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Abstract: As the demand for indoor localization is increasing to support our daily life in large and
complex indoor environments, sound-based localization technologies have attracted researchers’
attention because they have the advantages of being fully compatible with commercial off-the-shelf
(COTS) smartphones, they have high positioning accuracy and low-cost infrastructure. However,
the non-line-of-sight (NLOS) phenomenon poses a great challenge and has become the technology
bottleneck for practical applications of acoustic smartphone indoor localization. Through identifying
and discarding the NLOS measurements, the positioning performance can be improved by
incorporating only the LOS measurements. In this paper, we focus on identifying NLOS components
by characterizing the acoustic channels. Firstly, by analyzing indoor acoustic propagations, the
changes of acoustic channel from the line-of-sight (LOS) condition to the NLOS condition are
characterized as the difference of channel gain and channel delay between the two propagation
scenarios. Then, an efficient approach to estimate relative channel gain and delay based on the
cross-correlation method is proposed, which considers the mitigation of the Doppler Effect and
reduction of the computational complexity. Nine novel features have been extracted, and a support
vector machine (SVM) classifier with a radial-based function (RBF) kernel is used to realize NLOS
identification. The experimental result with an overall 98.9% classification accuracy based on a data
set with more than 10 thousand measurements shows that the proposed identification approach and
features are effective in acoustic NLOS identification for acoustic indoor localization via a smartphone.
In order to further evaluate the performance of the proposed SVM classifier, the performance of an
SVM classifier is compared with that of traditional classifiers based on logistic regression (LR) and
linear discriminant analysis (LDA). The results also show that a SVM with the RBF kernel function
method outperforms others in acoustic NLOS identification.

Keywords: NLOS identification; smartphone indoor localization; acoustic channel gain and delay;
support vector machine (SVM); RBF kernel

1. Introduction

As smart mobile devices have been ubiquitously available for people to use in our daily life, a new
demand for indoor navigation, precision marketing, public safety and emergency rescue has emerged,
especially in large buildings such as underground parking, large-scale transportation terminals, and
large shopping malls [1]. Location-based services (LBS) using the conventional GPS system have been
widely used in military and commercial sectors, but they are severely limited in indoor environments
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due to the strong attenuation of GPS signals [2]. In order to tackle the problems of indoor positioning,
various approaches have been proposed by using the technologies based on sound, GSM, Bluetooth,
Wi-Fi, light, and magnetic fields [3,4]. Among these approaches, sound-based positioning technologies
have the advantages of being fully compatible with commercial off-the-shelf (COTS) smartphones,
higher positioning accuracy than other technologies and low-cost infrastructure, and, thus, have
attracted researchers’ attention. Quite a few systems have been designed and developed in the last
decade in this area, aiming to introduce a reliable and practical technology for smartphone indoor
localization [1,5–9]. However, from the results of Microsoft Indoor Localization Competition 2016 [10],
the performance of sound localization systems is seriously impaired by indoor multipath propagation
and the non-line-of-sight (NLOS) phenomenon in the real world. What is understood is that NLOS
will introduce a significant amount of positive errors into target positioning, when the direct path
between beacons and smartphones is blocked, as shown in Figure 1b. This will definitely degrade
positioning accuracy and system stability. Therefore, the NLOS phenomenon poses a great challenge
to the practical applications of acoustic smartphone indoor localization. It has already become the
technology bottleneck which must be resolved to pave the way for the promotion of these technologies
in the real world.
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(a) LOS scenario (b) NLOS scenario

Figure 1. Line-of-sight (LOS) and non-line-of-sight (NLOS) scenario description.

It is common that the line-of-sight (LOS) path, or direct path, is obstructed by human bodies,
furniture, walls or corners, due to the arbitrariness of human movement. When LOS is not available,
the received signals via NLOS will travel a longer distance than the LOS path. The estimation of
the direction of arrival (DOA), time of arrival (TOA) and time difference of arrival (TDOA) would
involve considerable errors. Through identifying and discarding the NLOS measurements, the
positioning performance can be improved by incorporating only the LOS measurements [11–13].
Then, the measurements under the NLOS condition have to be identified.

The NLOS identification techniques for radio communications have been discussed extensively
within cellular mobile networks and Ultra-Wideband (UWB) techniques, and many methods have been
proposed [14,15]. These methods are based on ranging statistics [16,17], consistency among multiple
measurements [18], and channel characteristics [19–22]. However, for acoustic NLOS identification, the
research is still in its infancy, and only little pioneering research work has been reported. In underwater
localization, Roee Diamant, Hwee-Pink Tan and Lutz Lampe identify object related NLOS links by
comparing signal strength-based and propagation delay-based ranging measurements [23], but the
acoustic NLOS identification in indoor environment is still an open problem.

Compared with wireless localization, the main characteristics of acoustic smartphone indoor
localization are the low update rate of user positioning [9] and the poor consistency of sensor
performance. This makes the methods mentioned above not suitable or challenging to use in order to
address the acoustic NLOS identification via smartphones. For ranging statistics-based methods, it is
very hard to obtain a set of historical range measurements in a small range and a short time-frame,
due to low update rate. This method loses its data foundation. Regarding the methods based on
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consistency among multiple measurements: First, the one which compares the consistency between
the DOA and direction of departure (DOD) cannot be used for smartphones. Second, when we use
TOA and received signal strength (RSS) as the comparing pair, the consistency of performance among
different sensors is very hard to guarantee, because the MEMS microphone and speaker of different
COTS smartphones have different power magnification factors and frequency responses. This could
severely degrade the identification performance.

The methods based on channel characteristics are more suitable to address this problem. NLOS is
induced by ambient environment, and the acoustic channel characteristics are also highly related to
ambient environment, which makes using acoustic channel characteristics extracted from received
signals a more direct way to realize NLOS identification. At the same time, the methods based on
channel characteristics are a single-node approach which only uses the information of signals received
from a single node. This could realize an independent and real-time acoustic NLOS identification of
each ranging measurement between a transmitter and a receiver, and perfectly fit the acoustic indoor
localization systems. However, many challenges still need to be overcome to realize acoustic NLOS
identification via smartphones, including the following:

(1) The distortion of acoustic signals received by smartphones. It is understood that the
MEMS microphone and speaker equipped in COTS smartphones are used for communication and
entertainment. Once these modules are used as sensors for ranging measurement, many defects will
be exposed. Except the poor performance and non-consistency of MEMS microphones and speakers,
the speed of the crystal oscillator in smartphones, which provides the clock of the audio sampling
and broadcasting system, is usually unstable. This could induce severe signal distortions, as shown in
Figure 2. A linear-frequency-modulation (LFM) signal with 50 ms time duration, whose frequency
band is from 16 kHz to 21 kHz, is broadcast by two Google nexu4 phones, and received by another
same type of smartphone. We can clearly see that the signal in Figure 2a is severely distorted by the
unstable sampling rate and Digital-to-Analogue Conversion (DAC) clock, while the signal in Figure 2b
is slightly distorted. This phenomenon poses a great challenge for acoustic identification.

(a) Severe distortion (b) Slight distortion

Figure 2. The distortion of received signals.

