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Abstract: The increasing development of the automotive industry towards a fully autonomous
car has motivated the design of new value-added services in Vehicular Sensor Networks (VSNs).
Within the context of VSNs, the autonomous car, with an increasing number of on-board sensors, is
a mobile node that exchanges sensed and state information within the VSN. Among all the value
added services for VSNs, the design of new intelligent parking management architectures where
the autonomous car will coexist with traditional cars is mandatory in order to profit from all the
opportunities associated with the increasing intelligence of the new generation of cars. In this work,
we design a new smart parking system on top of a VSN that takes into account the heterogeneity of
cars and provides guidance to the best parking place for the autonomous car based on a collaborative
approach that searches for the common good of all of them measured by the accessibility rate,
which is the ratio of the free parking places accessible for an autonomous car. Then, we simulate
a real parking lot and the results show that the performance of our system is close to the optimum
considering different communication ranges and penetration rates for the autonomous car.

Keywords: vehicular communications; autonomous car; smart parking; vehicular sensor networks

1. Introduction

In the past decade, the scientific community has introduced the concept of Vehicular Sensor
Networks (VSNs) where the connected and autonomous cars are seen as nodes of an heterogeneous
sensor network [1]. This has been motivated by the development of Intelligent Transportation
Systems (ITS) where the connected and autonomous vehicles are the central elements. These vehicles
will communicate with each other within a Vehicular Ad hoc Network (VANET) through Dedicated
Short-Range Communications (DSRC) based on the IEEE 802.11p standard and using the 5.9 GHz
band. Furthermore, these new types of vehicles will include multitude of sensing technologies
(cameras, ultrasound sensors, laser radars, inertial sensors) that provide relevant information for
the ITS, such as the state of the traffic, detection of collisions or detection of available parking
places. Therefore, connected and autonomous cars are considered as key elements for sensing the
environment not only for the ITS but also for the smart cities [2,3] thanks to the characteristic mobility
of cars that increases the coverage area of the sensor network.

Although the connected car of future VSNs is still at development, nowadays commercial cars
already include wireless technologies such as WiFi. Indeed, Gartner foresees that for 2020 one in five
vehicles will have some form of wireless network connection [4]. From now on, more intelligence will
be added to vehicles, starting from driving aided systems, to connected cars and finally to the fully
autonomous cars [5]. In fact, Ford has announced the intention to deliver a fully autonomous vehicle
for ride sharing by 2021 [6].
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The development of the automotive industry towards the VSNs has motivated new emerging
vehicular applications [7]. Examples of applications go from drastically reducing the number
of accidents to minimizing the transport cost or reducing the traffic congestion, among others
like improving the driving experience or reducing the environmental impact of cars. Vehicular
applications can be classified into three groups depending on its main objective [8]: (i) safety
applications if their objective is to reduce accidents; (ii) traffic management applications if their
objective is to clear up traffic; and (iii) value-added services for the rest of applications with objectives
such as providing mobility to more people.

Recent advances in sensing and communications made possible systems that provide accurate
and real-time detection of vehicle park space availability [9,10]. Usually, the detection of
the occupancy of a parking place is done using sensors such as ultrasound sensors [11],
magnetometers [12] or optical sensors [13]. On the value-added services category, parking place
management applications intend to solve the time and energy consuming problem of finding
available parking spaces. These applications also have to deal with management issues such as
the reservation of places, the payment systems, the access control to the parking lots among others.
For example, in [13,14], a Wireless Sensor Network (WSN) is deployed in a parking lot in order to
monitor the occupancy of the parking. A VANET based smart parking system is presented in [15],
providing real-time navigation for the cars and monitoring the occupancy of the parking lot. A similar
system is found in [16], where the authors also include a mechanism for reserving a specific parking
place. There are other works focusing on the design of methods for discovering free parking places
in the streets of a city using ultrasound transmitters [11] or the design of methods for selecting the
parking place for traditional cars in order to minimize the distance walked by the user from the
parking place to its destination [17]. However, far too little attention has been paid to the development
of applications based on VSNs that take into account the coexistence between the autonomous cars
and the traditional cars.

