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Abstract: In this paper, the problem of sensor fault and delay tolerant control problem for a class of
networked control systems under external disturbances is investigated. More precisely, the dynamic
characteristics of the external disturbance and sensor fault are described as the output of exogenous
systems first. The original sensor fault and delay tolerant control problem is reformulated as
an equivalence problem with designed available system output and reformed performance index.
The feedforward and feedback sensor fault tolerant controller (FFSFTC) can be obtained by utilizing
the solutions of Riccati matrix equation and Stein matrix equation. Based on the designed fault
diagnoser, the proposed FFSFTC is further reconstructed to compensate for the sensor fault and
delayed measurement effects. Finally, numerical examples are provided to illustrate the effectiveness
of our proposed FFSFTC with different cases with various types of sensor faults, measurement delays
and external disturbances.

Keywords: fault tolerance control; disturbance rejection; sensor fault; delayed measurement;
external disturbances

1. Introduction

Fault tolerant control has been viewed as an excellent control approach in modern industrial
processes, which can provide stricter security and reliability performance for practical systems [1,2].
Meanwhile, networked control systems (NCSs) have been integrated into automatic control systems
with the technologies of dependent actuators, sensors and microprocessors [3–7]. What corresponds
with this is the frequency of sensor failures arising from real-time continuous monitoring data with
high sampling rate [8,9]. The increased complexity of the systems and the availability of sensors
introduce the necessity of fault detection technologies and fault tolerant control systems. Fortunately,
effective sensor fault tolerant control strategies have been proposed to enhance the safety and reliability
for industrial automatic systems in theory and application, including passive design [10,11] and active
fault tolerant control [12–14] with low costs and flexible structures.

Since any sensor is subject to measurement delay, it is impossible to implement the accurate
system state to design the fault tolerant control scheme. A great deal of attention has been focused
on the compensation of delayed measurements, in which the observer techniques and the fault
accommodation strategies play an important role in obtaining the goals of sensor fault tolerant control
for NCSs. With regard to observer techniques, a local observer was proposed to provide the information
of both state, uncertainty and fault information in [15]; a new observer-based reduced-order fault
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diagnoser construction approach and a dynamic self-restore fault-tolerant control law were designed
based on an augmented system in [16]; and a nonlinear adaptive observer was designed to estimate
the faulty parameters and designed a fault diagnosis scheme in [17] . For the fault accommodation
strategies, a modified fault isolation filter for NCSs with multiple faults was designed to improve the
resource utilization with graceful fault estimation performance degradation in [18]; the boundedness
of all closed-loop signals were ensured by adopting the designed adaptive fault compensation control
scheme for parametric strict feedback nonlinear systems in [19]; and the detection threshold was
detected to detect the nonlinear fault, and designed a fault accommodation scheme using the function
approximation technique in [20]. The fault tolerant control problem for NCSs with sensor fault and
delay will be discussed from the perspective of the optimal control in this paper.

Focused on control performance and stability of industrial systems, the influence of inevitable
external disturbance is also worthy of consideration [21–24]. In particular, it is necessary to integrate
the disturbance rejection techniques into fault tolerant control scheme. However, only a few results
were presented for the fault tolerant control problem under external disturbances. For instance, [25]
introduced two robust observers to eliminate the effect of fault and disturbance and designed sliding
mode control (SMC) scheme against faults and disturbances; an anti-disturbance fault tolerant control
scheme was presented for a class of nonlinear delay systems with both faults and multiple disturbances
in [26]; an online adaptive mechanism was constructed to estimate the unknown fault parameters, and
designed an adaptive fault tolerant control scheme involved with a backstepping technique in [27];
both disturbance observer and fault estimation observer were proposed to design the novel fuzzy
dynamic output feedback fault tolerant controller by using the estimation information in [28]. How to
offset the external disturbances and compensate the sensor fault and delay simultaneously is one of
the motivations of this article.