(2) The Doppler Effect caused by human movement. The Doppler Effect is another great challenge
to acoustic NLOS identification, because smartphones are usually carried by human beings. The
arbitrary movement of a human being coupled with arm swing makes the smartphone an extremely
complex manoeuvring movement with a high speed. It could introduce an obvious shift of phase
even at a slow walking speed, due to the low speed of sound propagation. Thus, a channel parameter
estimation algorithm with the Doppler Effect mitigation is crucial for acoustic NLOS identification.

To the best of our knowledge, no prior works have considered and investigated LOS and NLOS
identifications using the channel information from received acoustic signals in indoor environment.
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Therefore, aiming to address acoustic NLOS identification for smartphone indoor localization, we will
systematically study this issue in this paper. The main contributions of this paper are as follows:

• An acoustic NLOS identification approach based on acoustic channel characteristics is proposed
for smartphone indoor localization in the real world. This approach is suitable for the acoustic
localization systems based on DOA, TOA and TDOA strategies.

• An efficient approach to estimate relative channel gain and delay based on the cross-correlation
method is proposed, in order to mitigate the influence of the Doppler Effect and reduce the
computational complexity.

• The differences and characteristics of acoustic relative channel gain and delay under LOS and
NLOS conditions are investigated through extensive measurements in office rooms and lobby
environment using COTS smartphones. Novel features are extracted from these characteristics
that capture the salient properties based on time delay characteristics, waveform characteristics,
Rician K-factor and frequency characteristics of relative channel gain.

• An optimal kernel function for an SVM classifier to realize acoustic NLOS identification is
evaluated and chosen under the accuracy criterion, based on a data set with more than
10 thousand measurements. The best feature set of the SVM classifier for acoustic NLOS
identification is investigated and proposed.

The remainder of the paper is organized as follows. In Section 2, we discuss the indoor acoustic
propagation under LOS and NLOS conditions, and characterise the changes of acoustic channel from
the LOS condition to the NLOS condition. In Section 3, an algorithm for estimating the acoustic relative
channel gain and delay is introduced. The features extraction is described in Section 4. In particular,
an acoustic signal acquisition method and an experimental environment are also introduced in this
section. In Section 5, the SVM classifier and evaluation criteria are briefly introduced. The optimal
kernel function and best feature combination are also given through cross-validation tests. At last, we
draw our conclusions in Section 6.

2. Characterization of the Acoustic Channel under LOS and NLOS Conditions

Indoor environments are very complicated and different from each other. It is a dynamic
environment due to the random walking of human beings and the displacement of small objects.
In such a complicated environment, utilizing wave propagation theory, reverberation theory or a
diffusion model to model indoor acoustic propagation is becoming difficult and complex. Geometrical
room acoustics theory is a simplified model of indoor acoustic propagation [24]. In this theory, the
sound wave is considered as a sound ray, just like the light, by employing the assumption that the
dimension of the room and walls is larger than acoustic wavelength. The particularly important law
of room acoustic is reflection. The refraction and curvature do not occur. Diffraction phenomena
are neglected. Interference between multiple sound components is not considered. Then, it can be
concluded that (1) the received signals consist of multiple components which are the copies of source
signal with different power and time delay; (2) the power of the received signal comes from acoustic
reflection and diffusion, and the reflection component represents a significant proportion.

2.1. The Characteristics of Room Acoustic Propagation under LOS Condition

For a signal s(t) broadcast from a speaker, the indoor propagation mainly includes LOS
propagation, reflection and diffusion, as shown in Figure 1a. The signal x(t) received from these
propagation paths can be expressed as

x(t) =
nl

∑
l=1

Hl(s(t), αl , τl) +
nr

∑
r=1

Hr(s(t), αr, τr) +
nd

∑
d=1

Hd(s(t), αd, τd), (1)
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where the subscripts l, r and d denote the parameters related to LOS, reflection and diffusion paths,
respectively, and H(·) represents the nth channel response with the path gain α and path delay τ. The
characteristics of each kind of path are as follows:

• nl = {1, 0}. There is only one direct path between the transmitter and receiver, which is the LOS
path. nl = 1 is the LOS condition, and 0 for the NLOS condition. αl and τl are decreased with the
increase of path length, due to the air propagation attenuation.

• The length of the reflection path is definitely longer than the LOS path. With the increase of
reflection time, τr becomes larger and larger, while αr is quickly decreased due to the acoustic
absorption by air, walls and furniture. For the diffusion propagation path, the number of diffusion
paths is usually very large. αd and τd are related to the shape of the diffusion surface, absorption
coefficient, and the relative position between the transmitter, receiver and diffusion surface.

• Generally speaking, the energy of signals received from the LOS path and reflection path is
larger than the signals received from the diffusion path, that is El(t), Er(t) > Ed(t). However,
the relationship between El(t) and Er(t) is determined by ambient environment. It is common
that the LOS signal is not the strongest, especially in large space environment.

2.2. The Characteristics of Acoustic Propagation under NLOS Condition

As shown in Figure 1b, when we put an object in the path between the transmitter and receiver, the
LOS path disappears, which leads to the NLOS condition. Then, the LOS path and some short-length
reflection paths totally disappear. At the same time, some long-range reflection paths emerge with the
increase of reflection surfaces of blocking objects. Compared with the LOS scenario, the average length
of the reflection path is definitely increased. Due to the increase of diffusion surfaces, the number of
diffusion paths and the total signal energy of xd(t) are relatively increased.

Then, the changes of channel characteristics from the LOS condition to the NLOS condition
include (1) the total energy of received signals is decreased; (2) the path gain of reflection paths is
decreased; (3) the path delays of reflection paths and diffusion paths are all increased; (4) the relative
proportion of diffusion signals is increased. All these changes could be characterized as the differences
of the channel gain and channel delay between the LOS and NLOS propagation scenarios.

3. The Relative Channel Gain and channel Delay Estimation

As mentioned above, the changes, when an NLOS condition occurs, could be characterized
as the differences of channel gain and channel delay between the LOS and NLOS propagation
scenarios. Based on these characteristics, the features can be studied and extracted for acoustic
NLOS identification. The research of acoustic channel parameter estimation is mainly conducted in
underwater communications and the method based on Fractional Fourier Transform (FrFT) is widely
used [25]. In order to mitigate the influence of the Doppler Effect and reduce the computational
complexity, an efficient approach to estimate the relative channel gain and channel delay based on
cross-correlation is proposed in this section. In an ideal condition, the channel impulse response (CIR)
of room acoustics, denoted as h(t), can be expressed as

h(t) = ∑
i

αiδ(t− τi), (2)

where αi and τi are the path attenuation coefficients, also called the path gain and path delay,
respectively. In order to estimate these two parameters, using a wide-band acoustic signal such
as a UWB signal to measure the CIR is a direct way. However, the wide-band acoustic signal could
introduce noise pollution to daily life. In addition, it is very hard to discriminate the TOA of the
first arrival path due to the heavy background noises. Then, a modulated signal is more suitable for
acoustic smartphone indoor localization and estimation of channel gain and channel delay.
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3.1. Modelling of Received Signals

Using a speaker to broadcast an ideal modulated acoustic signal y(t), the complex form of the
transmitted acoustic signal, or source signal s(t), is expressed as

s(t) = y(t) ∗ g(t) = A(t)ej(wt+ϕ0), (3)

where A(t), w, and ϕ0 are the time domain weighting function, frequency and initial phase,
respectively; the operator ∗ is the convolution operation, and g(t) is the impulse response of the
speaker. Then, the complex form of the received signal x(t), transmitted over an L path fading channel,
can be written as [26]

x(t) = s(t) ∗ h(t) =
L

∑
i=1

αi(t)A(t− τi(t))ej[w(t−τi(t))+ϕ0+ϕi(t)] + Ni(t), (4)

where ϕi(t) is the phase term of the Doppler Effect caused by the movement between the transmitter
and receiver; Ni(t) are the noises corresponding to each propagation path, which include Gaussian
noise Ngi(t) and non-Gaussian colored noise Nci(t). In this paper, we consider the distorted part
of the signal as a kind of colored noise that has a strong energy and is closely correlated with the
source signal.