As in any other Wireless Sensor Network (WSN) involving mobile nodes, the position of the
nodes of a VSN must be known at any time because the sensor measurements are meaningless
if the information about the position where they were taken is not available. Furthermore, in the
particular case of VSNs, the position of the vehicle is also necessary for the autonomous cars to safely
drive and park by itself [18]. Usually, vehicles deduce their position from the combination of GPS
measurements with inertial measurements. However, Line Of Sight (LOS) to at least four positioning
satellites is needed to obtain an acceptable position estimation, which limits the availability and
the accuracy of the technology in GPS denied environments such as urban canyons or indoor
parking lots. To circumvent the problems of GPS denied environments, widely used approaches
in the literature to substitute the GPS measurements are the Received Signal Strength (RSS), the
Time of Arrival (ToA) and the Time Difference of Arrival (TDoA) both in anchor based solutions
and in cooperative approaches [19]. In the past decade, many vehicular guidance systems have
been developed. An example can be found in [20] where the authors employ an anchor based
solution by deploying Roadside Units (RSUs) all over a parking lot allowing parked vehicles to
communicate space availability with each other by joining a VANET. These approaches require
Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications to periodically exchange
state information and accurately estimate the vehicle position with the received RF signals from RSUs.
The positioning accuracy of these systems depends directly on the number and placement of RSUs,
which considerably increases the monetary cost of the system. For this reason, authors developed
cooperative systems where, instead of using RSUs, the surrounding cars are considered as anchor
nodes. Examples of cooperative systems can be found in [21,22].

In the actual paradigm, traditional, connected and autonomous vehicles will have to coexist
for a certain period of time as the market evolves. Accordingly, to open new market opportunities,
traditional parking lots should offer in their systems parking applications for autonomous vehicles
as an added value. Therefore, it is interesting to design new solutions that allow autonomous
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vehicle users to coexist with traditional cars and park in the same parking lot with the minimum
added infrastructure.

Within this framework, in this work, we take profit of our accumulated experience in
WSNs [23–26] to design a self-automated parking lot on top of a VSN with a single RSU placed at the
entrance of the parking. Upon entering the parking lot, vehicles use V2I communication to exchange
the parking map and the information about available places (detected employing an underlying
sensor network) with the parking RSU. Then, the system communicates to the vehicle which is the
best parking place, selected with the aim of improving the accessibility to the parking for the next
autonomous cars. The vehicle is guided to the assigned parking place thanks to the cooperation of
all the autonomous vehicles in the parking lot. Note that parked autonomous vehicles can be used as
anchors to improve the accuracy in position estimation. This strategy allows to mitigate the need to
deploy RSUs because parked vehicles know their exact position, have the necessary technology and
may remain parked for long periods of time. The main contributions of our work follow:

• Design of a smart parking system on top of a VSN with minimum added infrastructure
considering that autonomous cars will coexist with traditional cars.

• Definition of the accessibility rate as a measure of parking place availability for the
autonomous car.

• Design of a searching algorithm to select the best parking place for an autonomous car in terms
of the accessibility rate.

• A simulation testbed that compares the results of our designed searching algorithm with the
optimum case.

This paper is organized as follows. In Section 2, we introduce the parking model and the problem
statement. The new design method for searching the best parking place is described in Section 3,
whereas the simulation results appear in Section 4. Finally, the conclusions of this work are presented
in Section 5.

2. Parking Model

In this section, we describe the problem statement and the metric used to decide whether an
autonomous car can park or not in a specific parking place.

2.1. Problem Statement

Let us define an arbitrary indoor parking with N parking places with known positions

si =
[

xi yi

]T
for i = 1, ..., N defining a set,

S = {s1, s2, ..., sN}, (1)

where xi and yi are the respective Cartesian coordinates. Let us also define the roads that give access

to the parking places in a discrete manner as a set R containing all the positions ri =
[

xi yi

]T
that

belong to the road, that is,
R = {r1, r2, ..., rM}, (2)

where M is the number of total points in the road. In addition, the only infrastructure added to the
parking is a single RSU with known position defined as:

RSU =
[

xRSU yRSU

]T
. (3)

Figure 1 shows an example of a parking lot where the positions of the parking places are depicted
as squares, the position of the RSU is depicted as a rhombus and the positions of the road points are
depicted as circles.
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Figure 1. Simulated parking layout.

