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Abstract: A novel scheme is proposed for direction finding with uniform rectangular planar array.
First, the characteristics of noncircular signals and Euler’s formula are exploited to construct a new
real-valued rectangular array data. Then, the rotational invariance relations for real-valued signal
space are depicted in a new way. Finally the real-valued propagator method is utilized to estimate
the pairing two-dimensional direction of arrival (2D-DOA). The proposed algorithm provides better
angle estimation performance and can discern more sources than the 2D propagator method. At the
same time, it has very close angle estimation performance to the noncircular propagator method
(NC-PM) with reduced computational complexity.

Keywords: two-dimensional direction of arrival (2D-DOA); real-valued propagator method;
noncircular; rectangular planar array

1. Introduction

Two-dimensional direction of arrival (2D-DOA) estimation has been widely used in mobile
communication systems, sonar, navigation, radar, etc. [1–5], which is an important research branch
in array signal processing. Many 2D-DOA estimation algorithms have sprung up in recent years in
order to improve the performance of angle estimation, which include the two dimensional multiple
signal classification(2D MUSIC) algorithm [6], the 2D Unitary estimation of signal parameters via
rotational invariance techniques (ESPRIT) algorithm [7], the modified 2D-ESPRIT algorithm [8], the
matrix pencil method [9], the maximum likelihood method [10,11], the parallel factor (PARAFAC)
algorithm [12], and so on [13–20]. However, those 2D-DOA estimation algorithms are confronted with
the problem of the high computational complexity generally and they are very difficult to apply in
engineering practice. As is known to us, the propagator method (PM) algorithm uses linear operations
to replace the eigenvalue decomposition of the covariance matrix [21], and it has a great advantage in
resolving the amount of calculation. Therefore, the 2D-DOA estimation based on PM is becoming a
hot spot of research. For example, Wu et al. have developed the 2D-DOA estimation algorithm via
the rotational invariance property of propagator matrix [22]. In [23], an improved PM algorithm is
proposed for 2D-DOA estimation, which not only reduces the computational complexity, but also
avoids the aperture loss.

Unfortunately, all the algorithms mentioned above did not consider the characteristics of the
impinging signals. In fact, many noncircular signals such as the amplitude modulated (AM), binary
phase shift keying (BPSK), minimum shift keying (MSK), and Gaussian MSK (GMSK) signals are used
in wireless communication or satellite systems. In recent years, some scholars use non-circular signal
characteristics to improve the performance of direction estimation, which contain the noncircular
MUSIC (NC-MUSIC) algorithm [24], the NC-ESPRIT algorithm [25], and the noncircular parallel
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factor (NC-PARAFAC) algorithm [26]. On the one hand, the angle estimation performance can be
achieved by the algorithms [24–26]. On the other hand, the computation loads are increased greatly
due to the doubled array aperture. The noncircular rational invariance propagator method has also
been proposed for angle estimation in [27], which aimed at the linear array. If it is extended to the
rectangular planar array for 2D-DOA estimation, the complexity would be increased greatly.

In this paper, we take advantage of the characteristics of noncircular signals and derive a
novel noncircular propagator method algorithm based on the uniform rectangular planar array.
The main works of this paper are listed in a straightforward manner as follows: (1) the property of
the noncircular signal and Euler’s transformation are used to construct a new real-valued rectangular
array data; (2) the rotational invariance relations for real-valued signal space are depicted in a new
way; (3) the PM algorithm is applied to two-dimensional angle estimation for the rectangular planar
array which is paired automatically; and (4) theory analysis and simulation results confirm that our
algorithm has better direction finding performance and can discern more sources than 2D-PM [23].
Due to real-valued processing, it can save about 75% computational load compared with the NC-PM
algorithm [27]. However, its estimation performance is close to NC-PM algorithm, which has higher
computational load.

