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Abstract: In order to get natural and intuitive physical interaction in the pose adjustment of the
minimally invasive surgery manipulator, a hybrid variable admittance model based on Fuzzy
Sarsa(λ)-learning is proposed in this paper. The proposed model provides continuous variable
virtual damping to the admittance controller to respond to human intentions, and it effectively
enhances the comfort level during the task execution by modifying the generated virtual damping
dynamically. A fuzzy partition defined over the state space is used to capture the characteristics of
the operator in physical human-robot interaction. For the purpose of maximizing the performance
index in the long run, according to the identification of the current state input, the virtual damping
compensations are determined by a trained strategy which can be learned through the experience
generated from interaction with humans, and the influence caused by humans and the changing
dynamics in the robot are also considered in the learning process. To evaluate the performance of the
proposed model, some comparative experiments in joint space are conducted on our experimental
minimally invasive surgical manipulator.

Keywords: minimally invasive surgical robot; physical human-robot interaction; reinforcement
learning; variable admittance control

1. Introduction

Compared with the traditional minimally invasive treatment, robot-assisted minimally invasive
surgical technology has better hand-eye coordination, field of vision, flexibility, and stability.
The minimally invasive surgical robot can significantly shorten operation time and improve the quality
of operations [1,2]. In preoperative preparation of the robot-assisted minimally invasive surgery,
the medical staff adjusts the manipulator’s initial configuration and selects a proper port location
according to the patient’s individual characteristics. The purpose of the configuration adjustment is
not only to maximize the coverage rate of the workspace in the operation area, but also to minimize the
intraoperative interference among manipulators [3]. Usually, the adjustment process mentioned above
is done in an active compliance control according to the inferred human intention, and this physical
contact between the human and the robot during their interaction is known as physical human-robot
interaction (PHRI) [4].

In recent years, a number of models and algorithms for PHRI have been proposed, such as
virtual-tool control [5,6], force-free control [7,8], etc. However, in practice, the most commonly used
control scheme is impedance control [9]. It is a simplified model for the dynamic characteristics of
the manipulator, and the model parameters can be regulated according to the specific task. Generally,
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it is difficult to obtain intuitive and compliant human-robot interaction with fixed parameter models
during task execution. As a result, researchers have recently focused on finding an appropriate
parameter modulation strategy to adjust the impedance characteristic of the robot dynamically. In [10],
a discrete variable impedance control scheme was applied to the manual welding, the discrete virtual
damping value was determined by the velocity threshold. Similarly, a variable admittance law based
on desired velocity and acceleration was also proposed in [11] and a variable admittance model based
on the end effector velocity was proposed for the redundancy manipulator [12]. In [13], a virtual
damping adjustment algorithm was given by inferring human intention from the time derivative of the
contact force. These methods infer human intentions through the state variables (velocity, acceleration,
or force), and rely on the experience or the data collected from the physical human-robot interaction
process, which limits the expansion to other motion profiles.

References [14–18] regulated the control model parameters based on the estimation of the human
hand-arm impedance. In [14], for human-augmentation tasks, the maximum human arm stiffness
during the cooperation was estimated offline. Similar to this, a real-time estimation of the human arm
stiffness was taken into account for the virtual damping modification in [17], and an arm stiffness
estimation method based on EMG signal was proposed in [18], the control gains were modified
according to the activation level of the arm muscles. However, these estimation models do not take
individual behaviors into account, and the parameter turning is sensitive to environmental interference.

For the purpose of imitating the human impedance modulation manner, some methods have
been proposed on the basis of the minimum jerk trajectory model [19–21]. In [22–24], a kind of human
adaptive mechatronics is presented to take the human part of the controller into account, which
regulated the impedance of the robot according to the identified human dynamics model. Most of
these techniques require a priori knowledge of the movement characteristics or human dynamics
model and do not focus on the optimization of the overall long-term performance in the physical
human-robot interaction.