Based on the above statements, this paper deals with a sensor fault and delay tolerant control
problem for NCSs subject to external disturbances. Under assumptions that the dynamic characteristics
of external disturbance and sensor fault are known, the delayed output is reformed as an available
output without explicit expression of delayed measurement. The performance index is transformed
as a corresponding form so that the two-point-boundary-value (TPBV) problem with delayed and
advanced items can be avoided. Thus, the feedforward and feedback sensor fault tolerant controller
(FFSFTC) is derived from the solutions of the Riccati matrix equation and Stein matrix equation, in
which a fault diagnoser is designed to make the proposed control scheme physical realizability. Taking
the different kinds of sensor faults and external disturbances into consideration, illustrative examples
are provided to prove the effectiveness of the FFSFTC under different measurement delays.

This paper is organized as follows. Section 2 formulates the sensor fault and delay tolerant control
problem for NCSs. In Section 3, the main results are presented, which include the proposed FFSFTC
and a fault diagnoser. Numerical examples are given to verify the effectiveness of the proposed control
scheme in Section 4. Section 5 gives the conclusions.

2. Problem Formulation

Consider the following discrete generalized NCSs with delayed and faulty sensors under
external disturbance:

x (k + 1) = Ax (k) + Bu (k) + Dvv (k) , k = 0, 1, 2 . . . ,
y (k) = Cx (k− hs) + Ds fs (k− hs) , k = hs, hs + 1, hs + 2 . . . ,
x (0) = x0,
y (k) = 0, k = 0, 1, . . . , hs − 1,

(1)

where x (k) ∈ Rn, u (k) ∈ Rm and v (k) ∈ Rp denote the state vector, the control input and the external
disturbance for NCSs, respectively. fs (k) ∈ Rq represents the fault signal vector, hs denotes a constant
measurement delay of the sensor, and y (k) ∈ Rl represents the system measured output; all A, B, C, Dv

and Ds are known constant matrices with appropriate dimensions.
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The dynamic characteristics of the external disturbance signal v(k) can be described by the
following exogenous system: {

w (k + 1) = Gvw (k) ,
v (k) = Hvw (k) ,

(2)

where w (k) ∈ Rrv denotes the state vector for external disturbances. Gv and Hv are known constant
matrices with appropriate dimensions. The exogenous system (2) can describe various types of external
disturbances, such as step signal, period signal, attenuation signal and other extensive persistent
disturbances in discrete form.

The dynamic characteristics of the sensors fault signal fs(k) can be represented as:
ϕ (k + 1) = Gs ϕ (k) , k = k0, k0 + 1, k0 + 2, . . . ,
fs (k) = Fs ϕ (k) , k = 0, 1, 2, . . . ,
ϕ (k) = 0, k = 0, 1, 2, k0 − 1,
ϕ (k0) = ϕ0,

(3)

where ϕ ∈ Rr f is the state vector of the sensor fault, the occurrence time k0 and initial state ϕ0 are with
unknown values. Meanwhile, the exogenous (3) can describe the diverse sensor faults with known
dynamic characteristics and unknown magnitudes and phases. In order to diagnose the sensor fault
and design a sensor fault and delay tolerant controller for NCSs, the following assumptions are given.

Assumption 1. The pair (A, B) is completely controllable and the pair (C, A) is completely observable.

Assumption 2. The pairs (Hv, Gv) in (2) and (Fs, Gs) in (3) are completely observable.

Assumption 3. For any eigenvalue λi of Gv and λj of Gs satisfying |λi| ≤ 1 and
∣∣λj
∣∣ ≤ 1, the persistent

disturbances v(k) and sensor fault fs(k) are stable but may not be asymptotically stable.

The aim of this paper is formulated to design a dynamic fault diagnoser to diagnose sensor faults
thereby designing an optimal sensor fault and delay tolerant control scheme u∗(k) for system (1)
subject to external disturbance (2) and sensor fault (3) to minimum the following average quadratic
performance index:

J = lim
N→∞

1
2N

N

∑
k=0

[
yT (k) Qy (k) + uT (k) Ru (k)

]
, (4)

where Q = CTC ∈ Rl×l is a positive semi-definite matrix and R > 0 is a constant.
For the classic optimal control problem, the following Hamilton function will be obtained:

H(•) = 1
2
[
xT(k− hs)CTQCx(k− hs) + xT(k− hs)CTQDs fs(k− hs) + uT(k)Ru(k)

+ f T
s (k− hs)DT

s QDs fs(k− hs)
]
+ λT(k + 1) [Ax(k) + Bu(k) + Dvv(k)− x(k + 1)] .