2. Data Model

In order to get the two-dimensional direction finding, we consider a uniform rectangular planar
array (URA) consisting of N uniform linear subarrays as shown in Figure 1, and there are M sensors in
each subarray. The inter-element spacing between the two sensors is d in both the x-axis and y-axis.
Suppose there are K narrowband far-field uncorrelated sources with wavelength λ impinging on the
array from different directions. We also assume the noise is independent of the sources and d = λ/2.
The output signal of the ith subarray xi(t) can be denoted as [26]:

xi(t) = AxΦi−1S(t) + ni(t), i = 1, 2, · · · , N, (1)

where Ax = [ax(v1), ax(v2), · · · , ax(vK)] and ax(vk) = [1, e−jπvk , · · · , e−j(M−1)πvk ]
T

, vk = cos φk sin θk,
θk is the elevation angle and φk is the azimuth angle. Φ = diag(e−jπu1 , e−jπu2 , · · · , e−jπuK ) and
uk = sin φk sin θk. S(t) = [s1(t), s2(t), · · · , sK(t)]

T is the noncircular signal vector. In addition,
the vector of strictly second-order noncircular signals can be expressed as [28]: S(t) = ΛSo(t),
So(t) ∈ CK×1, So(t) = So

∗(t), and Λ = diag
{

ejϕ1 , ejϕ2 , · · · ejϕK
}

, (ejϕp 6= ejϕq , f or p 6= q). ni(t) is
the additive white Gaussian noise vector of the ith subarray.

Therefore, the whole array output is

x(t) =


x1(t)
x2(t)

...
xN(t)

 =


Ax

AxΦ
...

AxΦN−1

S(t) +


n1(t)
n2(t)

...
nN(t)

 = AS(t) + n(t), (2)

where A = Ay ◦ Ax is the MN × K steering vector matrix, ◦ represents the Khatri–Rao

product, and Ay = [ay(u1), ay(u2), · · · , ay(uK)], ay(uk) = [1, e−jπuk , · · · , e−j(N−1)πuk ]
T

, and

n(t) = [n1(t)
T , n2(t)

T , · · · , nN(t)
T ]

T
.
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Figure 1. The structure of planar array. 
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Figure 1. The structure of planar array.

3. Real-Valued PM Algorithm for 2D-DOA Estimation

3.1. Euler Transformation

The real part and imaginary part of x(t) can be obtained by utilizing the real-valued property of
noncircular signals and Euler’s formula as follows:

xR(t) = [x(t) + x∗(t)]/2 = ARSo(t) + nR(t), (3)

xI(t) = [x(t)− x∗(t)]/(−2j) = AISo(t) + nI(t), (4)

where nR(t) = [n(t) + n∗(t)]/2, nI(t) = [n(t)− n∗(t)]/(−2j),

AR =



cos ϕ1 cos ϕ2 · · · cos ϕK
cos(πv1 + ϕ1) cos(πv2 + ϕ2) · · · cos(πvK + ϕK)

...
...

...
...

cos[π(M− 1)v1 + ϕ1] cos[π(M− 1)v2 + ϕ2] · · · cos[π(M− 1)vK + ϕK]

M

cos(πu1 + ϕ1) cos(πu2 + ϕ2) · · · cos(πuK + ϕK)

cos[π(v1 + u1) + ϕ1)] cos[π(v2 + u2) + ϕ2)] · · · cos[π(vK + uK) + ϕK)]
...

...
...

...
cos[π((M− 1)v1 + u1) + ϕ1)] cos[π((M− 1)v2 + u2) + ϕ2)] · · · cos[π((M− 1)vK + uK) + ϕK)]

M

...
...

...
...

...
...

...
cos[π(N − 1)u1 + ϕ1] cos[π(N − 1)u2 + ϕ2] · · · cos[π(N − 1)uK + ϕK]

cos[π(N − 1)u1 + πv1 + ϕ1] cos[π(N − 1)u2 + πv2 + ϕ2] · · · cos[π(N − 1)uK + πvK + ϕK]
...

...
...

...
cos[π(N − 1)u1 + π(M− 1)v1 + ϕ1] cos[π(N − 1)u2 + π(M− 1)v2 + ϕ2] cos[π(N − 1)uK + π(M− 1)vK + ϕK]

M



∈ RMN×K

AI =



sin ϕ1 sin ϕ2 · · · sin ϕK
sin(πv1 + ϕ1) sin(πv2 + ϕ2) · · · sin(πvK + ϕK)

...
...

...
...

sin[π(M− 1)v1 + ϕ1] sin[π(M− 1)v2 + ϕ2] · · · sin[π(M− 1)vK + ϕK]

M

sin(πu1 + ϕ1) sin(πu2 + ϕ2) · · · sin(πuK + ϕK)

sin[π(v1 + u1) + ϕ1] sin[π(v2 + u2) + ϕ2] · · · sin[π(vK + uK) + ϕK]
...