Considering that the sound is a kind of low speed wave, the relative movement velocity
between the transmitter and receiver caused by human beings is not a constant, and the parameter of
environment also varies with time such as temperature, humidity and air pressure; the path gain αi(t),
path delay τi(t) and phase term ϕi(t) are all time-varying parameters. However, the time duration
of each measurement is usually less than one second, which means the parameters of environment
could be considered as constant or slow-varying values within such a short time-frame. Meanwhile,
the length of the propagation path in indoor environment is usually short. Then, the path gain and
path delay could be approximated as constants, i.e.,

αi(t) = αi + α
′
i(t) ≈ αi, (5)

τi(t) = τi + τ
′
i(t) ≈ τi, (6)

where αi and τi are the constant components of the path gain and path delay, respectively. However, the
approximation approach is not suitable for the phase term ϕi(t), due to the time-varying characteristics
of ϕi(t) being more significant than the other parameters.

Since smartphones are usually carried by human beings, the arbitrary movement of a human
being coupled with arm swing makes the smartphone an extremely complex manoeuvring movement
with a high speed. This could introduce an obvious shift of phase even at a slow moving speed, due to
the low speed of sound propagation. However, we can still divide ϕi(t) into a constant part ϕi and a
time-varying part ϕ

′
i(t). Then, Equation (4) can be rewritten as follows:

x(t) =
L
∑

i=1
αiejϕ

′
i (t)A(t− τi)ej[w(t−τi+

ϕi
w )+ϕ0] + Ngi(t) + Nci(t)

≈
L
∑

i=1
α
′
is(t− τ

′
i) + Ngi(t) + Nci(t),

(7)

where α
′
i = αiejϕ

′
i (t) and τ

′
i = τi − ϕi/w. The impact of the Doppler phase term could be approximated

to a low frequency carrier and an excess time delay. The constant part introduces a negative bias to the
path delay, while the time-varying part is a multiplicative factor of the path gain. The existence of this
term and the colored noises could bring a significant effect to the channel gain and delay estimation,
and, at the same time, to the discrimination of the weak first arrival path. It has to be mitigated during
the process of estimating the channel gain and delay.
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3.2. Estimation Approach

As the Doppler phase term gives an excess product term to αi and an addition term to τi, the
channel parameter estimation problem could be formulated as the estimation of the relative path gain
ri and relative path delay τi to mitigate its effects, which is expressed as ri =

α
′
i

α
′
m
= αi

αm
ej[ϕ

′
i (t)−ϕ

′
m(t)]

τi = τ
′
i − τ

′
1 = τi − τ1 +

ϕi−ϕ1
w

, (8)

where i=1 denotes the first arrival path and i=m denotes the path that has the strongest signal energy.
{(ri, τi); i = 1, 2, ..., L} is composed of the relative channel gain–delay set. Within a short time-frame,

(ϕi − ϕ1)/w → 0 and ej[ϕ
′
i (t)−ϕ

′
m(t)] → 1. Through this method, the influence of the Doppler phase

term could be maximally mitigated, even eliminated when the relative moving speed between the
transmitter and receiver is constant.

One of the most efficient estimators of relative channel gain and delay is based on the
cross-correlation method. For the received signal x(t), we use an ideal signal y(t) as its reference signal
because the source signal s(t) cannot be exactly obtained. Applying the cross-correlation method,
the result is

Rxy(τ) =
L
∑

i=1

∫ +∞
−∞ α

′
is( f )y∗( f )e−j2π f τ

′
i ej2π f τd f +

∫ +∞
−∞ Ni( f )y∗( f )ej2π f τd f

=
L
∑

i=1
α
′
iRsy(τ) ∗ δ(τ − τ

′
i) + RNciy(τ),

(9)

where Rsy(τ) is the cross-correlation result of s(t) and y(t), and RNciy(τ) is the result of colored noises
Nc(t) and y(t). Since s(t) cannot be precisely obtained, we could discuss the properties of Rsy(τ)

as follows:
(1) If s(t) is identical to y(t) after both energy normalization, Rsy(τ) could be considered as the

auto-correlation result. Then Rsy(τ) ≤ Rsy(0).
(2) If s(t) approximates to y(t) after both energy normalization, then Rsy(τ) ≤ Rsy(ρ), where

ρ is a small constant value which is determined by the difference between s(t) and y(t). Therefore,
in the interval

∣∣∣τ − τ
′
i

∣∣∣ ≤ ρ, a positive extremum will definitely appear at the peak envelope of Rxy(τ).

Thus, the estimated path delay τ̂i can be calculated by

τ̂i = Extremum
τ

{
peaks

[∣∣Rxy(τ)
∣∣]} , i = 1, 2, ..., L, (10)

where peaks[·] is the peak finding operator, and Extremum{·} is the extremum extraction operator.
The value of Rxy(τ) at τ = τ̂i is

Rxy(τ̂i) = α
′
iRsy(0) +

L
∑

j=1,j 6=i
α
′
jRsy(τ̂i − τ

′
j) +

L
∑

i=1
RNciy(τ)

= α
′
iRsy(0) + R(τ̂i) ,

(11)

where R(τ̂i) is a residual term including the summation of adjacent path interference and the colored
noise correlation term. Then, the estimated relative path gain r̂i and relative path delay τ̂i can be
calculated by  r̂i =

α
′
i

α
′
m
=

Rxy(τ̂i)−R(τ̂i)

Rxy(τ̂m)−R(τ̂m)
≈ Rxy(τ̂i)

Rxy(τ̂m)

τ̂i = τ̂i − τ̂1

. (12)
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In practical applications, the energy threshold method is commonly used to estimate the time delay of
the first arrival path, which can be given by

τ̂1 = arg min
τ̂i

(Rxy(τ̂i) ≥ pthdRxy(τ̂m)) , (13)

where pthd ∈ (0, 1] is the coefficient of energy threshold and depends on the signal to noise ratio (SNR).
In this paper, we choose pth = 0.3 from experimental evaluations.

