in worse tracking performance. The five classical trackers failed in the
tracking process because they cannot adapt to the ever-changing target. Test results of Sequence 3
verified that the proposed system was capable of detecting and tracking the target object moving
at fast speed and it could meet the application requirements of the amphibious target tracking in
underwater environments.
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Sequence 4 was collected from the amphibious spherical robot in the laboratory environment.
A small tracked robot moving at a low speed was adopted as the moving target. The robotic platform
was relatively stable, and the image quality was good. But the appearance characteristics of the target
slowly changed, which might lead to the drift problem in the tracking process. In the test of Sequence
4, the detection results were not so good because the motion speed of the small car was slow. However,
the target region of the small car was recognized correctly, and the GMM-based detector provided
better PWC and Pr than the GBM-based detector. Except that the WMIL tracker encountered the drift
problem, all the trackers were capable of successively tracking the specified target which remained
nearly unchanged. That demonstrated that visual tracking in underwater environments is a much
more challenge work than that in terrestrial environments from another side. Because most studies
on robotic vision were conducted on land, which might be not suitable for underwater applications,
optimizations were essential in the design of visual detection and tracking system for amphibious
spherical robots. Test results of Sequence 4 verified that the proposed system was able to steadily
detect and track the target object on land. And it could meet the application requirements of the
amphibious in terrestrial environments.

7. Conclusions and Future Work

To meet the practical application requirements of the spherical amphibious robot in ecological
observations and intelligent surveillance tasks, an embedded detection and tracking system was
designed and implemented. To address the image degradation problem in underwater scenarios,
captured images were pre-processed with the MSRCR algorithm to reduce the effects of light absorption
and scattering. Then, the Gaussian mixture model was used to detect moving targets entering
the robot’s view field. The marked target was tracked successively using a FCT tracker with a
Kalman prediction mechanism. Using these algorithms with online learning mechanisms, the designed
detection and tracking subsystems were able to resist disturbances, such as the swaying aquatic plants
in the detection stage and the fast motion of a target in the tracking stage. Considering the unique
mechanical structure and limited load space of the robot, the whole vision system was integrated
into a low-power SoC using an asymmetric and heterogeneous computing architecture. Evaluation
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experiments confirmed the validation and efficiency of the proposed system. The proposed system was
capable of precisely detecting and tracking various target objects in both underwater and terrestrial
environments in real time. With the features of low power consumption, high-real-time performance,
and good environmental adaptability, it was able to meet the potential demands of the small-sized
spherical amphibious robot in multi-robot cooperation and multi-target tracking tasks. As far as
we know, it was the first practical visual detection and tracking system towards generic targets for
small-sized amphibious robots. In comparison with most relevant studies, the proposed system
provided higher detection and tracking accuracy by implementing adaptive visual algorithms and
introducing improvement methods. Built upon a heterogeneous embedded system, it could fit in well
with the characteristics of small-sized amphibious and underwater robots.

The proposed system has several drawbacks. First, the MSRCR algorithm does not have
adaptability towards different environments. Consequently, the algorithm parameters had to
be adjusted carefully before use. This may limit the applications of the robot in ever-changing
environments. Second, the detection and tracking algorithms used in the system are not sufficiently
robust or precise for long-term robotic vision applications. Our future work will focus on high-level
vision applications, including automatic navigation and object grabs. Additionally, advanced visual
algorithms and tools including convolutional neural networks will be used to improve the designed
robotic vision system.
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