(5)

It is obvious that this function includes some delay items. When transferring the two-point-boundary-
value (TPBV) problem, the advanced and delayed items are unavoidable. This is a motivation of this
paper to avoid the TPBV problem with advanced and delayed items.

To obtain the main results, the following lemma is given first.

Lemma 1. Let A1 ∈ Rn×n, B1 ∈ Rm×m, and X ∈ Rn×m. The matrix equation

A1XB1 − X = C1 (6)

has a unique solution X if and only if

λi (A1)× λj (B1) 6= 1, i = 1, . . . , n, j = 1, . . . , m, (7)
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where λ(·) denote eigenvalues of matrix [29].

3. Design of Optimal Sensor Fault and Delay Tolerant Control Scheme

In this section, the original sensor fault and delay tolerant control problem is reformulated as
an equivalent form first. Then, an optimal feedforward and feedback sensor fault and delay tolerant
control scheme will be designed.

3.1. Reformulation of the Sensor Fault and Delay Tolerant Control Problem

Accurate system state views are one essential factor in designing the sensor fault and delay
tolerant control scheme. However, system output y(k) presented system (1) is dependent on the
measurement delay and sensor fault. From the optimal control point of view, seeking the solution for
the TPBV problem with advanced and delayed items is very difficult. In what follows, an available
output and a reformed performance index will be designed to transform the original TPBV problem.

Combining systems (1) and (2) with an augmented vector z(k) = [ xT(k) wT(k) ]T ,
the following augmented system can be generated as

z(k + 1) = A1z(k) + B1u(k),

y (k) =

{
0, k = 0, 1, 2, . . . , hs − 1,
C̄z(k− hs) + Ds fs (k− hs) , k = hs, hs + 1, . . . ,

(8)

where

A1 =

[
A HvGv

0 Gv

]
, B1 =

[
B
0

]
, C̄ =

[
C 0

]
. (9)

The solution of system (8) can be described as
z(k) = Ak

1z(0) +
k−1
∑

i=0
Ak−i−1B1u(i), k = 0, 1, 2, . . . ,

y (k) =


0, k = 0, 1, 2, . . . , hs − 1,

C1

[
Ak

1z(0) +
k−hs−1

∑
i=0

Ak−i−1
1 B1u(i)

]
+ D1 ϕ(k), k = hs, hs + 1, . . . ,

(10)

where C1 = C̄A−hs
1 and D1 = DsFsG−hs

s . Thus, the available output y1(k) is defined as follows:

y1(k) = y(k) + C1γ(k, u), (11)

where γ(k, u) = ∑k−1
i=k−hs

Ak−i−1
1 B1u(i). Thus, system (1) can be rewritten as

z(k + 1) = A1z(k) + B1u(k),

y1(k) =

{
C1z(k), k = 0, 1, 2, . . . , hs

C1z(k) + D1 ϕ(k), k = hs + 1, hs + 2, hs + 3, . . . ,

y(k) =

{
C1z(k)− C1γ(k, u), k = 0, 1, 2, . . . , hs

C1z(k) + D1 ϕ(k)− C1γ(k, u), k = hs + 1, hs + 2, hs + 3, . . . .

(12)

Inevitably, the quadratic performance index (4) must be transformed into the corresponding
form with respect to the augmented system (8). In what follows, we will construct a corresponding
performance index for original performance index (4).
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Replacing y(k) as y1(k) in (4), we have

J = lim
N→∞

1
2N

N
∑

k=0
zT(k)CT

1 QC1z(k) + 2zT(k)CT
1 QD1 ϕ(k) + uT(k)Ru(k)

−2zT(k)CT
1 QC1γ(k, u)− 2ϕT(k)DT

1 QC1γ(k, u) + γT(k, u)CT
1 QC1γ(k, u)

}
.