From Equation (12), by using the cross-correlation method, we can quickly calculate the
relative channel gain and delay from received signals with a strong tolerance to the Doppler Effect.
The processes are (1) applying the cross-correlation algorithm to the received signal x(t) with the
ideal signal y(t) as the reference signal; (2) normalizing the amplitude of cross-correlation result
Rxy(τ); (3) picking up the extremums of the peak envelope; (4) setting the first arrival path as the
start time of the received signal. Then, the amplitude of the extremums is the estimated relative path
gain r̂i, while the arrival time of the extremums is the estimated relative path delay τ̂i. The data set
{(r̂i, τ̂i); i = 1, 2, ..., L} is the estimated relative channel gain–delay set. Based on the obtained relative
channel gain and delay, some novel features can be extracted for acoustic NLOS identification.

4. Data Acquisition and Features Extraction

The data set of acoustic signals used in this paper is obtained by a series of experiments in office
rooms and a lobby, respectively. The measurements are based on a non-invasive LFM audio signal, the
frequency band of which is between 16 kHz and 21 kHz. The audio signal is broadcast and received
by COTS smartphones in order to decrease the cost of infrastructure and make the experiments more
general. The primary purpose is to characterize the effects of obstructions. By using currently available
smartphones, we can quickly build an experiment platform by installing a specially developed Android
application. Six smartphones are used for signals acquisition, that is two new HUAWEI Honor 4
(Huawei, Shenzhen, China) and four Google Nexus 4 (Gooogle, Mountain View, CA, USA) which had
been used for 2 years. The frequency response test results of those two kinds of smartphones are similar
to the results reported in [1]. In frequency bands lower than 8kHz, the frequency response shows a
good linear characteristic, but decreases rapidly with the increase of audio frequency, especially when
the audio frequency is more than 15 kHz. This phenomenon implies that the energy of the received
acoustic signal between 16 kHz and 21 kHz could be sharply decreased. The radiation of the speaker
in COTS smartphones shows a good omni-directional characteristic [1]. When the smartphones are
placed on the tripod or attached on the wall and ceiling, we should pay attention to the location of the
speaker installed in the smartphones, and make sure that the speaker has not been blocked.

4.1. Experiment Deployment

The primary purpose of the experiment is to characterize the effects of obstructions in office
rooms and the lobby. Several office rooms and one lobby constitute this experiment, as shown in
Figure 3. Those scenes are located in the New Industrial Control Building of Zhejiang University.
The background noise intensity is between 50 dB and 65 dB. While the experiment is conducted in
those particular environments through a large number of measurements and a variety of propagation
scenarios encountered, we expect that the results are applicable in other office rooms and lobbies with
similar environments.

A. Obstructions

Considering the actual NLOS condition, the obstructions include furniture, human body and
corners. Even though we use the geometric room acoustic theory to describe room acoustic propagation
for the sake of simplification, the diffraction phenomenon is actually existing. A brief depiction of
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this phenomenon is shown in Figure 4. The receiver deployed in the areas that are denoted as the
diffraction area could receive a strong diffraction signal. The bias of range measurement in these areas
is small enough to be considered as measurement noise. Thus, these areas could be classified into the
LOS condition. In this situation, during the process of data acquisition under the NLOS condition,
we avoid placing the receivers in those areas, since the boundaries of those areas are closely related to
the shape and size of the room, and are very difficult to demarcate. Especially when we use the human
body as an obstruction, the smartphone should be closely attached to the front or back of the human
body, in order to make sure that the smartphone is deployed in red-colored areas, NLOS areas, where
the diffraction components cannot be received.

(a) Office room scenario (b) Lobby scenario

Figure 3. The measurement environment of the office room and lobby.

Human body

Object

NLOS area

Dffraction area

B

A

C

Source

Receiver

Figure 4. NLOS areas and diffusion areas.

B. Experiment Process

Since the reflection and diffusion of indoor acoustic propagation is a directional distribution,
the displacement of acoustic sources could significantly change the sound field distribution. In order
to extensively study acoustic propagations, we should measure sound signals where the transmitters
are placed at different positions. The height of the receivers is fixed at 0.8 m, which is lower than the
possible height held by a human hand in the standing pose, because a lower height means a higher
obstructed chance and it is beneficial for quick data collection. The height of transmitters includes
0.8 m, 1.5 m and 2.2 m, respectively. All the smartphones are placed on tripods, in order to conveniently
adjust the height and positions.
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For the convenience of labeling the collected audio signals, the audio signals under LOS and
NLOS conditions are collected separately. The process of the experiments is as following: (1) moving
two acoustic sources to designated positions, and adjusting the height to 0.8 m; (2) dividing the
measurement area into LOS and NLOS; (3) placing the four receivers at designated positions under
the LOS condition; (4) moving the receivers to the next position with the displacement distances being
limited at 0.2 m; (5) after measuring all the positions under the LOS condition, adjusting the height of
sources to 1.5 m and 2.2 m, respectively, and repeating the processes (2)~(4) under the LOS condition;
(6) moving two acoustic sources to the next designated position, and repeating the processes (1)~(5);
(7) repeating the processes (1)~(6) for acoustic signals collection under the NLOS condition.

During the data collection process under the LOS condition, no human behaviors are forbidden
in the measurement area except walking through and construction activities. The common office
ambience sound has no influence on the measurements, such as music, steps, human voice and etc.,
since it could be easily filtered out by an FIR (Finite Impulse Response) high-pass filter. However,
the impulse noise generated by construction activities, such as the sounds of pneumatic hammers
and air nailers, could introduce severe spectrogram pollution to received signals in the considered
high frequency band. At the same time, when a human being walks through the measurement area,
it is very hard to label the condition of current measurement. However, under the NLOS condition,
to simulate the dynamic status in the actual scenario, the human walk is necessary in the measurement
area. In addition to that, one receiver is carried by a person to move around in NLOS areas to collect the
audio signals corrupted by the Doppler Effect. Through those processes, more than 1000 positions are
measured in each room and lobby. The size of the data set used in this paper is more than 10 thousand
measured positions.

4.2. Features Extraction

Utilizing the approach proposed in Section 3.2, we can obtain the relative channel gain and delay
of each acoustic signal in the data set. Shown in Figures 5 and 6 are the typical channel gain and delay
of LOS and NLOS conditions, respectively, in office rooms and the lobby. From the waveform, we can
clearly see the difference between the two conditions. The main components under the LOS condition
mainly concentrate on the early arrival time. However, the main components under the NLOS
condition are more complex and mainly concentrated on the later arrival time. To characterize these
differences, nine features are extracted. Corresponding to the changes when the NLOS condition occurs,
which has been discussed in Section 2, the features based on time delay and waveform characteristics
are firstly extracted. Referring to the Rician fading distribution of the wireless communication channel,
the Rician K-factor is calculated as another kind of feature. The last kind of feature is based on the
differences between the frequency distribution of relative channel gain in both conditions.

(a) LOS condition (b) NLOS condition

Figure 5. The relative channel gain and delay in the office room environment.
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(a) LOS condition (b) NLOS condition

Figure 6. The relative channel gain and delay in the lobby environment.

