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Abstract: It has been identified that the inertial system is not a completely observable system in the
absence of maneuvers. Although the velocity errors and the accelerometer bias in the vertical direction
can be solely observable, other error states, including the attitude errors, the accelerometer biases
in the east and north directions, and the gyro biases, are just jointly observable states with velocity
measurements, which degrades the estimation accuracy of these error states. This paper proposes
an innovative method to improve the system observability for a Micro-Electro-Mechanical-System
(MEMS)-based Inertial Navigation System (INS) in the absence of maneuvers by rotary motions
of the Inertial Measurement Unit (IMU). Three IMU rotation schemes, namely IMU continuous
rotation about the X, Y and Z axes are employed. The observability is analyzed for the rotating
system with a control-theoretic approach, and tests are also conducted based on a turntable to
verify the improvements on the system observability by IMU rotations. Both theoretical analysis
and the results indicate that the system observability is improved by proposed IMU rotations, the
roll and pitch errors, the accelerometer biases in the east and north directions, the gyro biases
become observable states in the absence of vehicle maneuvers. Although the azimuth error is still
unobservable, the enhanced estimability of the gyro bias in the vertical direction can effectively
mitigate the azimuth error accumulation.

Keywords: inertial navigation system; MEMS IMU; observability; rotary motions

1. Introduction

An inertial navigation system (INS) measures the specific forces and angular rates using a triad of
accelerometers and gyroscopes (gyro) to determine the motion of a body with respect to the inertial
frame. As a self-contained navigation system, INS has been used for a wide range of applications.
For geomatics applications, INS is an essential geo-referencing device in mobile mapping systems for
infrastructure and street surveys [1–3], in underwater navigation systems for offshore geophysical
exploration and in unmanned aerial vehicles for disaster monitoring [4–6], just to mention a few.
With advances in Micro-Electro-Mechanical Systems (MEMS), the chip-based inertial sensors are also
increasingly adopted in place of traditional inertial systems for above applications because the MEMS
inertial measurement units (IMU) are small-size, light-weight, low-power and low-cost although they
feature significant sensor errors [7–11].

INS navigation errors include errors in its position, velocity and attitude solutions. Due to their
self-contained characteristic, the INS navigation errors accumulate over time. For a MEMS-based
inertial system, in particular, the navigation errors would accumulate quickly to a level of several
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kilometers within minutes due to significant inertial sensor errors [12,13]. In order to limit the
navigation error accumulation, external measurements are often applied to estimate the navigation
errors as well as inertial sensor errors using an extended Kalman filter (EKF) [14–16]. The most
commonly used external measurements include position and velocity information from other sensors,
such as Global Navigation Satellite System (GNSS) [13,17,18]. Since the position information is only
weakly related to the attitude and inertial sensor errors, the velocity information then becomes the
main measurements to estimate all other error parameters.

Research has been conducted to study the observability of the aided inertial systems.
The control-theoretic approach was first proposed to analyze the observability of a time-varying system
which can be modelled as the piece-wise constant system (PWCS) in [19], and the observability matrix
was also developed in both the continuous and discrete representations for the observability analysis
of such systems. Later, such approaches were applied to the inertial system and obtain the following
findings [20]: (1) nine error states and linear combination of states are observable in the absence of
maneuver, which are the three velocity errors and the accelerometer bias in the vertical direction,
two linear combinations of attitude errors and the horizontal accelerometer biases, three linear
combinations of attitude errors and gyro biases; (2) the observability is enhanced by maneuvering
that all error states become observable when the changes in accelerations are present. The effect of
different types of maneuvers on system observability was also investigated [21–23]. It was proved that
although the turn maneuvers can improve the system observability, the constant accelerations without
rotational motion cannot increase the number of observable states. Although the observability analysis
was conducted in different aspects in the aforementioned researches, one common conclusion is that
the system observability is poor in the absence of vehicle maneuvers. Except for the velocity errors and
accelerometer bias in vertical direction, other errors cannot be uniquely estimated with the velocity
measurements. The inertial system observability was also reviewed from the analytic estimation
algorithm of the errors states in [24], which also addressed the differences between the “observability”
and “estimability”, and the later one was analyzed based on the eigenvalues and eigenvectors of the
covariance matrix.

Poor system observability would result in inaccurate estimation of the INS errors and eventually
degrade the navigation performance. For instance, in precision agriculture, the GNSS/INS integrated
system is employed to determine the position, velocity and attitude of the tractors for guidance and
steering control. Parallel straight lines are typical for ploughing and cultivating with tractors [25].
When tractors travel at a constant velocity along straight lines, the vehicle maneuvers become very
weak in such case. As a result, the observability for filter parameters of attitude errors, accelerometer
biases in horizontal plane, and gyro bias in the vertical direction are very poor. In particular,
the azimuth solution will be drifted away from its true value due to poor observability for the
azimuth error and the gyro bias in the vertical direction. Similar conclusions are also indicated in [26],
which shows that the azimuth and its rate gyro bias are unobservable in straight motion and with
constant acceleration for land vehicle applications. The observability issue was also reported in
underwater and aerial navigations [27,28]. Due to the water resistance, maneuvers are hard to be
obtained for autonomous underwater vehicles (AUV), which also leads to the poor observability
of azimuth error and its rate gyro bias [27]. For the helicopter unmanned aerial vehicle (UAV),
the GPS-aided inertial navigation system (INS) does not provide the observability of the azimuth
during hover [28].