Recently, learning techniques were also used to adapt the robot’s impedance or teach variable
stiffness tasks to the robots through interaction with humans or environments [25–27]. In [28], an online
impedance parameters adjustment method was proposed, which computed the optimal parameters
by minimizing a cost function. In [29], a human-robot interaction system was presented to assist
humans in performing a given task with minimum effort, and the optimization of the impedance
parameter was transformed into a linear quadratic regulator problem which optimized the overall
system performance by online learning. In our paper, a novel variable admittance controller is proposed
for the manipulator configuration adjustment in joint space. Fuzzy Sarsa(λ)-learning is employed in
the parameter adjustment for establishing the human part of the control model by online learning,
and the virtual damping is constantly modified by minimizing a smooth performance metrics during
the interaction. The parameter modulation scheme not only satisfies the requirements of the damping
at various stages in the process, but also enhances the comfort level perceived by the operator during
task execution.

In this paper, a novel variable admittance controller is presented for physical human-robot
interaction in joint space. Unlike the traditional teaching-playback method, the proposed joint
controllers are independent of each other, which is convenient for adjusting the manipulator attitude
individually. In order to improve the comfort level of the traditional variable admittance controller,
a parameter modulation strategy based on Fuzzy Sarsa(λ)-learning is proposed. No prior knowledge
is required for this strategy, and the individual behaviors during the interaction are taken into
consider through online learning technology, which can adapt to the environment by trial and error.
The inappropriate model parameters caused by personal operation habits can be modified for achieving
smooth and natural behavior in the task execution.

The rest of this paper is organized as follows. The Sarsa(λ)-learning algorithms are briefly
discussed in Section 2, and then the overall structure of the control scheme and the desired goal of the
reinforcement learning are proposed in Section 3. Section 4 presents the experimental evaluation of
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the proposed control strategy on our experimental minimally invasive surgical manipulator. Finally,
a discussion of the results and the conclusion are drawn in Sections 5 and 6, respectively.

2. Sarsa(λ)-Algorithm

Reinforcement learning is an important branch of machine learning, and it can be used to solve
problems in which actions are applied to a system over an extended period of time, in order to achieve
a desired goal [30]. Therefore, it is a kind of online learning technology which can actively adapt to
the environment through trial and error. In the learning process, the agent tries to find a strategy that
yields high accumulated reward from interaction with an environment. Supposing that the agent is in
state st at time t, and an action at is executed according to the current policy π. Then it receives a scalar
reward r(st,at) from the environment and arrives at a new state. Next, the action values Q(st,at) that
quantify the quality of the selected action in the current state are updated by the Bellman Optimality
Equation. Repeat the above steps, and then the policy will be gradually improved based on the action
values for each step of the episode until convergence.

Sarsa(λ)-learning is a well-known model-free reinforcement learning algorithm which has the
merits of one-step temporal-difference learning and Monte-Carlo algorithm [31]. This is achieved by
the introduction of the so-called eligibility trace, which is a temporary record of the recently visited
state-action pair. An accumulating eligibility trace is given by Equation (1)

et(s, a) =

{
γλet−1(s, a) + 1 i f s = st and a = at

γλet−1(s, a) otherwise
(1)

where λ is the eligibility decay rate that determines the number of the state-action pairs updated, and
γ is a discount factor that weights the effect of the future rewards. For each state s ∈ S, the eligibility
trace is incremented when the state-action pair is visited and decreases exponentially otherwise.
Correspondingly, on each iteration, all the action values are updated in proportion to their eligibility
traces as follows:

Qt+1(st, at) = Qt(st, at) + αδtet(st, at), (2)

δt = r(st, at) + γQt(st+1, at+1)−Qt(st, at) (3)

where δ is the temporal-difference error, and α is the learning rate that determines the learning speed.
The policy improvement can be done is many approaches. In this paper, the Boltzmann exploration
strategy is adopted for the action selection, and its general form is as follows:

P(at|st) =
eQt(st ,at)/η

∑
i=1

eQt(st ,ai)/η
, (4)

where P(at|st) represents the probability of the action selection, and η is the temperature parameter,
it controls the randomness of the exploration.