(1) Time delay characteristics

The mean excess delay τmed and Root Mean Square (RMS) delay spread τrms are the two statistics
of delay spread, which could characterize the delay information to measure the multipath richness in
the acoustic channel. The mean excess delay and RMS delay spread are, respectively, given by

τmed =

L
∑

i=1
r̂2

i τ̂2
i

L
∑

i=1
r̂2

i

, τrms =

√√√√√√√√
L
∑

i=1
r̂2

i τ̂2
i

L
∑

i=1
r̂2

i

− τ2
med . (14)

Generally, the values of τmed and τrms under the NLOS condition are larger than those under the
LOS condition. It can be explained as follows: (1) As the LOS path disappears, the first arrival path
signal turns into a reflection path signal that usually has a lower energy; (2) The shortest reflection
path also disappears. The average reflection path length is relatively increased, which also increases
the time delay of the reflection path with a strong signal correspondingly; (3) The total energy of the
received signal is decreased. Then, the proportion of the paths with small channel gain is relatively
increased; (4) The additional diffusion surfaces of obstructions could increase the power and the time
duration of the diffusion process. Thus, compared with the LOS condition, the values of τmed and τrms

are larger under the NLOS condition. Shown in Figure 7 is the fitted distribution of the mean excess
delay and RMS delay spread using Matlab dfittool in indoor environment. It is found that the two kinds
of features can be approximately modeled by log-normal PDF (Probability Distribution Function) with
different mean and variance.

Figure 7. PDFs of the mean excess delay and RMS delay spread.
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(2) Waveform characteristics

The kurtosis k and skewness s are two main waveform statistics to characterise the tailedness or
normality and asymmetry of a distribution. The kurtosis and skewness can be given by

k =
E[(r− µr)

4]

σ4
r

, s =
E[(r− µr)

3]

σ3
r

, (15)

where r is the uniform sampling result of relative channel gain and delay, and the size of r is equal to
τ̂i; E[·] is the mathematical expectation operator; and µr and σr are the mean and standard deviation of
r. From Figures 5 and 6, we can see that the waveforms have a bad normality and asymmetry under
the LOS condition. Then, k and s under the LOS condition are larger than those under the NLOS
condition. The distribution is shown in Figure 8. The two kinds of features can be approximately
modeled by a log-normal PDF, except that the skewness under the LOS condition can be modeled by
Rician distribution. The mean and standard deviation of PDF under the NLOS condition are smaller
than those under the LOS condition.

Figure 8. PDF of the kurtosis and skewness.

(3) Rician K-factor

The Rician K-factor is the ratio of the LOS component to the diffusion component, and has been
widely studied in link quality estimation of wireless communications since it is widely accepted that
the unshadowed channel, LOS propagation path, is a Rician fading channel while the shadowed
channel, NLOS path, is a Rayleigh fading channel [27,28]. Even though there are many differences
between a radio channel and an acoustic channel, the idea about the ratio of the LOS component to the
diffuse component is a valuable insight to extract the feature, Rician-K factor, which is denoted by KR
and expressed as [27]

KR = 10log10

(
k2

d
2σ2

)
, (16)

where kd is the strength of the LOS component and σ is the standard deviation of the diffusion
path. In wireless communications, if kd is very small and approximates to zero, that means the
LOS path is blocked, then KR= −∞dB and the channel could be described as the Rayleigh fading
channel. However, there is no clear evidence that the acoustic channel also follows those two fading
distributions. To calculate the Rician K-factor of an acoustic channel, we use kd = r1 and σ = σr .
The distribution of the Rician K-factor is shown in Figure 9. The PDF of the Rician K-factor under the
NLOS condition could be approximately modeled by a log-normal distribution, while that under the
LOS condition could be modeled by a Rician distribution.
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Figure 9. PDF of the Rician K-factor.

(4) Frequency characteristics of relative channel gain

From the amplitude components of relative channel gain, we can clearly see the difference between
LOS and NLOS conditions. By discarding the time delay information and compiling the statistics of
the frequency of relative channel gain, we can obtain the frequency distribution, that is the histogram.
Shown in Figures 10 and 11 are the frequency distributions of relative channel gain in an office room
and lobby environment, respectively. From the waveform of frequency distribution, the features of
amplitude characteristics and waveform characteristics are studied by referring to the method of
relative channel gain and delay. The mean frequency gm and RMS frequency grms of relative channel
gain frequency are given by:

gm =

n
∑

j=1
λ2

j f 2
j

n
∑

j=1
λ2

j

, grms =

√√√√√√√√
n
∑

j=1
λ2

j f 2
j

n
∑

j=1
λ2

j

− g2
m , (17)

where λj, j = 1, 2, ..., n is the upper boundary of the jth interval and f j is the frequency of relative
channel gain amplitude falling into the jth interval. During the practical calculation process, λj = j/n,
since the amplitude of relative channel gain has been normalized. The kurtosis and skewness of
frequency distribution are given by:

k f =
E[( f − µ f )

4]

σ4
f

, s f =
E[( f − µ f )

3]

σ3
f

, (18)

where f = { f j}, j = 1, 2, ..., n is the frequency series. As shown in Figure 12, the distributions of gm,
grms, k f and s f have similar characteristics of τmed, τrms, k and s. The feature, like the Rician K-factor,
has no physical meaning in the frequency distribution of relative channel gain, since the time delay
information is discarded. Thus, this kind of feature has not been studied in this paper.

For the indoor environment, most features also can be approximately modeled by the log-normal
PDF, while the skewness, Rician K-factor and RMS frequency of relative channel gain under the
LOS condition can be well modeled by the Rician PDF. At the same time, we can clearly observe
that the PDFs of these features in indoor environment are quite distinct between the LOS condition
and the NLOS condition. This implies that the nine features, which are the mean excess delay τmed,
RMS delay spread τrms, kurtosis k, skewness s, Rician K-factor KR, mean frequency of relative channel
gain gm, RMS frequency of relative channel gain grms, frequency kurtosis k f and frequency skewness
ks, can provide good information for acoustic NLOS identification.
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(a) LOS condition (b) NLOS condition

Figure 10. The frequency of relative channel gain in an office room environment.

(a) LOS condition (b) NLOS condition

Figure 11. The frequency of relative channel gain in a lobby environment.

Figure 12. PDFs of the mean, RMS, kurtosis and skewness of frequency.

5. NLOS Identification Based on SVM Classifiers

Acoustic NLOS identification is a binary classification problem. A joint likelihood ratio test
could be used to test if a certain received signal is under the LOS or NLOS condition, through the
extracted features [22]. However, it is very difficult to determine the real distribution of these features.



Sensors 2017, 17, 727 15 of 22

In Section 4.2, we try to model the PDF of features using Maltab dfittool function, but the result is
still not satisfactory. It still needs more statistical approaches and a larger size of data set. Therefore,
in this paper, we propose the use of non-parametric machine learning techniques to realize acoustic
NLOS identification, or LOS/NLOS classification. This is because they do not require a statistical
distribution of features under LOS and NLOS conditions, and can perform this binary classification
under a common framework.