To overcome the observability issues, additional sensors or external observations are usually
employed. The tri-axial magnetometer was augmented to the navigation system to provide the
heading observations for the UAV during hover in [28], and the GNSS-derived course angle was used
as the additional observations to improve the observability in [29]. Furthermore, Wagner used the
multi-antenna technique in automatic landing applications, and discussed the effects from different
antenna configurations, aiding modes, as well as the lever arm imposed on the system observability [30].
Other than the aforementioned researches, the multi-position alignment procedure was designed
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for the vehicular fiber inertial system in [31,32], and simulations are conducted to verify that the
collected additional observations with IMU rotated to other positions can improve the observability
and alignment accuracy.

A few studies have proposed to use the IMU rotation to improve the system observability. The two
most representative researches are given as follows. A calibration approach was designed for the
INS with high-end IMUs by using the rotation of IMU about the azimuth axis in [33]. The sensor
biases and attitude errors are estimated with external velocity and position measurements and the
Singular Value Decomposition (SVD) was utilized to analysis the system observability. Simulation
results indicate that although IMU rotation improves the system observability, the gyro bias in the
vertical direction is still poor. The observability of INS with IMU rotation about the azimuth axis was
also investigated based on the states’ covariance matrix of the filter to obtain the optimal rotation
rate in [34]. The aforementioned references mainly employed the rotation to improve the system
observability of INS during the alignment and calibration processes, however, the observability of the
error states has not been revealed from the analytic point of view yet. Moreover, the following aspects
of improving system observability by rotating IMU have not been discussed yet:

(1) The observability analysis for the low-cost MEMS-based INS: the existing researches are
conducted only for high-end IMU cases. For the low-cost MEMS IMU, sensor errors are
orders of magnitudes greater, comparing to the high-end IMUs, which will greatly affect the
system observability.

(2) The performances evaluation on all axes IMU rotations: the previous work only involves the
azimuth axis rotation, whereas the other two axes rotations lead to different observability results,
which will be discussed in Section 3.

(3) The system observability for a 12-error state INS: Usually only 10 error states (horizontal velocity
errors and accelerometer biases, as well as 3-dimensional attitude errors and gyro biases) are
considered in the observability analysis [31–34], however, the velocity error and accelerometer
bias in the vertical directions are also crucial for the applications of AUV and UAV navigation.
Therefore, the observability of the 12-error state INS needs to be examined.

This paper explores the observability of a MEMS-based inertial system with respect to the
aforementioned aspects. Three single-axis rotations of IMU about the X, Y and Z axis are proposed as
shown in Figure 1. Based on the observability definitions in [19,20], the observability of the inertial
system with a rotating low-cost MEMS IMU is studied with a control-theoretic approach from the
analytic point of view. Tests are also conducted using a tri-axial rotation table to verify the observability
improvements by IMU rotations. Both the theoretical analysis and the results indicate that all error
states, except for the azimuth error, become observable with IMU rotations about the X, Y, or Z axis,
respectively. Although the azimuth error is still unobservable, the enhanced estimability of the gyro
bias in the vertical direction can effective mitigate the azimuth error accumulation. The proper rotation
of IMU can modulate the constant inertial bias into periodic signals and an integration of the modulated
inertial data over a complete rotation cycle can eliminate the bias impact on the navigation solutions.
More details regarding to this can be found in [12,35].
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The remainder of this paper is organized as follows: Section 2 describes the error model for the
MEMS-based inertial systems with both non-rotating and rotating IMUs, and Section 3 introduces the
observability analysis for the non-rotating and rotating systems based on a control-theoretic approach.
Section 4 presents the turntable tests and the corresponding results analysis, and the conclusions are
summarized in Section 5.

2. Navigation Error Model for MEMS-Based INS

The error states for an inertial system usually include the position errors, the velocity errors,
the attitude errors, and the accelerometer and gyro biases. For an inertial system in the absence of
maneuvers, such as the vehicle remains still or travelling at constant velocity, the error behavior of
velocity and attitude states in the navigation frame can be described by Equations (1)–(6). As the
position errors are weakly related to the attitude errors and sensor errors, it is not considered in the
observability analysis [36]:

δ
.
vE = 2ωie sin LδvN − 2ωie cos LδvU + gεN + γE (1)

δ
.
vN = −2ωie sin LδvE − gεE + γN (2)

δ
.
vU = 2ωie cos LδvE + γU (3)

.
εE = ωie sin LεN −ωie cos LεU + dE (4)

.
εN = −ωie sin LεE + dN (5)

.
εU = ωie cos LεE + dU (6)

where δvE, δvN , δvU are the velocity errors in the east, north and up directions, respectively; εE, εN , εU
are the attitude errors in the east, north and up directions, respectively; γE, γN , γU are the accelerometer
biases in the east, north and up directions, respectively; and dE, dN , dU are the gyro biases in the east,
north and up directions, respectively; L is the latitude; ωie is the earth rotation rate.

For the low cost MEMS IMUs, the gyro biases are much greater than other terms in Equations (4)–(6),
therefore, the error model for an MEMS-based INS can be simplified as described in Equation (7).
The sensor biases are modeled as constants for observability analysis [20–23].