...
...

...
sin[π((M− 1)v1 + u1) + ϕ1] sin[π((M− 1)v2 + u2) + ϕ2] · · · sin[π((M− 1)vK + uK) + ϕK]

M

...
...

...
...

...
...

...
sin[π(N − 1)u1 + ϕ1] sin[π(N − 1)u2 + ϕ2] · · · sin[π(N − 1)uK + ϕK]

sin[π(N − 1)u1 + πv1 + ϕ1] sin[π(N − 1)u2 + πv2 + ϕ2] · · · sin[π(N − 1)uK + πvK + ϕK]
...

...
...

...
sin[π(N − 1)u1 + π(M− 1)v1 + ϕ1] sin[π(N − 1)u2 + π(M− 1)v2 + ϕ2] sin[π(N − 1)uK + π(M− 1)vK + ϕK]

M



∈ RMN×K
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Then, we define a new virtual array data as follows:

y(t) =

[
xR(t)
xI(t)

]
= BSo(t) + nr(t), (5)

where B =

[
AR
AI

]
∈ R2MN×K, nr(t) =

[
nR(t)
nI(t)

]
∈ R2MN×1.

Define two matrices as follows: T1 = [IM(N−1)0M(N−1)×M] ∈ RM(N−1)×MN ,
T2 = [0M(N−1)×MIM(N−1)] ∈ RM(N−1)×MN ; then, we construct two matrices J1 = [T1 +

T2, 0M(N−1)×MN ] ∈ RM(N−1)×2MN and J2 = [0M(N−1)×MN , T2 − T1] ∈ RM(N−1)×2MN , and we
can get the following relationship:

J2B = J1BG, (6)

where G = diag
{

tan(πu1
2 ), tan(πu2

2 ), · · · , tan(πuK
2 )
}

is a real-valued matrix whose diagonal elements
contain the needed angle information:

J1B =



2 cos πu1+2φ1
2 cos πu1

2 2 cos πu2+2φ2
2 cos πu2

2 · · · 2 cos πuK+2φK
2 cos πuK

2
2 cos 2πv1+πu1+2φ1

2 cos πu1
2 2 cos 2πv2+πu2+2φ2

2 cos πu2
2 · · · 2 cos 2πvK+πuK+2φK

2 cos πuK
2

...
...

...
...

2 cos 2π(M−1)v1+πu1+2φ1
2 cos πu1

2 2 cos 2π(M−1)v2+πu2+2φ2
2 cos πu2

2 · · · 2 cos 2π(M−1)vK+πuK+2φK
2 cos πuK

2

M

2 cos 3πu1+2φ1
2 cos πu1

2 2 cos 3πu2+2φ2
2 cos πu2

2 · · · 2 cos 3πuK+2φK
2 cos πuK

2
2cos 3πu1+2πv1+2φ1

2 cos πu1
2 2cos 3πu2+2πv2+2φ2

2 cos πu2
2 · · · 2cos 3πuK+2πvK+2φK

2 cos πuK
2

...
...

...
...

2cos 3πu1+2π(M−1)v1+2φ1
2 cos πu1

2 2cos 3πu2+2π(M−1)v2+2φ2
2 cos πu2

2 · · · 2cos 3πuK+2π(M−1)vK+2φK
2 cos πuK

2

M

...
...

...
...

...
...

...
2 cos π(2N−3)u1+2φ1

2 cos πu1
2 2 cos π(2N−3)u2+2φ2

2 cos πu2
2 · · · 2 cos π(2N−3)uK+2φK

2 cos πuK
2

2 cos π(2N−3)u1+2πv1+2φ1
2 cos πu1

2 2 cos π(2N−3)u2+2πv2+2φ2
2 cos πu2

2 · · · 2 cos π(2N−3)uK+2πvK+2φK
2 cos πuK

2
...

...
...

...
2 cos π(2N−3)u1+2π(M−1)v1+2φ1

2 cos πu1
2 2 cos π(2N−3)u2+2π(M−1)v2+2φ2

2 cos πu2
2 2 cos π(2N−3)uK+2π(M−1)vK+2φK

2 cos πuK
2

M



∈ RM(N−1)×K

J2B =



2 cos πu1+2φ1
2 sin πu1

2 2 cos πu2+2φ2
2 cos πu2

2 · · · 2 cos πuK+2φK
2 sin πuK

2
2 cos 2πv1+πu1+2φ1

2 sin πu1
2 2 cos 2πv2+πu2+2φ2

2 sin πu2
2 · · · 2 cos 2πvK+πuK+2φK

2 sin πuK
2

...
...

