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Abstract: Neurotransmitters detection is critical to understanding communication between the brain
and peripheral tissue. Serotonin is a key neurotransmitter linked to a number of conditions, but a full
understanding of its role in disease is still lacking. The development of fast and selective serotonin
detection platforms will provide researchers with tools to monitor serotonin in individuals before and
after treatment for the condition of interest. Aptamer-gold nanoparticles conjugates that responded
colorimetrically to serotonin with minimal response to its metabolite and other neurotransmitters were
designed by simply adsorbing the DNA on the surface of AuNPs. A plasmonic assay for serotonin
detection was designed with a response to biologically relevant serotonin levels. Importantly,
the assay performance was not compromised when tested in filtered spiked fetal bovine serum
as a mimic of biofluids. This work shows that these simple and stable Apt-AuNP conjugates are
promising tools to develop fast assays for point-of-care and personalized diagnostics applications.
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1. Introduction

Serotonin (5-hydroxytryptamine) is a neurotransmitter of critical importance in the central nervous
system with neuromodulation properties influencing sleep pattern regulation, aggression and drive,
appetite control, and sexual activity [1]. Serotonin is synthesized in different locations including the
brain, spinal cord, and the intestine [2] and exists as free-serotonin or serotonin contained in platelets.
Serotonin is found in the circulatory system, which is where it was originally discovered [3,4]. Although
its physiological role is not fully understood [2], peripheral serotonin levels and their imbalance have
been linked to a number of conditions including primary pulmonary hypertension [5], blood pressure
regulation [6], kidney disease [7], and depression [8]. While platelet-poor plasma serotonin levels
are in the ~1–100 nM range [9], typical serotonin levels in whole blood have been reported to be in a
range that spans from ~500 nM to ~1.7 µM in healthy subjects [10]. Importantly, patients with major
depressive disorder were found to have lower serotonin blood levels than healthy controls (~0.3 µM
vs. ~1.15 µM) [8] and a similar trend was observed for type 2 diabetes with chronic kidney disease
(~0.5 µM vs. ~0.713 µM) [7]. These results show the potential of using serotonin as a biomarker for
identifying different conditions and for monitoring treatment to restore its imbalance.

Multiple methods to quantify serotonin in whole blood and platelet-poor plasma have been
proposed. Most of these methods are based on HPLC separation of serotonin and other species with
similar chemical structures present in whole blood, coupled to a detection method such as MS-MS [3]
or measurement of its intrinsic fluorescence [7,8,11]. These approaches have provided a number of
platforms for accurate and precise serotonin quantification, but they have a few drawbacks that prevent
their implementation in rapid diagnostics formats: they require specialized instrumentation and are
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time consuming. Therefore, tools for monitoring serotonin levels in whole blood that are fast, use low
samples volumes, and require minimal sample treatment would be of great value in the clinical field,
especially in the emerging field of personalized medicine.

Recently, new sensor platforms for serotonin detection have been proposed, including modified
electrodes [12–14], cyclodextrins [15], and molecularly imprinted polymers [16,17]. Aptamers are an
appealing alternative for creating sensing approaches for catecholamines and other neurotransmitters.
Aptamers are versatile DNA or RNA capture elements that can be selected to bind an analyte with
great selectivity over chemically similar species [18,19]. They offer many advantages over other
biorecognition elements, including their ease of chemical derivatization for sensor immobilization,
thermal stability, and structure switching properties that are advantageous for transducing the binding
event into different outputs in a sensor platform [20]. The combination of gold nanoparticles and
aptamers has resulted in the design of a number of successful colorimetric sensors for different targets
that have revolutionized the field of diagnostics [21,22]. In this contribution, we report the design of an
assay for serotonin based on the use aptamer-gold nanoparticle conjugates (Apt-AuNPs) that utilizes
small sample volumes (10 µL), with short response times (<15 min) and with an easily detectable
output (colorimetric) that could be coupled to portable devices such as smartphones and tablets for
on-the-spot analysis [23].