δ
.
vn

.
ε

n

.
γ

n

.
d

n

 =


Ωv Fn I3×3 0
0 0 0 I3×3

0 0 0 0
0 0 0 0




δvn

εn

γn

dn

 (7)

where the superscript n represents the navigation frame; δvn =
[

δvE δvN δvU

]T
is the velocity

errors in the navigation frame; εn =
[

εE εN εU

]T
is the attitude errors in the navigation frame,

γn =
[

γE γN γU

]T
is the accelerometer biases in the navigation frame; dn =

[
dE dN dU

]T

is the gyro biases in the navigation frame; Ωv describes the relationship between the velocity errors and

their first time derivatives, it can be expressed by 2ωe

 0 sin L − cos L
− sin L 0 0
cos L 0 0

; Fn is a 3 × 3 matrix,

which describes the relationship between the attitude errors and the first time derivative of velocity

errors, it can be expressed by

 0 g 0
−g 0 0
0 0 0

, and g is the local gravity.



Sensors 2017, 17, 698 5 of 20

For an inertial system with a rotating IMU, the sensor frame, whose axes are aligned to the
sensitive axis of IMU, is introduced. Although the sensor biases are modeled as constants in the sensor
frame, these errors in the navigation frame become time-varying signals because of IMU rotations as
shown in Equations (8) and (9), which calculates the sensor biases in the navigation frame and their
first time derivatives, respectively. As the rotation of IMU does not introduce any linear movement,
the Equations (1)–(6) also describe the velocity and attitude error behavior for an inertial system with a
rotating IMU. Therefore, the error model for such a system can be described by Equation (10).

∇n = Cn
b Cb

s∇s (8)

.
∇

n
= Cn

b

.
C

b
s∇s = Cn

b Ωb
bsCb

n∇n = R∇n (9)
δ

.
vn

.
ε

n

.
γ

n

.
d

n

 =


Ωv Fn I 0
0 0 0 I
0 0 R 0
0 0 0 R




δvn

εn

γn

dn

 (10)

where ∇ represents the sensor (both accelerometer and gyro) biases, Cn
b is the transformation

matrix from the body frame to the navigation frame, it is also functions of roll, pitch and azimuth,
Cb

s is the transformation matrix from the sensor frame to the body frame, Ωb
bs is the skew-symmetric

matrix of ωb
bs, which is the rotation rate from the sensor frame to the body frame, expressed in the

body frame, ωb
bs equals to

[
ω 0 0

]T
,
[

0 ω 0
]T

,
[

0 0 ω
]T

for IMU rotation about X,
Y and Z axes, respectively.

3. Observability Analysis of MEMS-Based INS

The observability analysis approach for the linear system used in this paper is introduced as
follows. Consider the linear system Σ described in Equation (11):

Σ :
.
x(t) = F(t)x(t)
z(t) = H(t)x(t)

(11)

where x(t) and z(t) represent the system states and measurements, respectively, F(t) and H(t) are,
respectively n × n and p × n matrices, n is the number of system states and p is the number of
measurements. If F(t) and H(t) are constant, then Σ is a time-invariant linear system, and the time
derivatives of the measurements can be described by Equation (12):

z(t)
.
z(t)
..
z(t)

...
(n−1)
z(t)


=


H(t)x(t)

H(t)F(t)x(t)
H(t)F(t)2x(t)

...
H(t)F(t)n−1x(t)

 =


H(t)

H(t)F(t)
H(t)F(t)2

...
H(t)F(t)n−1

x(t) (12)

According to [19], Σ is observable if and only if the rank of the matrix Q described in Equation (13)
is n:

Q =


Q1

Q2
...

Qk

 =


H(t)

H(t)F(t)
...

H(t)F(t)n−1

 (13)

where Qi is the design matrix corresponding to the i− 1th time derivative of measurements z(t).
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For the inertial system, x(t) is the INS error state vector, including the velocity and attitude errors,
as well as the accelerometer and gyro biases, F(t) is the INS error dynamic model, and H is a constant
matrix and takes the form of

[
I3×3 03×3 03×3 03×3

]
with velocity measurements. According to

the error model described by Equation (7), the inertial system with a non-rotating IMU is time-invariant
in the absence of maneuvers as F is constant matrix. Similarly, the system with a rotating IMU is
also time-invariant, as long as the IMU rotation rate is constant according to Equations (9) and (10).
Therefore, the observability analysis can be conducted based on above observability definitions for the
MEMS-based INS with a non-rotating or rotating IMU, respectively. Our aim is to: (1) find the rank of
Q matrix in Equation (13) for the non-rotating and rotating systems; (2) find the observable states or
combinations of states based on Equation (12) for the non-rotating and rotating systems if the rank of
Q matrix is smaller than n.

3.1. Observability of MEMS-Based INS with a Non-Rotating IMU

Based on the observability definition, the Q matrix is calculated as shown in Equation (14):

Q =



I3×3 0 0 0
Ωv Fn I3×3 0
Ωv

2 ΩvFn Ωv Fn

Ωv
3 Ωv

2Fn Ωv
2 ΩvFn

...
...

...
...

Ωv
k−1

k−1
∑

i=1
Ωv

k−1−iFn Ωv
k−2

k−2
∑

i=1
Ωv

k−2−iFn


(14)

Property 1. In the absence of maneuvers, the rank of Q is 8, and the observable states are δvE, δvN , δvU , γU ,
gεN + γE, −gεE + γN , dE and dN .

Proof 1. Define the transformation

Γ =


I3×3 0 0 0 0
−Ωv I3×3 0 0 0

0 −Ωv I3×3 0 0
...

...
...

. . .
...