...
...

2 cos 2π(M−1)v1+πu1+2φ1
2 sin πu1

2 2 cos 2π(M−1)v2+πu2+2φ2
2 sin πu2

2 · · · 2 cos 2π(M−1)vK+πuK+2φK
2 sin πuK

2

M

2 cos 3πu1+2φ1
2 sin πu1

2 2 cos 3πu2+2φ2
2 sin πu2

2 · · · 2 cos 3πuK+2φK
2 sin πuK

2
2cos 3πu1+2πv1+2φ1

2 sin πu1
2 2cos 3πu2+2πv2+2φ2

2 sin πu2
2 · · · 2cos 3πuK+2πvK+2φK

2 sin πuK
2

...
...

...
...

2cos 3πu1+2π(M−1)v1+2φ1
2 sin πu1

2 2cos 3πu2+2π(M−1)v2+2φ2
2 sin πu2

2 · · · 2cos 3πuK+2π(M−1)vK+2φK
2 sin πuK

2

M

...
...

...
...

...
...

...
2 cos π(2N−3)u1+2φ1

2 sin πu1
2 2 cos π(2N−3)u2+2φ2

2 sin πu2
2 · · · 2 cos π(2N−3)uK+2φK

2 sin πuK
2

2 cos π(2N−3)u1+2πv1+2φ1
2 sin πu1

2 2 cos π(2N−3)u2+2πv2+2φ2
2 sin πu2

2 · · · 2 cos π(2N−3)uK+2πvK+2φK
2 sin πuK

2
...

...
...

...
2 cos π(2N−3)u1+2π(M−1)v1+2φ1

2 sin πu1
2 2 cos π(2N−3)u2+2π(M−1)v2+2φ2

2 sin πu2
2 2 cos π(2N−3)uK+2π(M−1)vK+2φK

2 sin πuK
2

M



∈ RM(N−1)×K.

Similarly, define two (M− 1)×M Toeplitz matrices as follows: T3 =


1 1 0 0 · · · 0
0 1 1 0 · · · 0
...

...
...

...
. . .

...
0 · · · 0 0 1 1

,

T4 =


1 −1 0 0 · · · 0
0 1 −1 0 · · · 0
...

...
...

...
. . .

...
0 · · · 0 0 1 −1

.

Then, we construct two matrices J3 and J4 as follows: J3 = I2N ⊗ T3 ∈ R2(M−1)N×2MN and

J4 =

[
0 −IN ⊗ T4

IN ⊗ T4 0

]
∈ R2(M−1)N×2MN .
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We also get the following relationship:

J4B = J3BD, (7)

where D = diag
{

tan(πv1
2 ), tan(πv2

2 ), · · · , tan(πvK
2 )
}

is a real-valued matrix whose diagonal elements
also contain the desired angle information.

3.2. 2D-DOA Estimation

According to Equation (5), the estimation of covariance matrix R of y(t) is denoted by collecting
L snapshots:

R =
1
L

L

∑
i=1

y(ti)yH(ti). (8)

From Equation (8), R can be denoted by R =

[
Rx1

Rx2

]
, where Rx1 ∈ RK×2MN ,

Rx2 ∈ R(2MN−K)×2MN . In the noiseless case, Rx1pr = Rx2, an estimation matrix pr can be obtained
by [21]:

p̂r = (Rx1RH
x1)
−1

Rx1RH
x2. (9)

We construct a new matrix ps =

[
IK
P̂H

r

]
, where IK is the identity matrix. In the noiseless case,

the relationship between ps and B can be obtained by a unique non-singular matrix T as

ps = BT. (10)

Substituting Equation (10) into Equation (6), we can get

J2psT−1 = J1psT−1G. (11)

If we define P1 = (J1ps)
†J2ps, we then have

P1 = T−1GT. (12)

Equation (12) shows that the diagonal elements of the matrix G can be obtained by performing
the eigenvalue decomposition of P1, and T is the corresponding eigenvector.