(13)

Developing and analyzing the above equation along with k under constraints (2) and (3), one gets

∞
∑

k=0
zT(k)CT

1 QC1γ(k, u) =
∞
∑

k=0

{
zT(k)Qzuu(k) + uT(k)Quuu(k)

+ 2

hs−1
∑

i=1

(
hs−1
∑
j=i

Aj−i
1 B1u(k + hs − j)

)T

CT
1 QC1 AiB1

 u(k)


∞
∑

k=0
ϕT(k)DT

1 QC1γ(k, u) =
∞
∑

i=hs

ϕT(k)Qϕuu(k),

∞
∑

k=0
γT(k, u)CT

1 QC1γ(k, u) =
∞
∑

k=0

{
uT(k)Quuu(k)+

+ 2

hs−1
∑

i=1

(
hs−1
∑
j=i

Aj−i
1 B1u(k + hs − j)

)T

CT
1 QC1 AiB1

 u(k)

 ,

(14)

where

Qϕu =
hs
∑

i=1

(
D1Gi

s
)T QC1 Ai−1

1 B1,

Qzu =
hs
∑

i=1

(
C1 Ai

1
)T QC1 Ai−1

1 B1, Quu =
hs−1
∑

i=0

(
C1 Ai

1B1
)T QC1 Ai

1B1.
(15)

Thus, the original performance index (4) can be reformed as the corresponding form with respect to
the argument system (11), which is described as

J = lim
N→∞

1
2N

N
∑

k=0

{
zT(k)CT

1 QC1z(k) + 2zT(k)CT
1 QD1 ϕ(k)

−2zT(k)Qzuu(k)− 2ϕT(k)Qϕuu(k) + uT(k)R1u(k)
}

,
(16)

where R1 = R− Ruu.
The original sensor fault and delay tolerant control problem are reformulated to design an

optimal sensor fault and delay tolerant control scheme u∗(k) for system (12) to minimize the reformed
performance index (16) under the constraint condition (3).

3.2. Design of Optimal Sensor Fault and Delay Tolerant Control Scheme Based on the Sensor Fault Diagnoser

The following Theorem provides a method to propose an optimal sensor fault and delay tolerant
control scheme based on a designed sensor fault diagnoser.

Theorem 1. Considering the dynamic characteristics of sensor fault (3), a dynamic fault diagnoser is designed
to diagnose the sensor fault, which can be described as{

ϕ̃(k + 1) = (Gs − KeFs)ϕ̃(k) + Ke fs(k),
f̃s(k) = Fs ϕ̃(k),

(17)

where ϕ̃(k) denotes the fault diagnoser state, Ke represents the fault diagnoser feedback gain matrix, and f̃s(k) is
a prediction sensor fault signal.

Considering the sensor fault and delay tolerant control problem for a class of NCSs (1) under the constraints
of the persistent disturbances (2) and the sensor fault (3) with respect to quadratic performance index functional
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(4), under Assumptions 1, 2 and 3, there exists a unique optimal sensor fault and delay tolerant control scheme
in the form as

u∗(k) = −R−1
1 (BT

1 Ā−T(P1 −Q1)−QT
zu)z(k) + (BT

1 Ā−T(P2 −Q2)−QT
ϕu)ϕ̃(k), (18)

where P1 is the unique positive definite solution of the following Riccati matrix equation

P1 = Q1 + ĀT P1 Ā− ĀT P1B1(R1 + BT
1 P1B1)

−1B1PĀ. (19)

P2 is the unique solution of the following Stein matrix equation

P2 = Q2 + ĀT P2Gs + ĀT P1(I + B1R−1
1 BT

1 P1)
−1B1R−1

1 QT
ϕu

+ ĀT(I − P1(I + B1R−1
1 BT

1 P1)
−1B1R−1

1 BT
1 )P2Gs,

(20)

with Ā = A1 + B1R−1
1 QT

zu, Q1 = CT
1 QC1 −QzuR−1

1 QT
zu, Q2 = CT

1 QD1 −QzuR−1
1 QT

ϕu.