5.1. The SVM Classifier and Kernel Function

Support vector machine (SVM) learning is a supervised learning technique used both for
classification and regression problems [29], and has been widely used in many areas. The basic
idea of SVM learning is to find the optimal hyperplane as a decision surface which could correctly
separate the majority of the data points while maximizing the margins from the hyperplane to each
class [30]. For the binary classification problem of acoustic NLOS identification, the audio signals are
classified into two classes: positive class and negative class. Acoustic signals received from the NLOS
propagation path belong to the positive class with the class label y(i) = 1 , while those received from
the LOS propagation path belong to the negative class which is denoted by the class label y(i) = −1.
In the case that the two classes can be separated, the SVM determines the separating hyperplane which
maximizes the margin between the two classes. This is a kind of regression problem to determine the
weight vector and bias based on the training set

{
(x(i), y(i)); i = 1, ..., m

}
, where the superscript (i) is

the index of the training set; x(i) ∈ Rn and y(i) ∈ {−1,+1} are the features and labels, respectively.
However, the training data collected in the real world usually cannot be separated without error

or with small error. In 1995, Cortes and Vapnik introduced the principle of the kernel method to
address the separability of features. The kernel function is used for implicitly mapping the input
feature vector into an arbitrary high-dimensional feature space that can be linearly separable, because
the probability that the feature space could be linearly separated becomes higher through nonlinearly
mapping this low-dimensional feature space into a high-dimensional space. Then, in [29], the above
mentioned maximization problem is equal to an optimal problem which can be formulated as

min
w,ξi

J(w, ξ) = wTw + C
m

∑
i=1

ξi (19)

s.t. y(i)[wφ(x(i)) + b] ≥ 1− ξi
ξi ≥ 0, i = 1, 2, ..., m ,

where w is the weight vector, b is a bias, and T is the transverse operator, φ(·) is the mapping function;
the variable ξi is the positive slack variable that allows the SVM to tolerate misclassification; C is a
margin parameter which controls the trade-off between minimizing training errors and modelling
complexity. Through φ(x(i)), the input feature vector x(i) is mapped from the low-dimensional feature
space Rn into a higher dimensional feature space S. Thus, according to the Lagrangian principle,
its corresponding dual problem is

min
α

1
2

αTQα− eTα (20)

s.t. 0 ≤ α ≤ C, yTα = 0,

where α is the vector of the Lagrange multiplier, e = [1, 1, ...., 1]T , Q is an m by m positive semi-definite
matrix which is given by

Qij = y(i)y(j)K(x(i), x(j)), (21)

where K(x(i), x(j)) = φ(x(i))Tφ(x(j)) is known as the kernel function, which is an inner product of
mapping function φ(·). In other words, the computation of the kernel method becomes possible in
high-dimensional space, because it computes the inner product as a direct function of input space
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without explicitly computing the mapping [31]. Then, by using the kernel method, the discriminant
function of the SVM classifier is a function Rn → {−1,+1} with the form of

y(x) = sgn

[
m

∑
i=1

yiαiK(xi,x) + b

]
, (22)

where K(x(i), x) = φ(x(i))Tφ(x). Generally, the widely used kernel functions mainly include a
radial-based function (RBF) kernel Krb f (·), a polynomial kernel Kp(·), a linear kernel Kl(·) and a
sigmoid kernel Ks(·). These kernel functions are expressed as

Krb f (x(i), x) = e(−γ‖x(i)−x‖2
)

Kp(x(i), x) = (γ
〈

x(i), x
〉
+ c)d

Kl(x(i), x) =
〈

x(i), x
〉

Ks(x(i), x) = tanh(γ
〈

x(i), x
〉
+ c)

, (23)

where γ and c are the positive kernel coefficients and d is the degree of polynomial kernel. Generally,
we choose γ = 1, c = 0 and d = 2. In this paper, the four kinds of kernel functions are tested
individually, and the kernel with the best performance is selected as the kernel function for acoustic
NLOS identification. Furthermore, to evaluate the best performance of the SVM classifier with the
chosen kernel function, the dimension of feature space is selected from 1 to 9. In addition, different
feature combinations are also tested to determine the best feature combination, which is chosen from
the feature set x(i) ∈

[
τ
(i)
med, τ

(i)
rms, k(i), s(i), K(i)

R , g(i)m , g(i)rms, k(i)f , s(i)f

]
, i = 1, 2, ..., m.

5.2. Cross-Validation and Evaluation Criteria

In order to evaluate the performance of classifiers, a K-fold cross-validation process (K=10) is
carried out to evaluate the performance of SVM classifiers with each kernel. Firstly, all the collected
acoustic signals are mixed together as a whole data set and randomly divided into 10 non-overlapping
subsets with the same data size. Secondly, any possible combination of nine subsets, that is C9

10,
is selected from the 10 non-overlapping subsets as the training set for the estimation of the parameters
in the SVM classifier, and the rest are used for the validation set, which is also called the testing set.
Through repeating the above process 10 times, each subset is tested as a validation set. Furthermore,
the cross-validation procedure is repeated 10 times, and the evaluated performance of the classifier is
calculated by averaging the results under each kind of evaluation criterion.

The widely used evaluation criteria in binary classification include accuracy, error rate, sensitivity,
specificity, precision, recall ratio, and F1-Measure [32]. In this paper, accuracy, precision and
F1-Measure are selected, since they are easy to be computed and understood by humans. The accuracy
metric measures the ratio of correct predictions over the total number of data evaluated. Under this
criterion, we can comprehensively evaluate a feature in each classifier. The precision metric focuses on
how many returned positive results are correctly classified in a positive class which is predicted as
positive during the classification process. F1-Measure is a measure of a test’s accuracy and considers
both the precision and the recalled metrics. Paper [33] reported that the F1-Measure metric was more
accurate at optimizing a classifier for binary classification. We use the accuracy criterion to evaluate the
performance of each kernel while the results of precision and F1-Measure are also listed. The accuracy,
precision and F1-Measure can be, respectively, given by

accuracy =
tp+tn

tp+tn+ fp+ fn

precision =
tp

tp+ fp

F1-Measure =
2tp

2tp+tn+ fp

, (24)
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where tp and tn denote the number of misclassified negative and positive data, respectively. Meanwhile,
fp and tn denote the number of misclassified negative and positive data, respectively [32].

5.3. Test Results and Discussion

In order to choose a kernel function for the SVM classifier, the classification performance of four
kinds of kernel functions are tested based on the data set with more than 10 thousand acoustic signals
collected in indoor environment. The classifiers are tested in a different feature set FM, where M is the
size of the feature set. Due to the maximum feature set size in this paper being 9, that is M = 1, 2, ..., 9,
it is possible for us to test the performance of classifiers in each feature set by using the brute-force
method. For the feature set size M, the number of feature sets with different feature combinations is
CM

9 . M = 1 means using the feature set with one kind of feature to evaluate the availability of features
proposed in this paper. The test results are presented in Table 1.

Table 1. The performance of four kinds of kernel functions in F1.