Then, we can get the estimation of ûk:

ûk = 2arctan( p̂k)/π, (13)

where p̂k is the kth diagonal element of the matrix G.
Similarly, Substituting Equation (10) into Equation (7), we can also get

J4psT−1 = J3psT−1D. (14)

If we define P2 = (J4ps)
†J3ps, we then have

P2 = T−1DT. (15)

Then, we get the estimation of v̂k:

v̂k = 2arctan(r̂k)/π, (16)

where r̂k is the kth diagonal element of the matrix D.
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We note that ûk and v̂k share the same eigenvector T, so the pairing is automatically formed. Thus,
2D-DOA can be obtained by

θ̂k = sin−1
(√

û2
k + v̂2

k

)
, (17)

φ̂k = tan−1(ûk/v̂k). (18)

We have now achieved the essence of the proposed algorithm. The major algorithmic steps are
as follows:

(1) Construct the matrix y(t) from Equation (5), and compute the covariance matrix R of y(t) through
Equation (8).

(2) Estimation of the propagator pr from Equation (9), and then construct the matrix ps.
(3) Construct the matrix J1ps and J2ps and perform the eigenvalue decomposition of

P1 = (J1ps)
†J2ps.

(4) Similarly, construct the matrix J3ps and J4ps and perform the eigenvalue decomposition of
P2 = (J3ps)

† J̃4ps.
(5) Finally, estimate the 2D-DOA through Equations (17) and (18).

Remark 1. In [23], the conventional PM algorithm divides the steering matrix A into two matrices A1 ∈ CK×K

and A2 ∈ C(MN−K)×K, and A2 is the linear transformation of A1, i.e., A2 = Pm
HA1, Pm ∈ CK×(MN−K)

is the propagator operator. According to Equation (1), x(t) = AS(t) + n(t), and the covariance matrix

of received data x(t) ∈ CMN×1 is Rp = 1
L

L
∑

i=1
x(ti)xH(ti). We partition it as Rp =

[
Rp1

Rp2

]
, where

Rp1 ∈ RK×MN , Rp2 ∈ R(MN−K)×MN , and we can get the propagator estimator p̂m = (Rp1RH
p1)
−1Rp1RH

p2.

In our paper, according to Equation (5), y(t) =

[
xR(t)
xI(t)

]
= BSo(t) + nr(t), and we compute the covariance

of y(t) ∈ R2MN×1 to estimate the propagator. Apparently, the available array aperture of the proposed algorithm
can be thought of as twice that of the conventional 2D-PM [23], so it has better angle performance than 2D-PM.

Remark 2. In [23], define pc =

[
IK
P̂H

m

]
, and then pcA1 = A, which means that the columns in pc span the

same signal subspace as the column vectors in A. Divide pc into pc1 ∈ CM(N−1)×K and pc2 ∈ CM(N−1)×K, pc1 ,
pc2 are the first M(N− 1) rows and the last M(N− 1) rows of pc. Then, get the relationship, P+

c1Pc2 = A1ΦA1,
where Φ = diag(e−jπu1 , e−jπu2 , · · · , e−jπuK ). Perform the eigenvalue decomposition of P+

c1Pc2 to obtain the
diagonal elements of the matrix Φ. Similarly, reconstruct pc to p′c, p′c1

, p′c2
being the first N(M− 1) rows and

the last N(M− 1) rows of p′c, and perform the eigenvalue decomposition of P′c1
+P′c2 to obtain the diagonal

elements of the matrix Φx, where Φx = diag(e−jπv1 , e−jπv2 , · · · , e−jπvK ). Finally, the 2D-DOA can be
obtained from the diagonal elements of Φ and Φx. From the above mentioned, the row dimensions of pc1 , pc2

and p′c1
, p′c2

are equal to M(N − 1), (M− 1)N, respectively. The maximum number of the identified sources
is min[M(N − 1), (M − 1)N]. In our proposed algorithm, from Equation (11) and Equation (14), the row
dimensions of J1ps and J2ps, J3ps and J4ps are equal to M(N − 1), 2(M− 1)N, respectively. Therefore, the
maximum number of the identified sources is min [M(N − 1), 2(M− 1)N]. If M < N, the proposed algorithm
can discern more sources than that of the conventional 2D-PM [23].