2. Materials and Methods

All chemicals were obtained from Sigma-Aldrich (St. Louis, MO, USA), the HPLC-purified
DNA aptamer (catalog number: Nore-5XO2O293932C) was purchased from Base Pair Biotechnologies
(Pearland, TX, USA), and methanol was obtained from OmniSolv (Charlotte, NC, USA). Amicon
filters with 3 kDa MWCO, PBS buffer (10×), nuclease-free water, and fetal bovine serum were
purchased from Invitrogen. AuNPs were home-made and synthesized as reported previously with
no modifications [24]. The AuNP extinction was measured in a Synergy HT plate-reader from Biotek
(North Shoreline, WA, USA).

2.1. Apt-AuNPs Preparation

The DNA was introduced to the “as-prepared” AuNPs at a ratio of 150 strands of DNA per
AuNP, and allowed to incubate for two hours. Typically, 2.5 mL of a 10 nM AuNP suspension was
mixed with 4.5 µL of a 1 mM aptamer solution prepared in DNAse-free water followed by vortexing
for 1 min. Subsequently, the Apt-AuNPs were mixed with an equal volume of a 0.25× PBS buffer
supplemented with 2 mM·MgCl2 (pH 7.4), to obtain a final buffer composition in the system of
0.125× PBS/1 mM·MgCl2 (assay buffer). After overnight incubation, the Apt-AuNPs were ready to
be used for serotonin detection. A similar protocol was followed to prepare the negative control
Apt-AuNPs, using an estradiol-binding aptamer [25].

2.2. Transmission Electron Microscopy

Images were taken in a Hitachi H-7600 (Hitachi Ltd., Tokyo, Japan), samples were prepared
as described in Section 2.3. The Apt-AuNPs were exposed to serotonin (5 µM) followed by NaCl
addition. After 15 min of incubation, a drop of the suspension was deposited in a 200 mesh copper
grid with a formvar carbon film (Electron Microscopy Sciences, Hatfield, PA, USA). Fifteen minutes
later, the top liquid was removed and left to dry overnight before imaging was performed. To avoid
over-aggregation due to drying, the NaCl concentration was reduced to half its typical value (250 mM).

2.3. Serotonin Assay

Serotonin solutions were prepared by diluting stock methanolic solutions 10 times with an assay
buffer to obtain the serotonin concentrations needed. Having a fixed dilution factor for all stock
solution helped to keep the methanol content consistent and avoid any effects from varying amounts
of organic solvent in the assay response. To test the response of the Apt-AuNPs, 90 µL of Apt-AuNPs
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were mixed with 10 µL of the serotonin solution and incubated for 5 min, which was followed by an
addition of a stock solution of NaCl. The assay was optimized by finding the NaCl concentration
that promoted severe Apt-AuNP aggregation when exposed to a blank sample (buffer containing a
10% methanol) but moderate or minimal aggregation in the presence of serotonin. The aggregation
degree was monitored for 7 min. In this work, we defined the aggregation degree as the ratio of the
AuNPs extinction at 530 nm (dispersed AuNPs) and 650 nm (aggregated AuNPs). The assay was
further tuned for maximum response by maximizing the difference between the signal obtained with
the blank and a 1 µM serotonin solution. The assay test in biofluids was performed with FBS that
was filtered first with a 0.22 µm sterile nylon filter, followed by centrifugation of the filtered FBS with
3 kDa MWCO Amicon filters. After 10 min, the supernatant was cloudy and retained most of the
larger components, while leaving the centrifugate clear. The treated FBS was then spiked with different
serotonin and epinephrine concentrations, keeping the same FBS content. The assay was re-adjusted
as explained above to obtain the salt concentration necessary to allow a clear difference in response to
the target and negative controls.

3. Results

Citrate-stabilized AuNPs (~15 nm) have been used in different sensor platforms due to their ability
to interact with different species and facilitate signal generation. For instance, different molecules
and proteins can coordinate with the AuNPs’ surfaces, resulting in a layer of adsorbed species that
affect the AuNPs’ stability, either increasing or decreasing their susceptibility to aggregation in the
presence of salt [26]. However, the relatively fragile nature of citrate-stabilized AuNPs might limit
their application in neurotransmitter detection in complex biofluids such as blood or serum, due to
the presence of multiple chemical species, including proteins with high surface activity that tend to
form a protein corona, see Figure 1 for chemical structures of neurotransmitters of interest in this
study [27]. Therefore, we decided to tune the selectivity of the AuNPs toward serotonin by using
aptamers, as shown below.
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Figure 1. Chemical structure of neurotransmitters used in this study.