0 0 0 −Ωv I3×3


and apply it to Q matrix, we can obtain the following equation:

QT = ΓQ =



I3×3 0 0 0
0 Fn I3×3 0
0 0 0 Fn

0 0 0 0
M M M M
0 0 0 0


=


N1

N2

M
Nk

 (15)

where Ni is the design matrix corresponding to the transformed i− 1th time derivative of measurements
z(t). As the transformation Γ will not change the rank of the matrix, the rank of Q is same as the rank

of QT, which is equal to the rank of
[

N1 N2 N3

]T
. By examining Fn, we can obtain that the rank
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of QT is 8, which indicates there are 8 observable states or state combinations. According to [19,20],
the observable states or states combinations can be obtained by QTx(t) as shown in Equation (16).

QTx(t) =


N1x(t)
N2x(t)
N3x(t)

03×1
...

=


δvn

Fnεn+γn

Fndn

03×1
...

 =



δvE
δvN
δvU

gεN + γE
−gεE + γN

γU
dE
dN
0
...



(16)

The error states δvE, δvN and δvU can be determined from N1x(t), then the linear combinations of
error states, gεN + γE, −gεE + γN , and the error state, γU , can be obtained from N2x(t), and finally the
gyro biases, dE and dN also become the observable based on N3x(t). Apparently, more measurement
epochs neither increase the rank of QT nor improve the system observability. The gyro bias in the up
direction and the azimuth errors are unobservable without maneuvers. �

3.2. Observability of MEMS-Based INS with a Rotating IMU

For the system with a rotating IMU, the Q matrix can be calculated as shown in Equation (17):

Q =



I 0 0 0
Ωv Fn I 0
Ωv

2 ΩvFn Ωv+R Fn
...

...
...

...

Ωv
k−1

k−2
∑

i=0
Ωv

k−1−iFn
k−2
∑

i=0
Ωv

k−1−iRi
k−3
∑

i=0
Ωv

k−1−iFnRi


(17)

By applying the transformation Γ, we can obtain QT as shown in Equation (18):

QT = ΓQ =



I 0 0 0
0 Fn I 0
0 0 R Fn

0 0 R2 FnR
...

...
...

...
0 0 Rk−2 FnRk−3


=


N1

N2
...

Nk

 (18)

where Ni is the design matrix corresponding to the transformed i − 1th time derivative of
measurements z(t).

Property 2. The rank of QT is same as the rank of Qsub=
[

1 2 3 4 5

]T
.

Proof 2. According Equation (9), we can obtain the relationship between R3 and R for IMU rotation
about X, Y or Z axis, as follows.

R3 = Cn
b(Ω

b
bs)

3
Cb

n = −ω2Cn
bΩb

bsCb
n = −ω2R (19)
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where ω is the IMU rotation rate. Then, for the matrix QT, we have that ω2Ni+Ni+2 = 03×12 when i > 3.

Therefore, QT can be transformed to
[

N1 N2 N3 N4 N5 03×12 · · ·
]T

. Obviously that the

rank of QT is equal to the rank of Qsub =
[

N1 N2 N3 N4 N5

]T
.

By examining Qsubx(t) shown in Equation (20), we can see that (1) based on N1x(t) and N2x(t),
the velocity errors and accelerometer bias in the up direction are observable states, while the roll and
pitch errors are jointly observable with accelerometer biases in east and north directions; (2) R and R2

determine the rank of Qsub and other observable states:

Qsubx(t) =


N1x(t)
N2x(t)
N3x(t)
N4x(t)
N5x(t)

 =


δvn

Fnεn+γn

Rγn+Fndn

R2γn+FnRdn

−ω2Rγn+FnR2dn

 (20)

As R and R2 are related to the IMU rotations, the following observability analysis is conducted
w.r.t. IMU rotation about X, Y and Z axis, respectively. �

(1) Continuous Rotation about X axis

Property 3. When roll is zero, the rank of Qsub is 10, and the observable states or state combinations are: δvE,
δvN , δvU , gεN +γE,−gεE +γN , sin AγE + cos AγN , γU , dE, dN , dU ; when roll is not zero, the rank of Qsub
is 11, and the following states can be uniquely determined: δvE, δvN , δvU , εE, εN , γE, γN , γU , dE, dN , dU .

Proof 3. When roll is zero, R and R2 are calculated as shown in Equations (21) and (22), respectively,

and
[

N3 N4 N5

]T
x(t) can be calculated as shown in Equation (23)

R =Cn
bΩb

bsCb
n = ω

 0 0 − sin A
0 0 − cos A

sin A cos A 0

 (21)

R2 = Cn
bΩb

bsΩb
bsCb

n = ω2

 − sin2 A − sin A cos A 0
− sin A cos A − cos2 A 0

0 0 −1

 (22)

 N3x(t)
N4x(t)
N5x(t)

 =



−ω sin AγU + gdN
−ω cos AγU − gdE

ω(sin AγE + cos AγN)

−ω2 sin A(sin AγE + cos AγN)− gω cos AdU
−ω2 cos A(sin AγE + cos AγN) + gω sin AdU

−ω2γU
ω3 sin AγU − gω2 cos A(sin AdE + cos AdN)

ω3 cos AγU + gω2 sin A(sin AdE + cos AdN)

−ω3(sin AγE + cos AγN)


(23)

where A is the azimuth. As γU is observable state, dE, dN and sin AγE + cos AγN become observable
states based on N3x(t), and dU also becomes observable state based on N4x(t). As N5x(t) does not

provide new state combinations, the rank of Qsub is the same as the rank of
[

N1 N2 N3 N4

]T
,

which is 10.
By applying the following transformation from the navigation frame to the sensor frame, we can

obtain the sensor biases in the sensor frame as shown in Equation (24). As sin AγE + cos AγN is
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observable state, γY and γZ also becomes observable, while γX cannot be uniquely determined.
The gyro biases in X, Y and Z axis are observable states, because they are observable in the
navigation frame: γX

γY
γZ

 =

 cos AγE − sin AγN
cos ωt[cos p(sin AγE + cos AγN)− sin pγU ] + sin ωt[sin p(sin AγE + cos AγN) + cos pγU ]

− sin ωt[cos p(sin AγE + cos AγN)− sin pγU ] + cos ωt[sin p(sin AγE + cos AγN) + cos pγU ]

 (24)

When roll has a non-zero value, R and R2 can be calculated as follows. By examining the matrix,[
N2 N3 N4 N5

]T
x(t), εE, εN , γE, γN , dE, dN , dU can be derived from the different combinations

of states, and the rank of Qsub is 11.