Remark 3. In the NC-PM algorithm [27], according to Equation (2), the extended array output data is denoted

as Y =

[
X

JMNX∗

]
= AncSo + Nnc, where Anc ∈ C2MN×K, JMN is the MN × MN exchange matrix

with ones on its anti-diagnoal and zeros elsewhere, and X∗ ∈ CMN×L stands for the complex conjugation
of X, Y ∈ C2MN×L. Compute the covariance of Y to estimate the propagator pnc. Similarly, the invariance
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equations for pnc are constructed to estimate the 2D-DOA. As is known to us, each computation amount of the
complex multiplication is four times that of the real-valued one. In our algorithm, we use Euler transformation
to convert complex arithmetic of noncircular to real arithmetic. For example, according to Equation (5),
y(t) = BSo(t) + nr(t), y(t) ∈ R2MN×1, and the computation amounts of covariance of y(t) with snapshots
L are much lower than that of Y [27]. Due to real-valued processing, our algorithm can save about 75%
computational load compared with the NC-PM algorithm [27].

4. Cramer-Rao Bounds and Analysis

4.1. CRB

In this section, we give the Cramer-Rao Bounds (CRB) of noncircular signal for rectangular planar
array. According to Equation (5), the received data is

y(t) =

[
xR(t)
xI(t)

]
= BSo(t) + nr(t), (19)

where B = [b1, b2, · · · , bK] ∈ C2MN×K, and nr(t) is the noise vector. The Fisher information matrix
(FIM) in relation to φ = [φ1, φ2, · · · , φK] and θ = [θ1, θ2, · · · , θK] can be calculated as follows [29]:

F =

[
F11 F12

F21 F22

]
. (20)

According to [29], we know that the (i, j) ith element of F11 is given by

F(θi, θj) = 2Re[trace(
.
Bθi So)

H
Γ−1(

.
Bθj So)]

= 2Re[trace(
.
BθeieT

i So)
H

Γ−1(
.
BθejeT

j So)]

= Re[trace(SH
o eieT

i

.
B

H
θ Γ−1

.
BθejeT

j So)]

= Re[trace(eT
i

.
B

H
θ Γ−1

.
Bθej)(eT

j SoSH
o ei)]

= 2LRe[(
.
B

H
θ Γ−1

.
Bθ)ij(R

T
so )ij]

. (21)

Likely, we can give the (i, j) ith element of F12, F21, F22:

F(θi, φj) = 2LRe[(
.
B

H
θ Γ−1

.
Bφ)ij(R

T
so )ij], (22)

F(φi, θj) = 2LRe[(
.
B

H
φ Γ−1

.
Bθ)ij

(RT
so )ij], (23)

F(φi, φj) = 2LRe[(
.
B

H
φ Γ−1

.
Bφ)ij

(RT
so )ij], (24)

where ei denotes the ith column of the unit matrix, Rso =
1
L SoSH

o ,
.
Bςi =

∂B
∂ςi

,
.
Bξ = [ ∂B

∂ξ1
, ∂B

∂ξ2
, · · · , ∂B

∂ξK
],

Γ =


σ2

2MN 0 · · · 0
0 σ2

2MN · · · 0
...

...
. . .

...
0 0 · · · σ2

2MN

, σ2 is the covariance of the noise. According to

Equations (21)–(24), we can obtain:

F11 = 2LRe[(
.
B

H
θ Γ−1

.
Bθ)⊕ (RT

so )], (25)

F12 = 2LRe[(
.
B

H
θ Γ−1

.
Bφ)⊕ (RT

so )], (26)
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F21 = 2LRe[(
.
B

H
φ Γ−1

.
Bθ)⊕ (RT

so )], (27)

F22 = 2LRe[(
.
B

H
φ Γ−1

.
Bφ)⊕ (RT

so )], (28)

where ⊕ represents Hadamard product.
Then, the CRB can be denoted as:

CRB = F−1. (29)

We present the curves of CRB versus different signal to noise ratios (SNRs) and snapshots L
in Figures 2 and 3. The source number K is fixed at 3 M and N represents the numbers of sensors
on the x-axis and the y-axis. In Figure 2, the snapshot L is fixed at 200. It is obvious that, with the
improvement of SNR, the value of CRB decreases accordingly. In Figure 3, we set SNR at 20 dB, and
the curve shows that the value of CRB decreases with increase of L, and simulation results and theory
analysis are consistent.Sensors 2017, 17, 840 9 of 16 
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4.2. Complexity Analysis