Proof of Theorem 1. An optimal sensor fault and delay tolerant control law will be given, in which
the sensor fault state ϕ(k) will be a part of the feedforward component.

Applying the optimal control theory, the optimal sensor fault and delay tolerant control law can
be as

u(k) = −R−1
1

[
BT

1 λ(k + 1)−QT
zuz(k)−QT

ϕu ϕ(k)
]

, (21)

where λ(k) satisfies the following TPBV problem{
z(k + 1) = Āz(k)− B1R−1

1 BT
1 λ(k + 1) + B1R−1

1 QT
ϕu ϕ(k), z(0) = z0,

λ(k) = Q1z(k) + Q2 ϕ(k) + ĀTλ(k + 1), λ(∞) = 0.
(22)

λ(k) can be written in the following form

λ(k) = P1z(k) + P2 ϕ(k). (23)

By referring to (21) and the second Formula of (22), the optimal controller can be obtained, which is
given by

u∗(k) = −R−1
1 (BT

1 Ā−T(P1 −Q1)−QT
zu)z(k) + (BT

1 Ā−T(P2 −Q2)−QT
ϕu)ϕ(k). (24)

Substitution of (23) into the second Formula of (22) results in

P1z(k) + P2 ϕ(k) = Q1z(k) + Q2 ϕ(k) + ĀT P1z(k + 1) + ĀT P2Gs ϕ(k), (25)

and substitution of (21) into the first formula of (22) results in

z(k + 1) = Āz(k)− B1R−1
1 BT

1 (P1z(k + 1) + P2Gs ϕ(k)) + B1R−1
1 QT

ϕu ϕ(k). (26)

Notice that (25) and (26) do not involve λ(k) and thus we have eliminated λ(k).
Rearranging (26), we have

z(k + 1) = (I + B1R−1
1 BT

1 P1)
−1[Āz(k) + (B1R−1

1 QT
ϕu − B1R−1

1 BT
1 P2Gs)ϕ(k)]. (27)
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By substituting (27) into (25), we obtain

P1z(k) + P2 ϕ(k)
= Q1z(k) + Q2 ϕ(k) + ĀT P1z(k + 1) + ĀT P2Gs ϕ(k)
= (Q1 + ĀT P1(I + B1R−1

1 BT
1 P1)

−1 Ā)z(k)+
(Q2 + ĀT P2Gs + ĀT P1(I + B1R−1

1 BT
1 P1)

−1(B1R−1
1 QT

ϕu − B1R−1
1 BT

1 P2Gs))ϕ(k).

(28)

By using the matrix inversion lemma(
I + B1R−1

1 BT
1 P1

)−1
= I − B1(R1 + BT

1 P1B1)
−1B1P1, (29)

we obtain the Riccati matrix Equation (19) and Stein matrix Equation (20).
The existence and the uniqueness of the optimal sensor fault and delay tolerant control scheme (24)

are equivalent to the ones of the Riccati matrix Equation (19) and Stein matrix Equation (20). In fact,
Assumptions 1 and 3 guarantee that the Riccati matrix Equation (19) has a unique positive semi-definite
solution P1. Under Assumption 2, we have∥∥∥λi(ĀT(I − P1(I + B1R−1

1 BT
1 P1)

−1B1R−1
1 BT

1 ))
∥∥∥× ∥∥λj(Gs)

∥∥ < 1. (30)

Thus, from Lemma 1, the Stein matrix Equation (20) has a unique solution P2. Therefore, the proposed
feedforward and feedback optimal sensor fault and delay tolerant control Scheme (24) is existence
and uniqueness.

However, the optimal control Scheme (24) is a physically unrealizable vector caused by the
feedforward item ϕ(k). In order to make the proposed sensor fault and delay tolerant control scheme
more practical and diagnose the sensor fault more accurately, the sensor fault diagnoser (17) is proposed
on a designed observer.