R =Cn
bΩb

bsCb
n = ω

 0 c13c22 − c12c23 c13c32 − c12c33

c23c12 − c22c13 0 c23c32 − c22c33

c33c12 − c32c13 c33c22 − c32c23 0

 (25)

R2 = Cn
bΩb

bsΩb
bsCb

n = ω2

 −c2
12 − c2

13 −c12c22 − c13c23 −c12c32 − c13c33

−c22c12 − c23c13 −c2
22 − c2

23 −c22c32 − c23c33

−c32c12 − c33c13 −c32c22 − c33c23 −c2
32 − c2

33

 (26)

where Cij is the element of Cn
b at the ith row and jth column. �

(2) Continuous Rotation about Y axis

Property 4. When pitch is zero, the rank of Qsub is 10, and the observable states and combinations of
states are: δvE, δvN , δvU , gεN + γE, −gεE + γN , − cos AγE + sin AγN , γU , dE, dN , dU ; When pitch is
not zero, the rank of Qsub is 11, and all error states become observable, except for azimuth error.

Proof 4. When pitch is zero, R and R2 can be calculated as follows:

R =Cn
bΩb

bsCb
n = ω

 0 0 cos A
0 0 − sin A

− cos A sin A 0

 (27)

R2 = Cn
bΩb

bsΩb
bsCb

n = ω2

 − cos2 A sin A cos A 0
sin A cos A − sin2 A 0

0 0 −1

 (28)

By examining
[

N3 N4 N5

]T
x(t), we can see that dE, dN and − cos AγE + sin AγN become

observable states based on N3x(t), and dU becomes observable state based on N4x(t), the rows in N5

are linear combinations of the rows of N3 and the last row of N4, so the rank of Qsub is same as the

rank of
[

N1 N2 N3 N4

]T
, which is 10. Similar to the IMU rotation about the X axis, by applying

the transformation from the navigation frame to the sensor frame, we find that the accelerometer bias
in the rotation axis (Y-axis) cannot be solely observable, whereas the bias in X and Z axis are observable
error states. �
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When pitch is not zero, R and R2 can be calculated as shown in Equations (29) and (30). Similar to
the rotation about the X axis, the error states, εE, εN , γE, γN , dE, dN and dU can be derived from the

different combinations of states obtained from
[

N2 N3 N4 N5

]T
x(t), and the rank of Qsub is 11:

R = ω

 0 −c13c21 + c11c23 −c13c31 + c11c33

−c23c11 + c21c13 0 −c23c31 + c21c33

−c33c11 + c31c13 −c33c21 + c31c23 0

 (29)

R2 = ω2

 −c2
11 − c2

13 −c11c21 − c13c23 −c11c31 − c13c33

−c21c11 − c23c13 −c2
21 − c2

23 −c21c31 − c23c33

−c31c11 − c33c13 −c31c21 − c33c23 −c2
31 − c2

33

 (30)

(3) Continuous Rotation about Z axis

Property 5. When both pitch and roll are zeros, the rank of Qsub is 8, and the observable states and combinations
of states are: δvE, δvN , δvU , gεN + γE, −gεE + γN , γU , ωγE + gdE, ωγN + gdN ; when either pitch or roll
is not zero, the rank of Qsub is 11, and all error states become observable, except for the azimuth error.

Proof 5. When both roll and pitch are zeros, R and R2 can be calculated as follows:

R = ω

 0 −1 0
1 0 0
0 0 0

 (31)

R2 = ω2

 −1 0 0
0 −1 0
0 0 0

 (32)

By examining
[

N3 N4 N5

]T
, the rank of the matrix is 2, and its rows satisfy the following

relations that:
N3(1) = N4(2) = −N5(1)

N3(2) = −N4(1) = −N5(2)
N3(3) = N4(3) = N5(3) = 01×12

(33)

where Ni(k) is the kth row of matrix Ni. Therefore, the rank of Qsub is 8, and in addition to the
observable states and combinations of states, δvE, δvN , δvU , gεN + γE, −gεE + γN , γU , obtained from
N1x(t) and N2x(t), the observable combinations of states, ωbE + gdE and ωbN + gdN , can be obtained
from N3x(t).