RBF Kernel Function Polynomial Kernel Function
Feature Precision Accuracy F1-Measure Feature Precision Accuracy F1-Measure

τmed 0.818 0.826 0.850 τmed 0.832 0.832 0.850
τrms 0.749 0.781 0.824 τrms 0.776 0.770 0.795

k 0.837 0.823 0.841 k 0.784 0.811 0.840
s 0.840 0.828 0.846 s 0.803 0.821 0.844

KR 0.896 0.853 0.864 KR 0.895 0.858 0.873
gm 0.858 0.867 0.885 gm 0.883 0.858 0.871

grms 0.850 0.851 0.870 grms 0.848 0.837 0.854
k f 0.838 0.852 0.872 k f 0.813 0.847 0.871
s f 0.838 0.849 0.870 s f 0.827 0.846 0.868
Mean accuracy 0.837 Mean accuracy 0.831

Median accuracy 0.849 Median accuracy 0.837
Best feature gm Best feature gm

Linear Kernel Function Sigmoid Kernel Function
Feature Precision Accuracy F1-Measure Feature Precision Accuracy F1-Measure

τmed 0.825 0.826 0.848 τmed 0.564 0.564 0.721
τrms 0.783 0.763 0.789 τrms 0.559 0.559 0.717

k 0.778 0.800 0.834 k 0.566 0.566 0.723
s 0.813 0.819 0.846 s 0.289 0.205 0.290

KR 0.876 0.849 0.862 KR 0.512 0.456 0.625
gm 0.884 0.861 0.874 gm 0.549 0.549 0.709

grms 0.859 0.852 0.869 grms 0.559 0.559 0.717
k f 0.810 0.844 0.870 k f 0.544 0.544 0.705
s f 0.827 0.847 0.868 s f 0.397 0.297 0.430
Mean accuracy 0.829 Mean accuracy 0.478

Median accuracy 0.844 Median accuracy 0.549
Best feature gm Best feature k

In Table 1, we are especially concerned with the performance under the accuracy criterion, while
the results under precision and F1-Measure are also listed. The mean accuracy and median accuracy
are calculated and listed below the table for each kind of kernel function. The results show that the
sigmoid kernel function has the lowest classification performance among the four kinds of kernel
function. The performances of the other three kernel functions are close to each other. The accuracy of
the SVM classifier with the RBF kernel, polynomial kernel and linear kernel is between 76% and 87%
when solely one feature of the nine is used. Meanwhile, the mean accuracy is around 83%, the median
accuracy is around 84%, and the best feature is the mean frequency gm. Then, we can conclude that
the nine features extracted from the received signals are available for NLOS identification by using an
SVM classifier with three kernel functions, and could achieve a high accuracy and stability. This proves
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that the relative channel gain and delay estimation approach proposed in Section 4.2 can effectively
support the feature extraction.

Table 2. The performance of three kinds of kernel functions under the accuracy criterion in FM.

SVM with RBF Kernel Function
Best Worst AverageFeature combination Accuracy Feature combination Accuracy

F1 = {gm} 0.867 F1 = {τrms} 0.781 0.837
F2 = {KR, gm} 0.913 F2 = {k, s} 0.841 0.877
F3 = {k, KR, gm} 0.975 F3 = {s, k f , s f } 0.864 0.931
F4 = {τmed, τrms, KR, gm} 0.984 F4 = {s, grms, k f , s f } 0.902 0.967
F5 = {τmed, τrms, k, gm, grms} 0.985 F5 = {k, s, grms, k f , s f } 0.952 0.980
F6 = {τmed, τrms, s, gm, grms, s f } 0.984 F6 = {k, s, KR, grms, k f , s f } 0.980 0.982
F7 = {τrms, s, KR, gm, grms, k f , s f } 0.983 F7 = {τrms, k, s, KR, grms, k f , s f } 0.981 0.982
F8 = {τmed, k, s, KR, gm, grms, k f , s f } 0.983 F8 = {τmed, τrms, k, s, KR, gm, grms, s f } 0.981 0.982
F9 = {τmed, τrms, k, s, KR, gm, grms, k f , s f } 0.983 F9 = {τmed, τrms, k, s, KR, gm, grms, k f , s f } 0.983 0.983
Mean accuracy 0.962
Median accuracy 0.983

Best feature combination F5 = {τmed, τrms, k, gm, grms}
SVM with Polynomial Kernel Function

Best Worst AverageFeature combination Accuracy Feature combination Accuracy
F1 = {gm} 0.858 F1 = {τrms} 0.770 0.831
F2 = {KR, gm} 0.873 F2 = {τmed, τrms} 0.827 0.853
F3 = {τmed, KR, gm} 0.886 F3 = {τmed, τrms, k f } 0.830 0.860
F4 = {τmed, KR, gm, k f } 0.889 F4 = {τmed, τrms, k, k f } 0.842 0.863
F5 = {KR, gm, grms, k f , s f } 0.890 F5 = {τmed, τrms, k, s, s f } 0.843 0.868
F6 = {τmed, s, KR, gm, grms, k f } 0.895 F6 = {τmed, τrms, k, grms, k f , s f } 0.848 0.873
F7 = {τmed, τrms, s, KR, gm, k f , s f } 0.896 F7 = {τmed, τrms, k, s, grms, k f , s f } 0.853 0.880
F8 = {τmed, τrms, k, s, KR, gm, k f , s f } 0.903 F8 = {τmed, τrms, k, s, gm, grms, k f , s f } 0.866 0.891
F9 = {τmed, τrms, k, s, KR, gm, grms, k f , s f } 0.892 F9 = {τmed, τrms, k, s, KR, gm, grms, k f , s f } 0.892 0.892
Mean accuracy 0.887
Median accuracy 0.890

Best feature combination F8 = {τmed, τrms, k, s, KR, gm, k f , s f }
SVM with Linear Kernel Function

Best Worst AverageFeature combination Accuracy Feature combination Accuracy
F1 = {gm} 0.861 F1 = {τrms} 0.763 0.829
F2 = {KR, gm} 0.876 F2 = {τmed, τrms} 0.825 0.853
F3 = {τrms, KR, gm} 0.884 F3 = {τmed, τrms, k} 0.828 0.859
F4 = {τmed, KR, gm, k f } 0.887 F4 = {τmed, τrms, k, k f } 0.843 0.864
F5 = {τmed, τrms, KR, gm, k f } 0.890 F5 = {τmed, τrms, grms, k f } 0.840 0.867
F6 = {τmed, τrms, s, KR, gm, s f } 0.895 F6 = {τmed, τrms, k, s, grms, s f } 0.842 0.873
F7 = {τmed, τrms, k, KR, gm, k f , s f } 0.896 F7 = {τrms, k, s, gm, grms, k f , s f } 0.852 0.878
F8 = {τmed, τrms, k, s, KR, gm, k f , s f } 0.902 F8 = {τmed, τrms, k, s, gm, grms, k f , s f } 0.863 0.887
F9 = {τmed, τrms, k, s, KR, gm, grms, k f , s f } 0.894 F9 = {τmed, τrms, k, s, KR, gm, grms, k f , s f } 0.894 0.894
Mean accuracy 0.887
Median accuracy 0.890