In this work we consider two different kinds of cars. On the one hand the autonomous cars with
V2X capabilities and driver-less, defining the set A, that is,

A = {a1, a2, ..., aK}, (4)

where a ∈ S is the position where an autonomous car is parked. On the other hand, we define a set
B of traditional cars without V2X capabilities, that is,

B = {b1, b2, ..., bL}, (5)

where b ∈ S is the position where a traditional car is parked. We assume perfect knowledge of the
sets A and B. Note that the autonomous cars will park in the parking places assigned by the system
so the system knows at any time the position of the autonomous cars. In the case of traditional cars,
we assume that the parking lot is able to detect which parking places are occupied. This can be
done using one of the multiple technologies available in the literature, such us magnetic sensors [12]
or optical sensors [13]. Note also that, currently, there are many parking lots that already include
the technology to detect the occupancy of the parking space so no further infrastructure is needed.
The sizes of sets A and B are defined by the occupancy rate Orate and penetration rate Prate of the
parking. The Orate is the ratio between the number of occupied places and the total number of places,
N, that is

Orate =
L + K

N
, (6)

where K is the size of set A and L is the set of B, respectively. Similarly, the Prate is the ratio between
the number of autonomous cars and the total number of cars, that is,

Prate =
K

Orate · N
. (7)

At a given time instant, cars of sets A and B will be distributed around the parking places so
there will be F = (1 − Orate)N free parking places. Whenever a new car enters the parking, the set
of free parking places available for this car will be different depending on the car type. If the new



Sensors 2017, 17, 848 5 of 18

car belongs to set B, it is allowed to park in any of the free parking places. However, if the new car
belongs to set A, it can only be parked on those free parking places where the car can access with
enough positioning accuracy to be able to park without a driver. Note that the positioning accuracy is
not only needed in the position of the parking place but all the way from the entrance to the parking
place because the autonomous car is driving in a GPS denied environment; therefore, it has to be
guided and rely on the system during all the path in order to avoid accidents.

In order to label a parking place as accessible for the autonomous car, we have to take into
account all the positions in the path from the entrance to the parking place, so, for an arbitrary parking
place sj, we compute the path and create the set Pj containing the indices of all the road points in R
that are part of the path. Then, we verify that all the points in Pj and the parking place sj fulfill the
accuracy requirements of an autonomous car to park by itself. In that case, the parking place sj is
labeled as accessible for the autonomous car.

Finally, the system will select the parking place for the autonomous car among all the free
parking places that are accessible for the autonomous cars. Note that the selection of the parking
place is not trivial because, once parked, the autonomous car will act as an anchor node for the
incoming autonomous cars, and, therefore, it will increase the positioning accuracy of those incoming
autonomous cars within its communication range. As a consequence, the number of free parking
places accessible for the incoming autonomous cars may change after one new autonomous car is
parked in the parking lot. For this reason, we introduce in this work the accessibility rate which
measures the rate of free parking places that are accessible for incoming autonomous cars. We define
the accessibility rate, Arate, as the proportion of free parking places that are accessible for a new
autonomous car, that is,

Arate =
C
F

, (8)

where C is the number of free accessible parking places for the autonomous car and F is the total
number of free parking places.

2.2. Accuracy Requirements for Autonomous Parking

The future autonomous car will compute its own position over time by combining multiple
sources of position information such as GPS, inertial sensors, radars or vision based positioning
systems. Although the position will be computed taking into account a large variety of sensors, it
is expected that the burden of the position estimation will be for the GPS. Unfortunately, there are
places where GPS cannot be used, like urban canyons or indoor scenarios; thus, new solutions must
be considered. Commonly, this problem is circumvented by using the communications between
the car and the RSU to first estimate the distance to the RSU and then, by combining the distance
estimations to different RSUs, computing the position of the car using a lateration method. Lateration
methods compute the position of a user as the intersection of different circles with the center as the
anchor node position and radius as the estimated distance as depicted in Figure 2. In this case, the
RSU is considered as an anchor node. For a two-dimensional position estimation, it is necessary to
estimate the distance to at least three RSUs. Note that, if only two RSUs are employed, the circles
will intersect at two different points, thus we cannot know in which of both points is the car without
using additional information.

Recently, some authors have proposed to use the V2X capabilities of the autonomous cars to
design cooperative positioning systems [21,27]. We follow this trend and, similarly in this work,
surrounding autonomous cars will be used as anchor nodes in the lateration method.

Other sensors that will play an important role in the future positioning systems for the
autonomous car are the inertial sensors. The inertial sensors measure physical quantities related
to the motion of the car where the sensors are mounted. Typically, inertial sensors are grouped into
an inertial measurement unit (IMU), which is formed by a three-axis accelerometer that measures the
linear acceleration and a three-axis gyroscope that measures the angular velocity. The most general
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kind of inertial positioning system is the strapdown inertial navigation system. The idea beyond these
systems is to estimate the position of the car by the double integration of the acceleration signal a(t).
Thereby, the integration of the accelerometer signal results in the velocity, and, in turn, the integration
of the velocity results in the position [28], that is,

v (t) = v (0) +
∫ t

0
(a (t)− g) dt, (9)