3. Variable Admittance Control Scheme

In this section, the overall structure of the proposed variable admittance controller is presented in
detail. As shown in Figure 1, the controller consists of three parts, i.e., Admittance Model, Human
Intention Estimator, and Damping Modulator. The admittance controller that allows compliant
behavior of the manipulator in joint space, which establishes the dynamic relationship between
interaction torque (exerted by operators) and the motion of the robot. The parameter of the admittance
controller can be changed by the Human Intention Estimator and Damping Modulator during physical
human-robot interaction. In order to overcome the shortcomings of the fixed admittance model,
the Human Intention Estimator is used to generate the parameter of admittance controller by estimating
the operator’s intention. However, the Human Intention Estimator just predicts the general trend of
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the human intention, sometimes, the output of the estimator is not accurate enough and the comfort
level during the task execution cannot be guaranteed. For this reason, a modulator is proposed
to regulate the parameter of admittance controller (output of the Human Intention Estimator) to
achieve a smooth and natural behavior during the physical human-robot interaction. The individual
behaviors during the interaction are taken into consideration through a modulation strategy based
on Fuzzy Sarsa(λ)-learning. With continual interaction and iteration, the smoothness of the physical
human-robot interaction is improved over time.
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3.1. Variable Admittance Controller

Admittance control is a widely used model in PHRI, it establishes the dynamic relationship
between external force and the motion of the robot. Assume one-dimensional admittance equation in
joint space is written as follows:

τh = m
..
θd + c

.
θd, (5)

where τh is the torque exerted by human, m is the virtual mass, c is the virtual damping, and θd is the
desired angular position. The trajectory to be followed by the manipulator can be prescribed in this
linear second-order relationship form. The dynamic behavior of the manipulator and the effectiveness
of the interaction are determined by the admittance parameters, namely the virtual mass and the
virtual damping, and the dynamic model can be explained as moving an object with the virtual mass
m in a virtual viscous (damping) c environment when a torque τh is applied to the object.

Compared with the virtual damping, the effect of virtual mass in the physical human-robot
interaction can be neglected [12]. As a result, we regulate the dynamic behavior of the admittance
model in the form of combining variable virtual damping with constant virtual mass. The virtual
damping determines the response level of the manipulator to the external force, low virtual damping
can reduce the force exerted by humans, however, it also reduces the positioning accuracy of the
tasks. On the contrary, the operator can perform high accuracy movement with high virtual damping
but it requires more human effort. In order to overcome the shortcomings of the fixed admittance
model, a variable admittance control model with a suitable damping modulation strategy is typically
required—e.g., at the beginning of the task, the virtual damping should be reduced for high velocity
motion—and a high virtual damping is necessary for accurate positioning at the end of the movement.
In this paper, the applied torque in the joint is used to infer the human intentions, which is a direct
way to reflect the human intentions, and the turning of the damping can be defined as follows:

ce = cmin + (cmax − cmin)e−ke |τh|, (6)

where ce is the output of the human intention estimator, ke is a constant coefficient, cmin and cmax are
the boundary values of the virtual damping, respectively. When the magnitude of the torque increases,
it can be interpreted as a human intention to change the current motion state rapidly. In this situation,
the virtual damping should be low for reducing the virtual inertia of the system. On the contrary, when
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the magnitude of the torque decreases, it means that the operator intends to decelerate or maintain the
movement. In order to avoid over response, a high virtual damping is needed.

3.2. Damping Modulator Based on FSL

There are two critical characteristics for improving the feeling perceived by operators in physical
human-robot interaction. One is the capability to respond the human intentions dynamically, which
is solved by Human Intention Estimator as mentioned above. The other is the ability to enhance the
comfort level during the task execution. Although the Human Intention Estimator can be used to
deal with low positioning accuracy and hysteresis (high force required to change the motion state),
the smoothness during task execution is not guaranteed. In order to improve the smoothness, it requires
adaptation to individual behaviors during the manual guidance, and taking the human part of the
controller into consideraton. Generally, we do not have the knowledge about the characteristics of
individual behaviors, and it is very difficult to model. As a result, Fuzzy Sarsa(λ)-learning (FSL) is
adopted to deal with the unpredictability of human behaviors by online learning in this paper. In [32],
a minimum jerk trajectory model is used to learn the appropriate damping for effective cooperation.
This model is proposed in the point-to-point linear motion of the human in Cartesian trajectories, and
is not applicable for the joint space [21]. In our study, we take the square of jerk as a smoothness
performance index to optimize the virtual damping estimated by the Human Intention Estimator
during the interaction. The performance index is defined by the following objective function:

J =
∫ T

0

...
θ

2(t)dt, (7)

where
...
θ (t) is the jerk of the human hand, and T is the duration of motion. Smaller values of J indicate

better physical human-robot interaction performance.
In general, reinforcement learning problems are discrete time-dynamic problems. The agent can

only get a discrete state perception and trigger discrete actions in traditional model-free reinforcement
learning. More specifically, the agent and the environment interact at each of a sequence of
discrete time steps [30]. However, the problems have large or continuous state spaces, such as
physical human-robot interaction, the traditional reinforcement learning is limited by the curse of
dimensionality. To overcome the limitation, FSL is adopted in the real-world problems, in which fuzzy
rules are used as a parameterized approximator to represent the continuous state space and integrate
discrete actions as a continuous action output [33,34].

In FSL, as shown in Figure 2, the continuous state spaces are divided by fuzzy sets which are
described by the membership functions in the space of the input state variables (Xi). The agent visits a
fuzzy state set partially in the fuzzy state representation, and it depends on the normalized T-Norm:

ϕ(sj) =
mv

∏
i=1

µj(Ii)/
nr

∑
k=1

mv

∏
i=1

µk(Ii), (8)

where sj is the j-th fuzzy state component, ϕ(sj) is the j-th activated fuzzy rule value that indicates the
proportion of the state components sj in the current state partition, µ(I) is the membership degree of
the state variable I, mv is the number of state variable and nr is the number of the activated fuzzy rule.
For the movement of the manipulator in joint space, the human intended torque τh, the joint angular
velocity

.
q, and the angular acceleration

..
q, are selected as state variables. The action set of the agent

is a discretization of action space which consists of the compensation value of the virtual damping,
i.e., u = {u1, . . . ,ud}. At each time step t, the membership degrees of the state variables are calculated
by triangular membership function, and more than one fuzzy rule can be active at the same time. Each
activated fuzzy rule has a fuzzy state component, an optimal discrete action, and a weight associated
with this state-action pair. The weight w(sj,uj) indicates the quality of a given action uj with respect to
a state component Sj , which is an estimation of how good it is for the agent to perform the action uj
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in the current state Sj . It is used to select the optimal discrete action in each fuzzy state component.
Update the eligibility trace according to Equation (9), and the weight is defined by Equation (10):

ẽt(s, u) =

{
γλẽt−1(s, u) + ϕ(sj) i f s = sj and u = uj
γλẽt−1(s, u) otherwise

, (9)

wt+1(sj, uj) = wt(sj, uj) + δ̃t ẽt(sj, uj), δ̃t = r(St, Ut) + γQt(St+1, Ut+1)−Qt(St, Ut), (10)

where Qt(st,ut) is the action value function which is computed as a weighted sum of the activated
fuzzy rule value, and the general form is defined by Equation (11), r(St,Ut) is the reward received
between two adjacent input states, it depends on the last action which has been performed by the
agent in the previous state. Because the reinforcement learning is an algorithm to find a policy which
seeks to maximize the accumulated reward in an episode, the general form of the reward is designed
as Equation (12) (a negative sum of squares).

Qt(St, Ut) =
n

∑
j=1

wt(sj, uj)ϕ(sj), (11)

r(St, Ut) = −∑
∆t

...
θ

2, (12)

where ∆t is the time interval between two learning steps (i.e., the sampling period of the algorithm).
The weights determine the probability of choosing the local action u in each fuzzy rule. Update the
Boltzmann exploration strategy (Equation (4)), and get the form as follows:

P(uj|sj) =
ewt(sj ,uj)/η

d
∑

i=1
ewt(sj ,ui)/η

(13)
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In Fuzzy Sarsa(λ)-learning, the input state space is divided by fuzzy rules. At each time step,
the agent visits a fuzzy state which is represented by several activated fuzzy rules, and the activation
degree of each activated fuzzy rule is indicated by the normalized T-Norm φ (Equation (8)). Then the
local actions selected in each fuzzy state component are weighted by the corresponding activation
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degrees and constitute a continuous global action Ut which is performed by the agent to compensate
the virtual damping ce, and the output of the Damping Modulator ce is expressed as follows:

cr = Ut(St) =
n

∑
j=1

uj ϕ(sj) (14)