In order to obtain the fault diagnoser error equation, let us subtract the first formula of (17)
from (3)

ϕ(k + 1)− ϕ̃(k + 1) = (Gs − KeFs)(ϕ(k)− ϕ̃(k)). (31)

Now defining the difference between ϕ(k) and ϕ̃(k) as the error e(k)

e(k) = ϕ(k)− ϕ̃(k), (32)

(32) can be rewritten as
e(k + 1) = (Gs − KeFs)e(k). (33)

Then, by using the designed fault diagnoser (31) with reasonable feedback gain matrix Ke,
the proposed sensor fault and delay tolerant control Scheme (18) is obtained.

Remark 1. For the fault diagnoser error Equation (33), the dynamic behavior of the error signal is determined
by the eigenvalues of Gs − KeFs. The value of Ke will be designed to make the fault diagnoser error e(k) tend
to zero with adequate speed regardless of the values of ϕ(hs) and ϕ̃(hs). In order to obtain a quick response to
sensor fault, all eigenvalues of Gs − KeFs are chosen as to be zero to obtain a deadbeat response.

4. Simulation Result

In this section, the proposed fault diagnoser will be applied to two sensor faults with attenuation
and oscillation characters first. In what follows, the effectiveness of the proposed feedback and
feedforward sensor fault and delay tolerant control scheme will be investigated under different
sensor delays.
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4.1. Analysis of Designed Fault Diagnosis for Different Types of Sensor Faults

In order to show the validity of the designed fault diagnoser, two sensor faults with attenuation
and oscillation characters are analyzed in this subsection. For one case in which the sensor fault is in
the form of an attenuation type, the matrices of Gs and Fs are defined as

Gs =

[
0.9810 0.1001
−0.1001 0.9305

]
, Fs =

[
1 0

]
. (34)

In addition, for another case in which the sensor fault is in the form of an oscillation type, the matrices
Gs and Fs are defined as

Gs =

[
0.9850 0.0995
−0.2985 0.9850

]
, Fs =

[
1 0

]
. (35)

Noted Remark 1, the desired eigenvalues of the fault diagnoser (16) set as

z = 0.1 + j0.1, z = 0.1− j0.1. (36)

Based on the Ackermann formula, the fault diagnoser gain matrices are designed as

Ka =
[

1.7115 6.8902
]

, Ko =
[

1.7700 7.6736
]

, (37)

where fault diagnoser feedback gain matrixes Ka and Ko are defined for the attenuation sensor fault
(34) and the oscillation sensor fault (35), respectively.

Setting the occurrence times of sensor faults (34) and (35) as k = 100 and k = 300, the curves
of comparison result between actual sensor fault and diagnosed sensor fault are shown in Figure 1,
in which the diagnosed sensor fault is from the designed fault diagnoser (18). Meanwhile, the curve of
observed error between actual and diagnosed sensor fault is shown in Figure 2. One can see that the
values of observed error approach zero. While the sensor faults happen, the observed error appears to
show very small fluctuations. After that, it will converge to small values rapidly. Then, the designed
sensor fault can approximate the actual sensor fault rapidly.

0 100 200 300 400 500 600
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

Comparison between acutal sensor fault and diagnosed sensor fault

 

 

Actuator Sensor Fault
Diagnosed Sensor Fault

Figure 1. Diagnosed actuator fault f̃s(k) from the fault diagnoser.
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Therefore, no matter what the type of sensor fault, the diagnosed fault f̃s(k) can be converged to
the actual sensor fault, which is the necessary prerequisite to apply the sensor fault and delay tolerant
control Scheme (18).

0 100 200 300 400 500 600
−1.5

−1

−0.5

0

0.5

1

1.5

Time

The trajectories of system output y(k) under different controller

 

 

Open−Loop
FFSFTC with h

s
=4

FSFTC with h
s
=4

Figure 2. The comparison of system output y under open-loop systems, the proposed feedforward and
feedback sensor fault tolerant controller (FFSFTC), and classic feedback sensor fault tolerant controller
(FSFTC) with hs = 4.