In this section, we analyse the computational complexity of the algorithm specifically.
First, estimation of the covariance matrix R requires O(4M2N2L) real-valued multiplications
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(RMS). In addition, the estimation of the matrix ps takes O(2MNK2 + 4M2N2K + K3) RMS.
Then, the estimation and eigenvalue decomposition of the matrix P1 and P2 totally
require O(4M2NK(N− 1) + 3M(N− 1)K2 + 8M(M− 1)N2K + 2K3) RMS. Therefore, the overall
computational complexity of our algorithm is O(4M2N2L + 5MNK2 + 16M2N2K + 3K3− 4M2NK−
3MK2− 8MN2K) RMS. As we know that each computation amount of the complex multiplication is
four times that of the real-valued one, we can show the Chen’s noncircular propagator algorithm [27]
needs O(16M2N2L + 8MNK2 + 16M2N2K + 3K3 + 16M(N− 1)K2) RMS, J’s noncircular ESPRIT [25]
needs O(16M2N2L + M3N3 + 8M(N − 1)K2 + 3K3 + 8N(M − 1)K2) RMS, Zhang’s 2D-ESPRIT
algorithm [8] needs O(4M2N2L + M3N3 + 4M(N − 1)K2 + 4N(M − 1)K2 + 6K3) RMS, while Li’s
2D-PM [23] requires O(4M2N2L + 4MNK2 + 4M2N2K + 6K3 + 4M(N− 1)K2 + 4N(M− 1)K2) RMS.

The complexity comparisons with different parameters are shown in Figures 4 and 5. In Figure 4,
the numbers of sensor M and N on the x-axis and the y-axis are set at 8 and 6, respectively. The source
number K is fixed at 3. In Figure 5, the parameters N and K are the same as Figure 4, and the snapshot
L is set to 100. From Figures 4 and 5, we can observe that the proposed algorithm has much lower
computational load than J’s NC-ESPRIT algorithm and Chen’s NC-PM algorithm.
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We can summarize the merits of the proposed algorithm as follows:

(1) The proposed algorithm has much lower computational load than the NC-PM and NC-ESPRIT
algorithms because the proposed algorithm uses Euler transformation to convert complex
arithmetic of noncircular PM to real arithmetic.

(2) The proposed algorithm has better estimation performance than the 2D-PM algorithm because
the array aperture is doubled according to Equation (5).

(3) The maximum number of discerned sources of our algorithm is dependent on Equation (5) and
the real-valued PM method. Obviously, the maximum number of the identified sources of our
proposed algorithm is min[M(N− 1), 2(M− 1)N], while 2D-PM is min[M(N− 1), (M− 1)N].

(4) The proposed algorithm requires no extra matching calculation. The estimated 2D-DOA can
automatically be matched.

5. Simulation Results

In this section, we use Monte Carlo simulations to verify the performance of the algorithm. In the
simulation, the rectangular planar array is configured with N subarrays, each subarray contains M
sensors, L is the snapshots of the sources, and K is the number of the sources. We assume that there
are K = 3 non-coherent sources, which are BPSK modulated in Figures 4–8, where (θ1, φ1) = (15◦, 10◦),
(θ2, φ2) = (25◦, 20◦) and (θ3, φ3) = (35◦, 30◦), respectively.

The root mean squared error (RMSE) is used for performance assessment, which is defined as
1
K ∑K

k=1

√
1

1000 ∑1000
n=1 (θ̂k,n − θk)

2
+ (φ̂k,n − φk)

2, where θ̂k,n, φ̂k,n are the estimated value of θk and φk for
the nth trial.
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Figure 6. Angle estimation results.

Figure 7a,b presents RMSE comparison at different SNRs among the proposed algorithm,
J’s NC-ESPRIT algorithm [25], Chen’s NC-PM algorithm [27], Zhang’s 2D-ESPRIT algorithm [8],
Li’s 2D-PM algorithm [23] and CRB. In Figure 5a, we set M = 6, N = 8, L = 100. In Figure 5b,
we change the numbers of sensors and snapshots and set M = 8, N = 8, and L = 50. From the
curves of Figure 5a,b, we know that the proposed algorithm has better RMSE performance than Li’s
algorithm [23]. Furthermore, it has close RMSE performance to Chen’s algorithm [27]. However,
we should know that our algorithm has much lower computational amount than J’s NC-ESPRIT
algorithm and Chen’s NC-PM algorithm owing to the real-valued processing, which means that it is
more suitable for a practical application system.
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(a) M = 6, N = 8, L = 100; (b) M = 8, N = 8, L = 50.
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Figure 8 presents RMSE performance comparisons at different snapshots L. Where M = 8, N = 6,
SNR is varied from 0 dB to 20 dB. We can observe that the RMSE performance is improved with the
increase of snapshot L. When L increases, we get more samples to estimate the propagator matrix more
accurately, and so the angle estimation performance is enhanced.