At last, the final virtual damping c provided to the admittance controller can be obtained by
Equation (15).

c = ce + cr (15)

According to the above analysis, the function of fuzzy rules is to realize the perception of
the continuous state at the input of reinforcement learning and integrate discrete local actions as
a continuous global action output. During the online learning and training process, the agent learns
how to perform actions which maximize the performance index (Equation (7), the accumulated reward
in PHRI) in the long run.

4. Experimental Evaluation

In this part, the experimental evaluation of the proposed variable admittance model is conducted
on our minimally invasive surgical manipulator. First, the characteristics of the minimally invasive
surgical robot in physical human-robot interaction are illustrated according to the special structure
of the manipulators, and then, in order to demonstrate the effectiveness of the proposed method,
some comparative experiments between different admittance models are performed in the following,
and a questionnaire is provided to the participants after the experiments.

4.1. Minimally Invasive Surgical Manipulator

As shown in Figure 3a, the minimally invasive surgical manipulator consists of three parts,
i.e., the passive adjustment joint, the RCM (Remote Centre of Motion) kinematic mechanism, and the
minimally invasive surgical instrument. The RCM structure can realize arbitrary rotation around a
fixed spatial pivot point (RCM), as shown in Figure 3b, lever 1, 2, and 3 are driven by the revolute
joint 2 and can rotate around the RCM point via the geometrical constraints among the parallelogram
A, B, and C. Meanwhile, the plane mechanism is driven by a revolute joint (Revolute Joint1) whose
axis passes through the RCM point. The passive adjustment joint is used to adjust the position of the
RCM. During the operation, the passive joint must be locked, and the minimally invasive surgical
instrument is driven by the RCM kinematic mechanism.

Sensors 2017, 17, 844 7 of 15 

 

degrees and constitute a continuous global action Ut which is performed by the agent to compensate 
the virtual damping ce, and the output of the Damping Modulator ce is expressed as follows: 

n

r t t j j
j

c U S u s
1

( ) ( )


   (14) 

At last, the final virtual damping c provided to the admittance controller can be obtained by 
Equation (15). 

e rc c c   (15) 

According to the above analysis, the function of fuzzy rules is to realize the perception of the 
continuous state at the input of reinforcement learning and integrate discrete local actions as a 
continuous global action output. During the online learning and training process, the agent learns 
how to perform actions which maximize the performance index (Equation (7), the accumulated 
reward in PHRI) in the long run. 

4. Experimental Evaluation 

In this part, the experimental evaluation of the proposed variable admittance model is 
conducted on our minimally invasive surgical manipulator. First, the characteristics of the minimally 
invasive surgical robot in physical human-robot interaction are illustrated according to the special 
structure of the manipulators, and then, in order to demonstrate the effectiveness of the proposed 
method, some comparative experiments between different admittance models are performed in the 
following, and a questionnaire is provided to the participants after the experiments. 

4.1. Minimally Invasive Surgical Manipulator 

As shown in Figure 3a, the minimally invasive surgical manipulator consists of three parts, i.e., 
the passive adjustment joint, the RCM (Remote Centre of Motion) kinematic mechanism, and the 
minimally invasive surgical instrument. The RCM structure can realize arbitrary rotation around a 
fixed spatial pivot point (RCM), as shown in Figure 3b, lever 1, 2, and 3 are driven by the revolute 
joint 2 and can rotate around the RCM point via the geometrical constraints among the parallelogram 
A, B, and C. Meanwhile, the plane mechanism is driven by a revolute joint (Revolute Joint1) whose 
axis passes through the RCM point. The passive adjustment joint is used to adjust the position of the 
RCM. During the operation, the passive joint must be locked, and the minimally invasive surgical 
instrument is driven by the RCM kinematic mechanism. 