When pitch or roll is not zero, R and R2 can be calculated as shown in Equations (34) and (35).
Similar to the rotation about the X or Y axis, based on the different combinations of error states obtained

from
[

N2 N3 N4 N5

]T
x(t), the roll and pitch errors, accelerometer biases in the east and north

directions, as well as gyro biases become observable error states, and the rank of Qsub is 11:

R = ω

 0 c12c21 − c11c22 c12c31 − c11c32

c22c11 − c21c12 0 c22c31 − c21c32

c32c11 − c31c12 c32c21 − c31c22 0

 (34)

R2 = ω2

 −c2
11 − c2

12 −c11c21 − c12c22 −c11c31 − c12c32

−c21c11 − c22c12 −c2
21 − c2

22 −c21c31 − c22c32

−c31c11 − c32c12 −c31c21 − c32c22 −c2
31 − c2

32

 (35)
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Based on the above analysis, we can see that the observability of the azimuth errors cannot be
improved through IMU rotations. In fact, as the sensed earth rotation rate is swallowed by the random
errors of MEMS gyros, the azimuth error is unobservable without maneuvers for the MEMS-based
inertial system. In the presence of maneuvers, the horizontal velocity error model can be described by
Equations (36) and (37) as follows:

δ
.
vE = 2ωie sin LδvN − 2ωie cos LδvU + gεN − fNεU + γE (36)

δ
.
vN = −2ωie sin LδvE − gεE + fEεU + γN (37)

where fN and fE represent the accelerations in the north and east directions, respectively. Obviously,

Fn of the inertial error model in Equation (7) becomes

 0 g − fN
−g 0 fE
fN − fE 0

. According to

Equation (20), we can obtain the new observable error state combinations, gεN − fNεU + γE and
−gεE + fEεU + γN , when maneuvers are present. As εE, εN , γE and γN are observable states with IMU
rotations, the azimuth error, εU , can be estimated naturally, and then the observability matrix becomes
full rank, which makes the inertial system fully observable. �

4. Tests and Results Analysis

Tests are conducted using a tri-axial rotation table with MTi-G to verify the improvements on the
system observability by IMU rotations. The tri-axial rotation table has three rotational frames, namely,
outer frame, middle frame and inner frame, as shown in the Figure 2a. A console controls the position
and rotation of these frames. An initialization process, after which both middle and inner frames are
in the level position and the rotation axis of inner frame points to north direction, is required for the
rotation table. The MEMS IMUs are firmly installed on a piece of metal underneath the inner frame by
screws, as shown in the Figure 2b. Different rotation schemes, such as rotation about X, Y and Z axes
can be implemented by rotating the three frames. The MTi-G is a low-cost MEMS IMU produced by
Xsens, and its error parameters can be found in [35].Sensors 2017, 17, 698 12 of 21 

 

 
Figure 2. Tri-axial rotation table and MTi-G installation. (a) tri-axial rotation table; (b) MTi-G 
installation or rotation table. 

Both non-rotating and rotating tests are conducted to verify the improvements on the 
observability of an inertial system when the maneuvers are absent. For the non-rotating test, both 
the rotation table and MEMS IMU remain still, while the IMU is rotating along with the rotation 
table in the rotating tests. IMU rotation about the Y and Z axes are tested, as the improvements by 
rotation about the X axis are similar to the ones by rotation about the Y axis. The IMU data is 
collected with a data rate of 100 Hz, while the rotated angle of the rotation table is collected at 50 Hz. 
As the rotation of IMU does not bring linear movements, the Zero Velocity Update (ZUPT) [37] is 
applied to estimate the attitude errors and inertial sensor errors in the tests using a KF. The filter 
state vector includes the velocity and attitude errors in the navigation frame, as well as the gyro and 
accelerometer biases in the body frame or sensor frame. The sensor biases are modeled as 1st 
Gauss-Markov random process, the model parameters are obtained by conducting an 
autocorrelation analysis for the collected data from the static inertial sensors [36]. 

4.1. Results Analysis for IMU Rotation about Y axis 

With the IMU sensitive axes defined as the X axis pointing right, the Y axis pointing forward, 
and the Z axis pointing up, as shown in the plot (a) of Figure 3, the rotation of the inner frame rotates 
the IMU about its Y axis when both the middle and outer frames remain still. Two rotating tests are 
conducted with the middle frame remaining at angle positions of 0° (level position) and 30°, 
respectively, to study the effect of the pitch angle on the system observability, as shown in the plot 
(a) and (b) of Figure 3. After the initialization process, the initial attitude (roll, pitch and azimuth) is 
0°, 0° and 0°, when the middle frame remaining at the angle position of 0°; while the initial attitude is 
0°, 30° and 0°, when it remains at the angle position of 30°. For each test, the IMU rotates about the Y 
axis with a constant rate of 10°/s. 

When the roll, pitch and azimuth are 0°, 0° and 0°, respectively, the sensor biases in X, Y and Z 
axes are the same as the sensor biases in the east, north and up directions, respectively, for the 
non-rotating system; while for the rotating system, the relationships between the sensor biases in the 
sensor frame and the navigation frame can be described by as follows. The sensor bias in the Y axis 
is same as the bias in the north direction, while the sensor biases in the east and up directions are 
determined by the sensor biases in the X and Z axes, and modulated to periodic signals: 

cos 0 sin cos sin
0 1 0

sin 0 cos sin cos

E X X Z

N Y Y

U Z X Z

t t t t

t t t t

   

   

           
                  
                 

 (38)

Figure 2. Tri-axial rotation table and MTi-G installation. (a) tri-axial rotation table; (b) MTi-G installation
or rotation table.