m (t) = m (0) +
∫ t

0
v (t) dt, (10)

where v is the velocity, g the gravity and m the position. The main disadvantage of inertial navigation
systems is that the errors in the position estimations are successively accumulated by the integration
procedure. Therefore, the position estimation accuracy decreases with time. Fortunately, it has been
proved that the combination of inertial navigation systems with other positioning systems based
on lateration such as the GPS or V2X based cooperative systems provide high accurate position
estimations [29,30]. This fact has also been proved in other fields such as in indoor pedestrian
navigation [31,32]. Furthermore, the combination of both systems relaxes the requirements on the
number of RSUs available because the uncertainty generated by the multiple positions where the
circles intersect is solved with the additional information given by the inertial navigation systems.

RSU
1

RSU
2

RSU
3

d
3

d
1

d
2

Figure 2. Lateration method concept.

The design of a specific positioning system for the autonomous car is out of the scope of this
work. Without loss of generality, in this paper, we assume that the autonomous car will compute
its position employing the measurements from the on board inertial measurement unit and distance
measurements to the different anchor nodes of the Vehicular Sensor Network, extracted employing
periodic status exchange messages like Cooperative Awareness Messages (CAM) defined in the
European Telecommunications Standards Institute (ETSI) G5 standard [33] or Basic Safety Messages
(BSM) defined in the US Society of Automotive Engineers (SAE) standard [34]. In general, the
positioning accuracy av of a vehicle at a position, x, can be modeled as a function of the position itself
and parameters related to both inertial and infrastructure-based positioning systems, p, that is,

av = f (x, p). (11)

Taking into account that the autonomous car parking and driving system requires a minimum
accuracy ath

v , it is then meaningful to search in the parameter space for all the values that attain ath
v .

Let us define this region as P th.
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It has been demonstrated in the indoor positioning field that, by combining inertial
measurements with ranging measurements, it is possible to compute the position of a pedestrian
with accuracies around 1 m [31,32,35–37]. It is then reasonable to expect that similar positioning
systems will provide even better accuracies when mounted on vehicles because of the car motion
model, which is simpler than the human motion, and also because cars can be provisioned with
better inertial measurement units.

Without loss of generality, we consider this case as a realistic example to work with in the
remaining of the paper. That is, we assume the system will attain positioning accuracy below
1 m when at least the distance measurements to two anchor nodes can be fused with the inertial
data. In other words, av = f (na(x)) where na is the number of available anchor nodes and
P th = {na(x) : na(x) ≥ 2}. Notwithstanding, the ideas in this paper are also valid when we take
into account other models for the positioning accuracy.

To compute the number of available anchor nodes in a specific position of the parking,

x =
[

x y
]T

, we check for all the anchor nodes the following condition,

||x − sj||2 < Radius, (12)

where sj is the parking place where the anchor car is parked and Radius is its communication range.
For an arbitrary parking place sj, we compute the path and create the set Pj containing the

indices of all the road points in R that are part of the path. Then, we can compute the set Ej containing
the number of anchors received at each point in the path, that is,

Ej = {na(xi)|i ∈ Pj}. (13)

We decide if a given parking place j is accessible for the autonomous car using the
following condition:

min Ej ≥ 2. (14)

3. Tree Based Searching Algorithm (TBSA)

In this section, we describe the designed TBSA for selecting the best parking place for an
autonomous car. TBSA is applied following the next scenario: the human responsible for the
autonomous car decides to park in a specific parking lot. At this moment, inside the parking lot,
there will be a specific number of cars parked, both traditional cars and autonomous cars. Obviously,
the new car can only be parked in free parking places, defined by the set F , which contains the indices
of the free parking places. However, the autonomous car cannot be parked in all of the free parking
places, as previously stated, and only a subset of the free parking places are available, G ⊆ F . Thus,
a free parking place belongs to G if the following condition is fulfilled:

j ∈ G ⇐⇒ min Ej ≥ 2. (15)