3 BC

RCM

Passive  
Joint

Instrument

Revolute  
Joint 1

Revolute
 Joint 2

 
RCM

A B

C

1

2

3

4
Revolute  

Joint 2
Revolute 

Joint 1

Instrument

(a) (b)

Figure 3. (a) Minimally invasive surgery manipulator; (b) The structure diagram of RCM. 

As discussed above, the position of the RCM is invariant during the configuration adjustment. 
In contrast to the industrial robot teaching and playback process, the concern of the medical robots 
in physical human-robot interaction is not the trajectory of the end-effector in Cartesian space but the 
attitude adjustment of the robot link on a joint level. The purpose of the adjustment is to enlarge the 

Figure 3. (a) Minimally invasive surgery manipulator; (b) The structure diagram of RCM.

As discussed above, the position of the RCM is invariant during the configuration adjustment.
In contrast to the industrial robot teaching and playback process, the concern of the medical robots
in physical human-robot interaction is not the trajectory of the end-effector in Cartesian space but
the attitude adjustment of the robot link on a joint level. The purpose of the adjustment is to enlarge
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the coverage rate of the workspace in the operation area and reduce the intraoperative interference
among manipulators. Therefore, an active compliance control along the entire robot structure is
required. For this reason, the torque sensors are installed in each revolute joint, and each robot link
can be adjusted independently according to the measured torque in its attached joint. During the
interaction, measuring the torques in the joints is advantageous for direct measuring and control.
Moreover, the manipulator can be operated in an arbitrary position, and the attitude adjustment is not
constrained by the place of application of torque.

4.2. Experimental Design

In the evaluation of the proposed variable admittance model, three sets of experiments are
performed. In the first two series of experiments, a performance comparison between the proposed
model and the fixed admittance model is conducted to verify the self-adjustment capacity during the
task execution, and then the smoothness characteristics of this model are evaluated by comparison
with a torque based variable admittance model (c = ce) in the third series of experiments. Finally,
a questionnaire is given to each participant for rating the control approaches by intuitiveness.

The experiments are performed by eight participants aged from 22 to 39, and all the
participants have no previous experience in physical human-robot interaction. Before the experiment,
the participants are instructed about the task and have a few minutes to interact with the manipulator.
In the experiments, the participants are asked to grab the robot link in any way they prefer, and guide
a rotational movement of the joint between two targets in a single direction. As shown in Figure 4,
the target positions are indicated to the participants by color ribbon. For each participant, three
comparison experiments are conducted with four different control approaches in joint space, i.e., two
kinds of fixed admittance control with different virtual damping, a torque based variable admittance
control, and a variable admittance control based on FSL. In our study, we define the movement from
the blue ribbon (π/6) to the yellow ribbon (−π/6) as Motion 1, and the opposite movement is regarded
as Motion 2 which is treated as an episode of the task in reinforcement learning. FSL regulates the
damping to maximize the accumulated reward (7) in an episode, and then the episode is repeated
consecutively until reinforcement learning algorithm convergence.
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The performance of the proposed variable admittance controller is measured on our experimental
minimally invasive surgical manipulator based on TwinCAT real-time control system with a sampling
period of 0.4 ms. The torque measured from the torque sensors are filtered by a second-order low-pass
filter before it is introduced as the input of the admittance controller. During the physical interaction,
the human perception is mainly influenced by the virtual damping, and the selection of the virtual
mass is related to the stability of the system. For avoiding vibration, the virtual mass is set to a constant
value (m = 0.25 kg) which is found experimentally. In FSL, because the reward received between
two learning steps is always negative (a negative sum of squares in Equation (12)), the weight can
be initialized to an upper bound to stimulate exploration. When the Boltzmann exploration strategy
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is adopted for the action selection, the weight values will gradually decrease with the process of
learning and the actions selected will rarely have greater chance to be chosen. For each state-action
pair, the eligibility trace ẽ(s, u) and the weight w(s,u) are initialized to zero at the beginning of the
learning. In order to capture the continuous state input, a fuzzy partition is defined over the state
space. Each state variable is uniformly partitioned by five fuzzy sets in state variable space, and then
125 fuzzy rules are generated by this state partition. The discrete action consists of five compensation
values, i.e., u = {0, 0.003, −0.003, 0.006, −0.006}. The space of state variable Xi and the parameters of
the proposed algorithm are listed in Tables 1 and 2.