4.2. Analysis of Designed FFSFTC under Different Controllers

In this subsection, the validity and reliability of the proposed FFSFTC (18) will be proved under
different sensor delays.

Consider system (1) with the following matrices:

A =

[
1 0.45
−0.2 0.9

]
, B =

[
0.3
0.5

]
, Dv =

[
0.2084
0.1541

]
,

C =
[

1 0
]

, Ds = 2, x0 =
[

3 2
]T

,

(38)

where the initial value is x0 = [ 0.21 0.12 ]T . The external disturbance (2) is described as the
following sinusoidal form:

Gv =

[
0.8944 0.4
−0.5 0.8944

]
, Hv =

[
1 0

]
, w0 =

[
0.5 0

]
, (39)

with w0 = [ 0.2 0.1 ]T .
In order to validate the effectiveness of the proposed control scheme, the following classic feedback

sensor fault tolerant controller (FSFTC) is used to compare with the proposed FFSFTC (18), which is
given by

u(k) = −R−1
1 (BT

1 Ā−T(P1 −Q1)−QT
zu)z(k), (40)

where the feedforward item in (18) is eliminated.
Meanwhile, the sensor delays are set as hs = 2, 4, 6 under this simulation to show the reliability of

the proposed control scheme. The performance index (4) is with Q = 1 and R = 1.
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In order to show the simulation results clearly, the curves of system output y and system states x1

and x2 are represented in Figures 2–4 compared with open-loop systems and FSFTCs. It is obvious
that system output y, system states x1 and x2 can be converged to smaller values under FSFTC and
the proposed FFSFTC. By observing the tendency of change at the occurrence times k = 100 and
k = 300, the proposed FFSFTC can respond to the sensor faults better than FSFTCs. This is caused by
the elimination of feedforward item f̃s(k) in FSFTC. Meanwhile, system output y and system states
x1 and x2 can not converge to zero caused by the sensor fault fs(k) and external disturbance v(k).
However, at a later stage, the oscillation of system output derives from the oscillation sensor fault fs(k)
and persistent disturbance v(k). Regardless of the values of sensor delays hs, it can be seen that the
system output can significantly reduce and converge to small values.
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Figure 3. The comparison of system state x1 under open-loop system, FFSFTC and FSFTC with hs = 4.
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Figure 4. The comparison of system state x2 under open-loop system, FFSFTC and FSFTC with hs = 4.

In order to show the sensor delay tolerant ability of proposed FFSFTC, the simulation results will
be analyzed under different sensor delays. Considering the system with (38), the sensor faults with
(34) and (35), and the external disturbance (39), the curves of system output y, and system states x1

and x2 are represented in Figures 5–7 under the open-loop system and sensor delays hs = 2, 6. It is
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obvious that the values of y, x1 and x2 can be converged to small values compared to the open-loop
system. Meanwhile, the proposed FFSFTC can offset the sensor faults effectively.
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Figure 5. The comparison of system state x1 under sensor delays with hs = 2, 6.
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Figure 6. The comparison of system state x2 under sensor delays with hs = 2, 6.

Furthermore, the system is under persistent disturbance. Therefore, the proposed FFSFTC could
offset the vibration caused by the persistent disturbance v(k). It means that, as time passes, the system
states could converge to small values. From Figures 2–7, one can see that the system states x1 and
x2 cannot converge to zero caused by the persistent disturbances. Fortunately, the system states x1

and x2 can converge to small values under sensor faults, sensor delays and external disturbance.
This illustrates that the proposed control scheme can offset the persistent disturbances effectively.