Notice, however, that when an autonomous car parks in a specific place, the subset of free
parking places available for the next autonomous car changes. Therefore, it is meaningful to design
methods that grant the best possible parking conditions for the next autonomous cars. Several criteria
can be used, but, in this work, we focus on the common good and we assume that the best parking
place is the one that maximizes the accessibility rate (see Equation (8)) for the new cars. Note that,
once parked, the new car will act as an anchor for other incoming autonomous cars and will increase
the positioning accuracy of those cars inside its communications range. Figure 3 shows an example
of this situation where the free parking places are marked as red unfilled squares and the free parking
places accessible for the autonomous car are marked as green unfilled squares. Whenever a new
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autonomous car enters the parking, the system will select one of the free accessible parking places in
order to maximize the Arate for future autonomous cars, that is,

max
j∈G

Arate(j) = max
j∈G

C(j)
F − 1

, (16)

where C(j) are the free accessible parking places once there is a new autonomous car parked in the
parking place j. Note that the number of total free places, F, now is lower than in Equation (8) because
now there is one more car parked in the parking. The computation of the optimum parking place
involves the computation of the Arate for all the possible places where the autonomous car can be
parked, that is, all the free accessible places, C, which can be a high complex process if the number of
free accessible places is high. Note that for every free accessible parking place, we have to compute
again the number of available anchor nodes at every position of the road, ri ∈ R, and for every
parking place, si ∈ S . Thus, if the complexity of one iteration of computing the available anchor
nodes is α, the total complexity of the optimum algorithm will be C α. For this reason, in this work,
we design a suboptimal method with lower computational complexity.
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Figure 3. Parking state simulation with N = 300, Orate = 0.8, Prate = 0.05 and Arate = 0.2.

Let us express the roads of the parking as a tree where the nodes of the tree are the intersections
and the ends of the roads as depicted in Figure 4a. In particular, we will define a directed out tree
routed at node 0 [38] as depicted in Figure 4b, which corresponds to the entrance of the parking lot.
Only the shortest path to a point in the parking is considered in the tree, that is, if one position of
the parking can be accessed from different paths, only the shortest path will be included in the tree.
For every road position of the map, we will store the arc of the tree that involves this position—for
example, all the positions from the entrance to the intersection 1 will belong to the arc (0, 1).

Remember that a parking place is only accessible for an autonomous car if the car can go from
the entrance to the parking place with enough positioning accuracy. For example, for a parking place
at node 7, all the way from the entrance to the node 7 must be covered with enough anchor nodes to
have the desired positioning accuracy. This involves all the road positions associated to the arcs (0, 1),
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(1, 2) and (2, 7). If any of these positions do not receive from enough anchor nodes, the parking place
will be labeled as not accessible for the autonomous car.
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Figure 4. Simulated parking lot roads as trees: (a) undirected graph (b) directed out tree.

Following this idea, we designed a method that covers all the directed out tree and selects the
parking place for the autonomous car as the closest to the first point of the road that does not fulfill the
anchor node condition. The block diagram of the designed method is depicted in Figure 5. We start
from the entrance (node 0) and first look at all the points belonging to the first arc (0, 1); if all of them
receive from two or more anchor nodes, then we search in the following arc. In this case, it could be
arc (1, 2) or arc (1, 8). By default, the method will choose the one involving lower numbers, but any of
them could be selected. If, again, all the positions receive from more than two anchor nodes, we search
for the following arc—in this case, arc (1, 8). If all the road positions again fulfill the condition, we will
search in the following arc—in this case, arc (2, 3), as we already searched in all the arcs outgoing from
node 1. Note that the algorithm will not select the arcs outgoing from node 2 until all the arcs from its
parent node (node 1) are selected. The algorithm will follow this procedure until it detects one road
position that receives from less than two anchor nodes. Once this position is found, we will select
the closest free accessible parking place to the selected road position. The purpose of this algorithm
is to create long directed paths inside the tree in order to give access to as many parking places as
possible. As regards the computational complexity of the algorithm, note that, in the worst case, that
is, when all the positions in the road fulfill the conditions, our algorithm will search the entire tree,
which are the same number of positions that the optimum algorithm does at every iteration. Again,
if we consider α, the computational complexity of one iteration, the computational complexity of
the TBSA in the worst case is α, whereas the computational complexity of the optimum method is
C α. Therefore, the designed system, TBSA reduces the computational complexity by a factor C that
depends on the number of free accessible places.
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Figure 5. Tree Based Searching Algorithm (TBSA) block diagram.

4. Simulation

In this section, we first describe the parking layout and then we present our simulation results.
Our goal is to demonstrate the effectiveness of the method presented in this article comparing it with
several other methods in terms of the accessibility rate.