Table 1. The parameters of reinforcement learning.

γ α λ η ∆t (s)

0.9 0.03 0.95 85 0.004

Table 2. The universe of discourse of the state variable and the parameters of the intention estimator.

X1 (Nm) X2 (deg/s) X3 (deg/s2) ke cmin (Nms/deg) cmax (Nms/deg)

−2.5 ~ 0.0 −8.5 ~ 0.0 −4.5 ~ 4.5 3.06 0.01 0.04

4.3. Experimental Results and Discussion

In order to show the whole online learning process, the applied torque, the positioning accuracy,
the transferred energy, and the duration of the movement are recorded individually for each participant
during the training. The positioning accuracy is measured by the maximum distance after removing
the interaction torque, and the energy transferred from the operator to the robot can be calculated by
integrating the applied torque over the angle travelled. The mean value and standard deviation of the
evaluation criteria in each episode for all the participants are illustrated in Figure 5.
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As shown in Figure 5, the magnitude of the reward decreases gradually and stays in a stable
value with small fluctuation after 15 episodes. Theoretically, the reinforcement learning algorithm can
converge to an optimal solution through sufficient training, which may require much more time to
achieve. However, as shown in Figure 5, the improvement of the evaluation criteria may be small or
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even imperceptible if the training continues. As a result, for the purpose of reducing time consumption,
it is possible to stop the training process when the fluctuation of reward is stable and the reward is
under an expected threshold.

4.3.1. Contrastive Verification

For each participant, when the proposed algorithm converges to an approximately optimal
strategy, two comparison experiments with different fixed admittance models are first performed,
the state of motion and the reward in an episode are depicted in Figure 6, and then a comparison
with the variable admittance model based on torque is conducted as shown in Figure 7. The derived
evaluation criteria of all participants in three sets of experiments are illustrated in Figure 8. Assisted by
the proposed variable admittance model, the participants perform the experiments in better positioning
accuracy than the fixed admittance model with low virtual damping (Figure 6a), the mean value of the
maximum distance after removing the interaction torque is decreased by 90.3% (Figure 8a) and very
close to that of the high virtual damping admittance model (Figure 7b), while the energy applied by
the operator is reduced to 44.3% (Figure 8b) relative to the high virtual damping admittance model.
In addition, analysis of the evaluation criteria compared to the variable admittance model based on
torque indicates that the smoothness of the cooperation is improved significantly (Figure 7), and the
mean value of the accumulated jerk in an episode is reduced to 31.4% (Figure 8c) relative to the
variable admittance model based on torque. The low virtual damping admittance controller makes
the manipulator much more sensitive to the interaction torque, which is one of the reasons for large
fluctuation in the evaluation criteria. The uncertainty of the human operation and the dynamics change
of the manipulator enlarge the jerk of the produced movements in variable admittance model.
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4.3.2. Questionnaire for Comments

In the physical human-robot interaction, since the human is part of the physical human-robot
interaction controller and plays a crucial role in the overall performance, besides the experimental
data, the subjective comments provided by operators are also used for evaluation. For this purpose,
a questionnaire is given to the participants after the specified task execution, which is used to rank
the feeling perceived from 1 (poor) to 3 (excellent) in terms of intuitiveness. In our study, the sense
of being in control and the naturalness of the motion are used to describe the characteristics of the
behaviors in PHRI. The naturalness indicates the degree of similarity of motion control in daily life,
and the sense of being in control can be interpreted as a rapid response to change the motion state
easily according to human intention.