Best feature combination F8 = {τmed, τrms, k, s, KR, gm, k f , s f }

From Table 1, the SVM classifier with RBF kernel function has the best classification accuracy.
However, the optimal kernel function still cannot be determined, due to the small performance gaps
between the RBF kernel, polynomial kernel and linear kernel. To select the optimal kernel function
of the SVM classifier for acoustic NLOS identification, the performance of the SVM classifier with
the three kernel functions is individually tested in the feature data FM with the size of M = 1, 2, ..., 9,
and the test results are presented in Table 2 under the evaluation criterion of accuracy. The feature
combinations, which could achieve the highest classification accuracy in each feature set size, are listed
for each kind of kernel function, respectively, corresponding to its accuracy test result. The average
accuracy in each feature set size is also listed at the right side of the table. The best feature set and the
best feature combination for each kind of kernel function are listed below the table.
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From Table 2, through the comparison of the test results of the three kernel functions, it can be
found that mapping the nine features extracted from the indoor acoustic signals through RBF kernel
function yields a better result than polynomial and linear kernels. That means that the input feature
vectors are nonlinearly mapped into a higher dimensional space and become more linearly separable,
by using the RBF kernel function. Thus, the optimal kernel function of the SVM classifier is the RBF
kernel for acoustic NLOS identification, where the mean accuracy is 96.2% and median accuracy is
98.3%. The best feature set size is M = 5 with the best feature combination {k, gm, grms, k f , s f }, which
supports the SMV classifier to achieve a 98.5% identification accuracy. The performances of the SVM
classifier with the polynomial kernel and linear kernel are close to each other, with the mean accuracy
being 88.7% and median accuracy being 89%. Meanwhile, by comparing the best, worst and average
accuracy of each kind of feature combination, it is also easy to find that the performance of each
kind of classifier using each kind of feature combination has a high stability. Furthermore, the time
consumption of a single identification is from 95ms to 100ms, which is counted by the tic and toc
function of Maltab. Consequently, this classifier can be implemented in practical real-time applications.
To optimize the γ value of RBF kernel function, the relationship between identification performance
and γ is plotted in Figure 13, and the SVM with the RBF kernel with γ = 0.3 has the best identification
result (98.9%) according to Figure 13, and the best feature set size is M = 6 with the best feature
combination F6 = {τmed, τrms, k, s, KR, gm}.

Accuracy = 98.9%

Figure 13. Selection of the optimal RBF kernel parameter γ.

To further investigate the performance of the SVM classifier with RBF kernel function for acoustic
NLOS identification, the performances of traditional classifiers based on logistic regression (LR) [34]
and linear discriminant analysis (LDA) [35] are tested under the same cross-validation method, and
the results are presented in Table 3. Comparing the results of Tables 2 and 3, we can see that the
performance of LR and LDA classifiers is close to the SVM classifier with the polynomial kernel and
linear kernel. In general, the overall performance of the SVM with the RBF kernel is better than the LR
and LDA approaches for acoustic NLOS identification.
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Table 3. The performance of logistic regression (LR) and the linear discriminant analysis (LDA)
classifier under the accuracy criterion in FM.

Logistic Regression
Best Worst AverageFeature combination Accuracy Feature combination Accuracy

F1 = {gm} 0.860 F1 = {τrms} 0.776 0.830
F2 = {KR, gm} 0.882 F2 = {τmed, τrms} 0.803 0.850
F3 = {s, KR, gm} 0.882 F3 = {τmed, τrms, s} 0.828 0.858
F4 = {k, KR, gm, grms} 0.893 F4 = {τrms, k, s, s f } 0.837 0.862
F5 = {s, KR, gm, grms, s f } 0.889 F5 = {τmed, τrms, s, grms, k f } 0.839 0.866
F6 = {τmed, KR, gm, grms, k f , s f } 0.903 F6 = {τrms, k, s, grms, k f , s f } 0.839 0.874
F7 = {τmed, τrms, s, KR, gm, k f , s f } 0.895 F7 = {τmed, τrms, k, s, grms, k f , s f } 0.839 0.878
F8 = {τmed, τrms, k, s, KR, gm, grms, s f } 0.895 F8 = {τmed, τrms, k, s, KR, grms, k f , s f } 0.877 0.886
F9 = {τmed, τrms, k, s, KR, gm, grms, k f , s f } 0.890 F9 = {τmed, τrms, k, s, KR, gm, grms, k f , s f } 0.890 0.890
Mean accuracy 0.888
Median accuracy 0.890

Best feature combination F6 = {τmed, KR, gm, grms, k f , s f }
LDA

Best Worst AverageFeature combination Accuracy Feature combination Accuracy
F1 = {KR} 0.848 F1 = {τrms} 0.760 0.809
F2 = {KR, gm} 0.882 F2 = {τmed, τrms} 0.767 0.844
F3 = {τrms, s, KR} 0.879 F3 = {τmed, τrms, s} 0.829 0.855
F4 = {τrms, s, KR, k f } 0.878 F4 = {τmed, τrms, k, k f } 0.834 0.860
F5 = {τmed, τrms, s, KR, gm} 0.887 F5 = {τmed, τrms, k, k f , s f } 0.836 0.864
F6 = {τmed, τrms, s, KR, gm, grms} 0.891 F6 = {τmed, τrms, k, s, k f , s f } 0.847 0.867
F7 = {τmed, τrms, k, s, KR, gm, k f } 0.889 F7 = {τmed, τrms, s, gm, grms, k f , s f } 0.848 0.870
F8 = {τmed, k, s, KR, gm, grms, k f , s f } 0.885 F8 = {τmed, τrms, k, s, gm, grms, k f , s f } 0.855 0.874
F9 = {τmed, τrms, k, s, KR, gm, grms, k f , s f } 0.873 F9 = {τmed, τrms, k, s, KR, gm, grms, k f , s f } 0.873 0.873
Mean accuracy 0.879
Median accuracy 0.882

Best feature combination F7 = {τmed, τrms, k, s, KR, gm, k f }

6. Conclusions

In this paper, we focus on acoustic NLOS identification for smartphone indoor localization and
propose an approach based on acoustic channel characteristics. Through analyzing indoor acoustic
propagation, the changes of acoustic channel from the LOS condition to the NLOS condition are
characterized as the difference of channel gain and delay between the two propagation scenarios.
Then, in order to mitigate the Doppler Effect and reduce the computational complexity, an efficient
approach to estimate relative channel gain and delay based on the cross-correlation method is proposed.
Nine novel features have been extracted based on time delay characteristics, waveform characteristics,
Rician K-factor and frequency characteristics of relative channel gain.

To realize acoustic NLOS identification, an SVM classifier with four kinds of kernel functions
has been proposed. By using the accuracy metric as an evaluation criterion, the evaluation result
shows that the optimal kernel function is the RBF kernel. At the same time, the comparison results
between the SVM and the traditional classifiers based on LR and LDA show that the SVM with the RBF
kernel function method is the optimal classifier for acoustic NLOS identification. Meanwhile, we can
conclude that (1) using acoustic channel characteristics for indoor localization is an efficient way to
realize acoustic NLOS identification; (2) the features extracted from the received signals are available
for NLOS identification and could achieve high accuracy and stability; (3) the channel parameter
estimation approach proposed in this paper could effectively support the feature extraction.
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