In order to evaluate the performance of the proposed technique, the system is tested in one
scenario based on the parking of the Engineering School at the Universitat Autònoma de Barcelona
simulated using MATLAB in a Macbook Pro with a 2.2 GHz Intel i7 processor and 8 Gb of RAM.
A layout of the simulated parking can be seen in Figure 1 and is composed of 300 places divided
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into five branches with 60 parking places each one. The only RSU available in the parking is placed
at the entrance near the first intersection. This parking has only one entrance and one exit that are
in the same place.The street belonging to the entrance and exit measures 100 m long while the other
four streets oriented in the x-axis direction measure 77.5 m. On the other hand, the y-axis oriented
street measures 60 m. All streets are 5 m in width. Finally, the distance between the centers of two
consecutive places is 2.5 m like the distance between two consecutive road points. Note that the
structure of many parking lots is similar to the one described here. There can be modifications in the
number of branches of the parking, or the number of places, but, in general, any parking structure
can be built by replicating the structure depicted here. Note also that, in the case of a parking with
multiple entrances, we can create different trees for every entrance and apply the algorithm designed
in Section 3 for the corresponding tree.

In order to test the performance of the designed TBSA method for the selection of the best
parking place, we compare here four different methods: (i) the static method, that is, the stationary
state of the parking before the autonomous car arrives and without introducing any new car; (ii) the
random method, that is, a method that randomly selects the parking place for a new car; (iii) the
TBSA described in Section 3; and (iv) the optimum method, that is, an exhaustive search algorithm
that computes the Arate for all possible parking places and selects the optimum one.

To do so, we simulate a stationary state of the parking at a given time where the vehicles are
randomly distributed around the parking places using a uniform distribution. As previously stated,
we assume that the distribution of the vehicles around the parking lot is known by the RSU. Then,
we compute the number of free places, free accessible places for the autonomous cars and the Arate.
From this situation, we compute the selected places for the random, TBSA and optimum methods and
the accessibility rate is evaluated varying the occupancy rate, penetration rate and the ratio between
the communication range and the maximum distance between two points of the parking lot. The last
parameter of variation is selected because the effect of the communication range in the Arate depends
on the size of the parking lot. In other words, the results obtained here can be extrapolated to larger
parking lots and larger communication ranges. For the selection of the communications range, we
adjusted the values following the results published in the literature based on measurement campaigns
under the IEEE 802.11p standard [39,40]. Take into account that, although in general parking lots
don’t usually have lots of walls that can block the signal, the communications will be done in a Non
Line Of Sight (NLOS) environment. The walls are not the only object that can block a signal and
produce NLOS conditions. In a parking lot, there will be columns and there will be some walls (for
the stairs or elevators, for example), but, more importantly, there will be a lot of cars parked in the
parking place and the cars will block the signal [41] and produce NLOS conditions. Note that one
car can only partially block the signal, but if there is a series of cars parked side by side (which is the
typical case for a parking lot), the blockage of the signal will be higher and the communications will
be done in NLOS conditions. In particular, in the simulated scenario, we defined a communications
range up to 60 m and the maximum distance of the parking lot is 105 m.

As we are dealing with a stochastic process while placing the cars, all results in this article are
shown as the average of 10,000 iterations. In addition, because it is not in the scope of this article, it is
assumed that the position estimations of vehicles are error free, which means that the autonomous
car is always able to park while receiving from at least two anchors. It is also assumed that the
communication range does not vary and is the same for all the nodes. Moreover, the communication
range is referred to as Radius in the simulations for abbreviation reasons.

With a defined occupancy rate of 80%, Figures 6 and 7 show how accessibility rate varies,
on the one hand, while the ratio between the communication range and the maximum distance of
the parking grows for a fixed penetration rate of 5%, 10% and 25%; on the other hand, the penetration
rate varies for three fixed ratios, between the communication range and the maximum distance of
the parking, of 14%, 19% and 24%. Given the static Arate by the current parking state, the random,
optimum and TBSA are computed to further evaluate how Arate behaves. Note that, here, only a new
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autonomous car enters the parking lot, so the results shown are the improvements of the methods for
the case of adding one autonomous car.
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Figure 6. Simulated accessibility rate versus radius/dmax with an occupancy rate of 80% for a
penetration rate (Prate) of (i) 5%, (ii) 10% and (iii) 25%.
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Figure 7. Simulated accessible rate versus penetration rate with an occupancy rate of 80% for a
radius/dmax of (i) 24%, (ii) 19% and (iii) 14%.