The task executed is designed to correspond to a typical pose adjustment action for the
manipulator. e.g., from the yellow ribbon to the blue ribbon (in Figure 4) as described in Section 4.2,
and the passed angle is approximately π/3. For each participant, when the training process is over
(the proposed algorithm converges to an approximately optimal strategy), four individual tests are
asked to be performed repeatedly with four different controllers (fixed low damping, fixed high
damping, variable damping based on force, and variable damping based on FSL) in a random order.
The participants do not know which controller is used in the current operation, and are told about the
definition of the studied behavior characteristics in PHRI before the experiments. Finally, the scores of
the characteristics for each participant are illustrated in Figure 9.
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5. Discussion

In this paper, an online learning strategy is proposed to get natural and intuitive physical
human-robot interaction. Actually, the learning procedure of the interaction is bidirectional. When the
robot is training to adapt to the individual behaviors, the operator also can receive the information from
the robot that may influence the operator unconsciously. For the purpose of minimizing the influence
in the training procedure, each participant has enough time to interact with the robot. The experimental
results obtained in this paper are under the assumption that the participants have sufficient knowledge
for the learning process and repeat the same action as much as possible in each training step.

As shown in Figure 5, the deviations of the evaluation criteria tend to stabilize with the increase of
training time. At the first 10 episodes, the magnitude of the jerk varies greatly for different participants,
which caused by individual behaviors. The Fuzzy Sarsa(λ)-learning tries to find an appropriate strategy
for maximizing the rewards. During the next 10 episodes, the strategy is improved constantly until
convergence, the energy required, the time consumed, and the accumulated jerk in the training process
are significantly decreased relative to the initial values. It is proven that the online learning strategy
can significantly improve comfort level during the task execution for different people. Figure 5 also
shows the capability of rapid convergence of the proposed algorithm (within 20 episodes), which is
important for the adaptation of different operators.
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As shown in Figures 6 and 7, the proposed variable admittance strategy is able to estimate
the human intentions according to the state input. At the beginning of the interaction process,
it provides low virtual damping to the admittance controller for eliminating the feeling of motion delay,
and increases the damping value to improve the positioning accuracy at the end of the interaction.
During the task, it also helps the operators to maintain the smoothness of the movement. From
the results of the comparative experiments (as shown in Figure 8), it can be seen that the variable
admittance controller based on FSL has good positioning accuracy and low energy consumption
(close to the low virtual damping controller) during the task. The variable admittance controller
proposed in this paper can not only overcome the limitation of the fixed admittance model but also
improve the smoothness of the traditional variable admittance model.

From the aspect of intuitive perception, participants comment that it is easy to accelerate but
difficult to perform fine positioning (caused by over response) with the low variable admittance
controller. On the contrary, it is easy to perform fine positioning in the high admittance case, however,
high human effort is required to change the motion state. Although the traditional variable admittance
controller can find a compromise in these two cases, but the participants feel the interaction is not
smooth enough. According to the questionnaires and the comments provided by the participants
(as shown in Figure 9), all of them acknowledge that the variable admittance controller based on FSL
has the best interactive experience. After several repetitions of the online training step, each participant
can perceive the assistance provided by the agent during the task. Some participants pointed out that
it is just like moving an object in liquid when they operate the manipulator with this model.

6. Conclusions

The main objective of this paper is to find an appropriate approach to regulate the virtual
damping of the variable admittance model for an intuitive physical human-robot interaction in joint
space. A variable admittance algorithm based on Fuzzy Sarsa(λ)-learning is proposed to compensate
the error of the virtual damping caused by improper model parameters or the changing dynamics of
the robot. The algorithm has the property of self-adaptation and does not require any environment
model. The experimental data and questionnaire indicate that the proposed model is able to regulate
the damping of the admittance controller appropriately for improving the positioning accuracy
and reduce the energy required, and is much more intuitive in comparison with the traditional
admittance controller.

The introduction of reinforcement learning will be the main trend of the research for physical
human-robot interaction in the future. The basic framework of the variable admittance model based
on reinforcement learning for the minimally invasive surgery robot presented in this paper, due to the
independent of the model in joint space, can be easily extended to the entire joint configuration of the
manipulator for other areas of application. The number of the discrete action is given by experience
at present. The effect of the number for smoothness is not apparent but too many discrete actions
will greatly increase the time consumption of the algorithm convergence. In order to improve the
variable admittance strategy and eliminate the unreasonable fuzzy rules settings, more research work
is required for fuzzy parameter optimization, such as the interval of discrete actions and the shape of
the MFs, which is our future research direction for the proposed framework.
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