To more intuitive to valid the abilities of sensor delay tolerance and offsetting the external
disturbance, the comparisons of RMS (Root Mean Square) values for system output y, system state x1

and x2 are shown in Tables 1–3. Meanwhile, the comparison results of performance indices among
the open-loop system and the closed-loop system are shown in Table 4. For example, under sensor
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faults hs = 2, 4, 6, the values of performance indices are decreased by 64.06%, 65.14% and 61.71% under
FFSFTC compared to the open-loop systems, respectively. Correspondingly, the values of performance
indices are decreased by 32.63%, 41.84% and 49.01% under FSFTC compared to the open-loop systems.
One can see that the above indices can be reduced obviously under proposed FFSFTC compared
to those of the open-loop systems and FSFTCs. At the same time, no matter how much the sensor
faults, the performance indices could be converged to ones around 0.06. Therefore, the validity of the
proposed sensor fault tolerant control Scheme (18) is proved.

0 100 200 300 400 500 600
−1.5

−1

−0.5

0

0.5

1

1.5

Time

The trajectories of system output y(k) under different sensor delays
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Figure 7. The comparison of system output y under sensor delays with hs = 2, 6.

Table 1. The comparison root mean square (RMS) values of system output y under different controllers.

Sensor Delay Open-Loop FFSFTC FSFTC

hs = 2 0.4076 0.1884 (−53.79%) 0.2083 (−48.89%)
hs = 4 0.4076 0.1792 (−56.03%) 0.2616 (−35.82%)
hs = 6 0.4076 0.2095 (−48.60%) 0.2962 (−27.33%)

Table 2. The comparison RMS values of system state x1 under different controllers.

Sensor Delay Open-Loop FFSFTC FSFTC

hs = 2 0.3834 0.1323 (−65.49%) 0.2083 (−45.67%)
hs = 4 0.3834 0.1704 (−55.55%) 0.2079 (−45.77%)
hs = 6 0.3834 0.1954 (−49.03%) 0.2416 (−36.98%)

Table 3. The comparison RMS values of system state x2 under different controllers.

Sensor Delay Open-Loop FFSFTC FSFTC

hs = 2 0.2713 0.1019 (−62.44%) 0.1203 (−55.66%)
hs = 4 0.2713 0.1302 (−52.01%) 0.1501 (−44.67%)
hs = 6 0.2713 0.1447 (−46.66%) 0.1722 (−36.53%)
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Table 4. The comparison results of performance indices under different sensor delays.

Sensor Delay Open-Loop FFSFTC FSFTC

hs = 2 0.1661 0.0597 (−64.06%) 0.1119 (−32.63%)
hs = 4 0.1661 0.0579 (−65.14%) 0.0966 (−41.84%)
hs = 6 0.1661 0.0636 (−61.71%) 0.0847 (−49.01%)

In summary, it can be observed that the proposed sensor fault and delay tolerant control scheme
can significantly tolerate the influence from sensor fault and delay, offset the persistent disturbances,
and improve the control performance.

5. Conclusions

In order to eliminate the influence from the sensor fault and external disturbance, a fault diagnoser
has been designed and a sensor fault and delay tolerant control scheme has been proposed in this
paper. By introducing a vector transformation, an available delay-free system output was designed
and an augmented system was constructed by combining the control system and external disturbances.
Then, a sensor fault diagnoser was designed to diagnose the sensor fault. A physically realizable
sensor delay and fault tolerant controller was proposed, in which the gain matrices were derived
from a Riccati equation and a Stein equation, respectively. Taking the different types of sensor faults
into consideration, simulation results have shown that the proposed controller can have the abilities
of offsetting external disturbances, tolerating the sensor fault and delay, and improving the control
performance under different sensor delays, respectively.

In this paper, the results presented are based on the fact that the external disturbance and sensor
fault have well known dynamic characteristics. Meanwhile, it is assumed that the sensor fault has a
constant value. In fact, the dynamic characteristics of the external disturbance and sensor fault are
unknown, even partially. In addition, the sensor delay usually is with random value. Actually, many
control systems usually are with actuator fault and delays. Therefore, the future work may include the
following aspects:

(1) A more general sensor and actuator fault tolerant control problem should be investigated to
offset the external disturbance, sensor fault, and actuator fault with unknown characteristics.

(2) Taking the uncertain actuator and sensor delays into consideration, the controller could be
designed to improve the control performance.
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