In Figure 6, when the ratio radius/dmax is near 80%, the Arate equals 1, which means that the
whole parking is accessible for the upcoming autonomous cars. However, this is only in this specific
case for the simulated parameters of occupancy rate and penetration rate. For any fixed parameters
of occupancy rate and penetration rate, there will be a ratio radius/dmax, where the Arate equals 1
determined by the size of the parking lot. Similarly, in Figure 7, the values of the occupancy rate and
ratio radius/dmax will determine the minimum value of the penetration rate that achieves Arate = 1.
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It is interesting to remark that the accessibility rate can degenerate if the new autonomous car
placed at a given parking spot does not make a new place accessible while occupying one that was
previously free. This can easily be seen following the next example: if of the total 300 parking spaces,
10 are free and two of these are accessible by a new autonomous car, Arate is thus 2/10. Now, if a
new autonomous car arrives and parks in a free and accessible parking space and does not make a
new parking space accessible for another autonomous car, then there are nine free and one accessible
parking spaces, so now Arate is 1/9, lower than before.

Comparing the aforementioned methods, it can be seen in Figures 6 and 7 that the improvement
of the random method over the static method is small for all of the cases. In contrast, our designed
TBSA method approximates to the optimal method for all cases. Quantitatively, Table 1 summarizes
that and presents the obtained Arate for different values of the occupancy rate, the penetration rate
and the ratio radius/dmax. For example, for an occupancy rate of 80%, a penetration rate of 10%
and a ratio radius/dmax of 24% the Arate before the introduction of any new car is 67.98%. From the
optimum method we know that the Arate can be improved up to 77.1%. The TBSA obtains an Arate of
75.45%, which means that it improved 81.91% of the maximum possible improvement, which is the
improvement rate, whereas the random method only achieves 8.66% of the maximum improvement.
Similarly, for Orate = 0.8, Prate = 0.25 and ratio radius/dmax = 0.19, the TBSA achieves 96.08% of the
maximum improvement, whereas the random method only achieves 2.8%.

Table 1. Simulated results in terms of Arate and improvement rate versus occupancy rate of the
parking lot, penetration rate and communication range.

Static Random TBSA Optimum
Improvement Rate

Random TBSA

Orate = 0.3

radius/dmax = 0.14
Prate = 0.05 0.0015 0.0036 0.0038 0.0042 0.7778 0.8519
Prate = 0.10 0.0058 0.0103 0.0110 0.0128 0.6429 0.7429
Prate = 0.25 0.0453 0.0563 0.0644 0.0779 0.3374 0.5859

radius/dmax = 0.19
Prate = 0.05 0.0107 0.0177 0.0192 0.0233 0.5556 0.6746
Prate = 0.10 0.0402 0.0543 0.0603 0.0762 0.3917 0.5583
Prate = 0.25 0.2533 0.2697 0.3095 0.3646 0.1473 0.5049

radius/dmax = 0.24
Prate = 0.05 0.0431 0.0623 0.0650 0.0826 0.4861 0.5544
Prate = 0.10 0.1733 0.2023 0.2159 0.2653 0.3152 0.4630
Prate = 0.25 0.6248 0.6363 0.7060 0.7291 0.1103 0.7785

Orate = 0.5

radius/dmax = 0.14
Prate = 0.05 0.0037 0.0067 0.0071 0.0079 0.7143 0.8095
Prate = 0.10 0.0186 0.0257 0.0285 0.0339 0.4641 0.6471
Prate = 0.25 0.1647 0.1744 0.2053 0.2341 0.1398 0.5850

radius/dmax = 0.19
Prate = 0.05 0.0247 0.0358 0.0390 0.0483 0.4703 0.6059
Prate = 0.10 0.1154 0.1331 0.1496 0.1855 0.2525 0.4879
Prate = 0.25 0.5603 0.5669 0.6522 0.6790 0.0556 0.7742

radius/dmax = 0.24
Prate = 0.05 0.1088 0.1361 0.1436 0.1805 0.3808 0.4854
Prate = 0.10 0.3965 0.4160 0.4665 0.5184 0.1600 0.5742
Prate = 0.25 0.8918 0.8942 0.9249 0.9271 0.0680 0.9377

Orate = 0.8

radius/dmax = 0.14
Prate = 0.05 0.0110 0.0137 0.0147 0.0165 0.4909 0.6727
Prate = 0.10 0.0588 0.0651 0.0718 0.0833 0.2571 0.5306
Prate = 0.25 0.3976 0.4008 0.4642 0.4800 0.0388 0.8083

radius/dmax = 0.19
Prate = 0.05 0.0714 0.0831 0.0911 0.1102 0.3015 0.5077
Prate = 0.10 0.2902 0.2999 0.3372 0.3802 0.1078 0.5222
Prate = 0.25 0.8652 0.8662 0.8995 0.9009 0.0280 0.9608

radius/dmax = 0.24
Prate = 0.05 0.2739 0.2939 0.3222 0.3716 0.2047 0.4944
Prate = 0.10 0.6798 0.6877 0.7545 0.7710 0.0866 0.8191
Prate = 0.25 0.9875 0.9877 0.9904 0.9906 0.0645 0.9355