Both non-rotating and rotating tests are conducted to verify the improvements on the observability
of an inertial system when the maneuvers are absent. For the non-rotating test, both the rotation table
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and MEMS IMU remain still, while the IMU is rotating along with the rotation table in the rotating
tests. IMU rotation about the Y and Z axes are tested, as the improvements by rotation about the X axis
are similar to the ones by rotation about the Y axis. The IMU data is collected with a data rate of 100 Hz,
while the rotated angle of the rotation table is collected at 50 Hz. As the rotation of IMU does not bring
linear movements, the Zero Velocity Update (ZUPT) [37] is applied to estimate the attitude errors and
inertial sensor errors in the tests using a KF. The filter state vector includes the velocity and attitude
errors in the navigation frame, as well as the gyro and accelerometer biases in the body frame or sensor
frame. The sensor biases are modeled as 1st Gauss-Markov random process, the model parameters
are obtained by conducting an autocorrelation analysis for the collected data from the static inertial
sensors [36].

4.1. Results Analysis for IMU Rotation about Y axis

With the IMU sensitive axes defined as the X axis pointing right, the Y axis pointing forward,
and the Z axis pointing up, as shown in the plot (a) of Figure 3, the rotation of the inner frame rotates
the IMU about its Y axis when both the middle and outer frames remain still. Two rotating tests
are conducted with the middle frame remaining at angle positions of 0◦ (level position) and 30◦,
respectively, to study the effect of the pitch angle on the system observability, as shown in the plot (a)
and (b) of Figure 3. After the initialization process, the initial attitude (roll, pitch and azimuth) is 0◦,
0◦ and 0◦, when the middle frame remaining at the angle position of 0◦; while the initial attitude is 0◦,
30◦ and 0◦, when it remains at the angle position of 30◦. For each test, the IMU rotates about the Y axis
with a constant rate of 10◦/s.

When the roll, pitch and azimuth are 0◦, 0◦ and 0◦, respectively, the sensor biases in X, Y and
Z axes are the same as the sensor biases in the east, north and up directions, respectively, for the
non-rotating system; while for the rotating system, the relationships between the sensor biases in the
sensor frame and the navigation frame can be described by as follows. The sensor bias in the Y axis
is same as the bias in the north direction, while the sensor biases in the east and up directions are
determined by the sensor biases in the X and Z axes, and modulated to periodic signals: ∇E

∇N
∇U

 =

 cos ωt 0 − sin ωt
0 1 0

sin ωt 0 cos ωt


 ∇X
∇Y
∇Z

 =

 ∇X cos ωt−∇Z sin ωt
∇Y

∇X sin ωt +∇Z cos ωt

 (38)
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As the velocity errors can be directly observed, the analysis is focused on the attitude errors
and inertial sensor biases. Figures 4–6 present the estimates of the attitude errors, the accelerometer
and gyro biases in the X, Y and Z axes, respectively. For the non-rotating system, we can obtain
the following findings according to Property 1 when the roll, pitch and azimuth are 0◦, 0◦ and 0◦,
respectively: (1) only γZ, dX, dY are observable error states; (2) the pitch and roll errors are jointly
observable with γY and γX, respectively; (3) the azimuth error and dZ are unobservable. This is
consistent with the obtained results that (1) the estimates of γZ, dX , dY are quickly converged as they
are observable error states; (2) the estimates of the roll and pitch errors, as well as γY and γX cannot
converge, as they are jointly observable; (3) unconverged estimates of dZ leads to fast accumulation of
the azimuth error.

According to the Property 4, we can obtain the following findings for the rotating system with
the same attitude: (1) γX , γZ, εN , dX , dY, dZ are the observable error states; (2) γY is jointly observable
with the pitch error, εE; (3) the azimuth error is unobservable. The obtained results also prove the
above findings that (1) the converged estimates are obtained for the sensor biases, γX , γZ, dX , dY, dZ,
and the estimate of the roll error is quickly reduced to around zero; (2) the fluctuations observed in
the estimates of γY and the pitch error indicate their reduced estimability due to the fact that the two
errors are jointly observable; (3) although the azimuth error cannot be observed, the estimation of
dX and dZ significantly reduces its accumulations.

Apparently, the obtained results also verify that all error states, except for the azimuth error,
become observable in the rotating system when the pitch is 30◦, according to Property 4.Sensors 2017, 17, 698 14 of 21 
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Table 1 summarizes the RMS of the attitude errors and the estimates of the accelerometer and
gyro biases. Comparing to the results for the non-rotating test, the attitude errors are significantly
reduced when IMU is rotating, which indicate the enhanced estimability of the sensor biases, although
there is no reference.

Table 1. Estimates summary for non-rotating test and rotating tests with IMU rotation about Y axis.

Roll (◦) Pitch
(◦)

Azimuth
(◦)

Accl X
(m/s2)

Accl Y
(m/s2)

Accl Z
(m/s2)

Gyro X
(◦/h)

Gyro Y
(◦/h)

Gyro Z
(◦/h)

Non-rotating 0.71 1.24 25.91 0.112 0.223 0.009 683.1 −1786.7 495.9
Rotating (p = 0◦) 0.07 0.11 0.78 −0.010 0.007 0.007 748.2 −1802.1 1165.2
Rotating (p = 30◦) 0.08 0.08 2.02 −0.011 −0.007 0.008 777.1 −1804.9 1096.7

In summary, the IMU rotation about the Y axis improves the system observability that all error
states, except for the azimuth error, become observable when pitch is not zero. Even though the
azimuth error is still unobservable, the estimation of the gyro biases effectively limits its accumulation.
The estimability of the accelerometer bias in the Y axis is reduced when pitch is zero, as the
accelerometer biases in the east and north directions are jointly observable with roll and pitch errors in
such condition. Although only the results for IMU rotation about the Y axis are present, similar results
can be obtained for IMU rotation about the X axis. The only difference is that the roll angle of zero will
reduce the estimability of accelerometer bias in the X axis.