Figures 9 and 10 present RMSE versus different values of M or N, respectively. The snapshot L is
fixed at 200. In addition, it is indicated that RMSE performance is improved when M or N increases.
Multiple sensors enhance the aperture of the array as well as diversity gain. Therefore, it can improve
the angle estimation performance.

Sensors 2017, 17, 840 13 of 16 

 

Figures 9 and 10 present RMSE versus different values of M or N, respectively. The snapshot L 
is fixed at 200. In addition, it is indicated that RMSE performance is improved when M or N 
increases. Multiple sensors enhance the aperture of the array as well as diversity gain. Therefore, it 
can improve the angle estimation performance. 

The estimation performance for two closely spaced sources is also investigated. Figure 11 
depicts the scatter plot of 2D-DOA estimation results for two closely spaced sources. Where M = 8, N 
= 10, SNR = 10 dB, the snapshot L is 200. It is shown that our algorithm works well for the closely 
spaced sources. 

 

Figure 9. RMSE comparison at different N with M = 8. 

 

Figure 10. RMSE comparison at different M with N = 8. 

0 2 4 6 8 10 12 14 16 18 20
10

-2

10
-1

10
0

10
1

10
2

SNR/dB

R
M

S
E

/d
e

g
re

e

 

 

M=8,N=4

M=8,N=6

M=8,N=8

M=8,N=10

0 2 4 6 8 10 12 14 16 18 20
10

-2

10
-1

10
0

10
1

10
2

SNR/dB

R
M

S
E

/d
e

g
re

e

 

 

M=4,N=8

M=6,N=8

M=10,N=8

M=12,N=8

Figure 9. RMSE comparison at different N with M = 8.

Sensors 2017, 17, 840 13 of 16 

 

Figures 9 and 10 present RMSE versus different values of M or N, respectively. The snapshot L 
is fixed at 200. In addition, it is indicated that RMSE performance is improved when M or N 
increases. Multiple sensors enhance the aperture of the array as well as diversity gain. Therefore, it 
can improve the angle estimation performance. 

The estimation performance for two closely spaced sources is also investigated. Figure 11 
depicts the scatter plot of 2D-DOA estimation results for two closely spaced sources. Where M = 8, N 
= 10, SNR = 10 dB, the snapshot L is 200. It is shown that our algorithm works well for the closely 
spaced sources. 

 

Figure 9. RMSE comparison at different N with M = 8. 

 

Figure 10. RMSE comparison at different M with N = 8. 

0 2 4 6 8 10 12 14 16 18 20
10

-2

10
-1

10
0

10
1

10
2

SNR/dB

R
M

S
E

/d
e

g
re

e

 

 

M=8,N=4

M=8,N=6

M=8,N=8

M=8,N=10

0 2 4 6 8 10 12 14 16 18 20
10

-2

10
-1

10
0

10
1

10
2

SNR/dB

R
M

S
E

/d
e

g
re

e

 

 

M=4,N=8

M=6,N=8

M=10,N=8

M=12,N=8

Figure 10. RMSE comparison at different M with N = 8.

The estimation performance for two closely spaced sources is also investigated. Figure 11
depicts the scatter plot of 2D-DOA estimation results for two closely spaced sources. Where M = 8,
N = 10, SNR = 10 dB, the snapshot L is 200. It is shown that our algorithm works well for the closely
spaced sources.
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6. Conclusions

We have presented a novel direction finding algorithm for uniform rectangular planar array.
The characteristics of noncircular signal and Euler’s transformation are exploited to get the real-valued
rectangular array data in a new way. The proposed algorithm can reduce the computational amount
since it does not refer to plural operation and the eigenvalues’ decomposition of the covariance matrix.
The theory analysis and simulation results verify that our algorithm is more suitable for real-time
processing system in engineering.
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