As expected, in Figure 6, as the ratio radius/dmax increases, so does the accessibility rate due to
anchors having larger coverage areas; thus, it is more likely that a free parking space and the road that
leads to it will be covered by two or more areas of coverage of the anchors. In addition, these graphs
present a staggered form due to the specific topology of the parking since the centers of the parking
spaces are separated 2.5 m, and, therefore, increasing the radius a little does not guarantee covering
a whole parking space, that is, to win a new accessible parking space and increase accessibility rate.
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On the other hand, in Figure 7, while the proportion of autonomous cars against traditional cars
grows, the accessibility rate also grows due to the increased number of anchors covering a larger part
of the parking area.

Figure 8 shows how the Arate grows as a function of the occupation of the parking lot. It is worth
mentioning that, for occupancy rate values close to 100%, it is not possible to increase the accessibility
rate because all free available spaces are covered by two or more anchors so these spaces are all
accessible. In that situation, when a new autonomous car parks, the accessibility rate will decrease
below the static accessibility rate and finally to zero, as it happens in Figure 8.
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Figure 8. Simulated accessible rate versus occupancy rate with radius/dmax = 0.19 for a penetration
rate Prate of (i) 10%, (ii) 20% and (iii) 30%.

Notice that the designed tree based searching algorithm obtain increments in the accessibility
rate similar to the optimum ones for all the parameters tested. Furthermore, this increment is achieved
with a low complex algorithm—in contrast with the optimum method that computes the Arate for all
the free accessible parking places.

Since now, we have evaluated the performance of the methods in terms of Arate after the addition
of one more autonomous car in the parking lot. In order to see the performance of the systems when
more autonomous cars enter the parking lot, we modified the simulations to include n consecutive
autonomous cars, that is, we generate a stationary parking. Then, we introduce one by one different
autonomous cars in the places selected by the algorithms, and, finally, we evaluate the Arate as a
function of the number of additional autonomous cars. The results of this new scenario are depicted
in Figure 9. We can observe how the algorithms increase the Arate with the number of cars until they
reach a stationary state where the Arate cannot be longer improved. Note that, if the autonomous
car occupies a parking place and thus does not increase the number of accessible parking places,
the Arate will decrease. If we compare the methods, we can observe that the TBSA outperforms the
optimum method after the inclusion of four new cars. Note that the optimum method is computed as
before and it is not the optimum method when taking into account the best placement of n successive
autonomous cars. The computation of the optimum for n successive autonomous cars is an NP-hard
problem as it involves the iterations over all the possible combinations of placing n successive cars
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into the available places, taking into account that the introduction of a new autonomous car will
modify the available places. Again, the performance of the random method is far from the optimum
method as expected.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of new autonomous cars

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

A
cc
es
si
b
il
it
y
R
a
te

TBSA

Optimum method

Random method

Figure 9. Simulated entrance of successive autonomous cars for radius/dmax = 0.24, Orate = 0.5 and
Prate = 0.2.

From the simulated results, we evaluated the performance of the designed TBSA. We can
conclude that the designed algorithm is close to the optimum method in the case of including a new
autonomous car and it can perform better than the optimum method when successive autonomous
cars enter the parking lot. This is due to the tree based structure employed that grants access to
different branches of the parking, and in this way, improves the accessibility rate.

5. Conclusions

In this work, we have proposed a new parking scheme based on the cooperation of autonomous
cars within a Vehicular Sensor Network (VSN). In particular, we designed a smart parking system
on top of a VSN that allows the autonomous and traditional cars to coexist in the same parking lot.
The best parking place for the autonomous car is selected by the system and the car is guided to the
assigned place, thanks to a cooperative positioning approach that employs the stationary autonomous
cars as anchor nodes. The best parking place is selected using the designed tree based searching
algorithm (TBSA). The TBSA selects the best parking place according to a common good criterion that
maximizes the accessibility for new autonomous cars to the parking lot. Furthermore, the optimum
parking place is also computed and the behavior of our system is compared to the optimum case
in a simulated environment that copies the structure of the parking lot of the Engineering School
at Universitat Autònoma de Barcelona. The results show that the behavior of the TBSA is close to the
optimum for the case of introducing one more autonomous car and outperforms the optimum method
when successive autonomous cars enter the parking lot.
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