4.2. Results Analysis for IMU Rotation about Z axis

For the implementation of the IMU rotation about the Z axis, the middle frame of the rotation
table is rotated to vertical position (90◦), and the IMU axes are re-defined as the X axis pointing left,
the Y axis pointing forward and the Z axis pointing up, as shown in the plot (a) of Figure 5. Then the
rotation of the inner frame rotates the IMU about its Z axis. To verify the effect of the tilt angle on the
system observability, two rotating tests are conducted with middle frame remaining at angle positions
of 90◦ and 60◦, respectively, as shown in the plot (a) and (b) of Figure 7.Sensors 2017, 17, 698 16 of 21 
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When the roll, pitch and azimuth are 0◦, 0◦ and 0◦, respectively, the relationships between the
sensor biases in the sensor frame and the navigation frame can be described by Equation (39) for
the rotating system with IMU rotation about the Z axis. The sensor bias in the Z axis is same as the
bias in the up direction, while the biases in the east and north directions become periodic signals by
modulating the sensor biases in the X and Y axes: ∇E

∇N
∇U

 =

 cos ωt sin ωt 0
− sin ωt cos ωt 0

0 0 1


 ∇X
∇Y
∇Z

 =

 ∇X cos ωt +∇Y sin ωt
−∇X sin ωt +∇Y cos ωt

∇Z

 (39)

Figures 8–10 present the estimates of the attitude errors, the accelerometer and gyro biases in X, Y
and Z axes, respectively. According to Property 5, for the rotating system with the attitude of 0◦, 0◦ and 0◦,
except for the velocity errors, γZ is the only observable error state, and other jointly observable error
states include gεN + γX cos ωt + γY sin ωt, −gεE − γX sin ωt + γY cos ωt, ω(γX cos ωt + γY sin ωt) +
g(dX cos ωt + dY sin ωt) and ω(−γX sin ωt + γY cos ωt) + g(−dX sin ωt + dY cos ωt). As γX, γY, dX
and dY can only be jointly observable, their estimates cannot be converged as shown in Figures 9 and 10.
Due to the failed estimation of those biases, the modulation of the bias residuals causes the oscillating
roll and pitch errors as shown in Figure 8. The azimuth error is accumulated quickly as both the
azimuth error and dZ are unobservable. When pitch is 30◦, the estimates for the accelerometer
and gyro biases in the X, Y and Z axes are quickly converged, while the roll and pitch errors are
dropped to around zero. This verifies the Property 5 that when pitch is not zero, all error states
(not including the azimuth error) become observable, and the enhanced estimation of dZ effectively
limits the accumulation of the azimuth error.Sensors 2017, 17, 698 17 of 21 
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Table 2 summarizes the RMS of the attitude errors, the estimated accelerometer and gyro
biases. For the rotating system with a pitch angle, the improved observability of the sensor biases
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(the accelerometer biases in X and Y axes, as well as the gyro biases in the X, Y and Z axes) significantly
reduce the attitude errors comparing to the results for the rotating system with pitch of 0◦. Although
there is no reference, the reduced attitude errors can verify the estimated sensor biases in the rotating
system with a tilt angle.

Table 2. Estimates summary for non-rotating test and rotating tests with IMU rotation about Z axis.

Roll (◦) Pitch
(◦)

Azimuth
(◦)

Accl X
(m/s2)

Accl Y
(m/s2)

Accl Z
(m/s2)

Gyro X
(◦/h)

Gyro Y
(◦/h)

Gyro Z
(◦/h)

Non-rotating 0.39 0.34 59.7 0.033 −0.039 0.006 653.6 1028.1 538.3
Rotating (p = 0◦) 0.82 0.85 101.13 0.076 0.170 0.011 442.9 531.6 −243.4
Rotating (p = 30◦) 0.08 0.08 2.96 −0.012 0.008 0.010 776.1 1056.4 1766.0

Different from the IMU rotation about the X or Y axis, the tilt angle plays a very important role
for the system with IMU rotation about the Z axis. Although the IMU rotation significantly improves
the system observability with a tilt angle, it degrades the system observability when both the roll and
pitch are zeros, comparing to the non-rotating system.

5. Conclusions

In the absence of vehicle maneuvers, the observable error states are the velocity errors,
the accelerometer biases in the up direction, as well as the gyro biases in the east and north directions,
for an inertial system based on a low-cost MEMS IMU. Other error states are only jointly observable,
such as that the roll and pitch errors are jointly observable with the accelerometer biases in the east
and north directions, which make them cannot be uniquely determined with velocity measurements.
Moreover, the azimuth will be drifted quickly due to both the azimuth error and the gyro bias in
the up direction are unobservable. This research employs the IMU rotation to improve the system
observability. The observability analysis is conducted with a control-theoretic approach for the
rotating system with IMU rotation about the X, Y and Z axis, respectively. Tests are also conducted
to verify the improvements on the observability by IMU rotations. Both the theoretical analysis
and results indicate that all error states, except the azimuth error, become observable through IMU
rotations, and the enhanced estimability of the gyro bias in the up direction effectively limits the
accumulation of the azimuth error. In fact, the system observability is also dependent upon the
attitude. In certain conditions, the IMU rotation may degrade the observability of some error state that
(1) the accelerometer in the X or Y axis cannot be solely observable with IMU rotation about the X or
Y axis when the roll or pitch is zero, respectively; (2) the attitude errors, as well as the accelerometer
and gyro biases, cannot be solely observable with IMU rotation about Z axis when both roll and
pitch are zeros.
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