3.1. Characterization of Apt-AuNPs’ Response to Serotonin

The serotonin sensing Apt-AuNPs were prepared by the physical adsorption of the DNA on the
AuNPs’ surfaces through an overnight incubation in a buffer. In this step, the DNA is left to interact
at room temperature with the AuNPs and a stable conjugate is obtained that remains well dispersed
with minimal aggregation for a few weeks, stored at 4 ◦C. We have previously demonstrated that this
type of Apt-AuNP could be designed with different aptamers that target different small molecule
analytes [23,28,29]. Our first experiments demonstrated that the binding of serotonin to Apt-AuNPs
improved their stability against salt-induced aggregation, as shown in Figure 2A. Importantly, in most
cases of aptamer-controlled AuNP-based assays, analyte binding resulted in AuNP aggregation due to
a target-induced aptamer conformational change that disrupted the stabilizing interactions provided
by the negatively charged DNA strands [30]. In the case observed here, as shown in Figure 2A,
the aggregation degree decreased in the presence of serotonin, compared to the blank and to its
metabolite 5-hydroxyindoleacetic acid (5-HIAA). To investigate whether this response was mediated
by the DNA on the AuNPs’ surfaces, we tested the assay in a similar fashion using an estradiol-binding
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aptamer that our group has used in the past [25]. In this case, the NaCl needed was adjusted to result
in an aggregation degree similar to the blank so that the results of the assays could be compared.
As observed in Figure 2B, minimal responses to the presence of the analytes was observed despite the
high analyte concentration tested (100 µM), compared to the serotonin assay (5 µM). These results
confirmed the critical role that the DNA aptamer plays in the assay response and its selectivity.
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Figure 2. Assay characterization. (A) Apt-AuNP aggregation degree after exposure to a blank,
serotonin, and 5-HIAA (5 µM each) 2 min after the addition of NaCl (484 mM). (B) Assay performed
with estradiol-binding aptamer-coated AuNPs, using analytes at a concentration of 100 µM and NaCl
of 750 mM, E = epinephrine, NE = norepinephrine, DPM = dopamine.

To confirm that the response observed due to serotonin binding was a result of Apt-AuNP
aggregation, we imaged the system via TEM after addition of a blank solution and serotonin (5 µM)
followed by NaCl addition. To avoid over aggregation due to drying, the NaCl concentration was
reduced to half the concentration used in the typical assay; furthermore, the liquid was removed after
a 15 min incubation in the grid. The images clearly showed that significant AuNP aggregation is
observed in the absence of serotonin, but well-dispersed AuNPs are observed after serotonin binding
(Figure 3A,B). We acknowledge that the kinetics of the aggregation process could be different than
under the typical assay conditions, but it has been shown in the past that this AuNP treatment for
TEM imaging correlates qualitatively well with the assay in solution [24]. Apt-AuNP aggregation
is a dynamic process that is triggered by NaCl [28]. As shown in Figure 3C, the time allowed for
Apt-AuNP aggregation in the presence of the target can be selected to provide the largest difference
with the blank and to improve the sensitivity of the system. Importantly, even one minute after salt
addition, the difference in response can be observed, showing that a fast response can be obtained
with these systems. Based on this data, a 5 min aggregation time was selected before measuring the
aggregation to characterize the linear response of the system to serotonin.
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Figure 3. TEM images of Apt-AuNPs exposed to (A) blank and (B) serotonin (5 µM), followed by
addition of NaCl, scale bar 400 nm. (C) Kinetics aggregation plot showing the change in aggregation
degree after NaCl addition over time, NaCl = 550 mM. Error bars represent the standard deviation of
three independent experiments.
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3.2. Mechanism of Response

Based on the assay characterization data, we propose a response mechanism, as shown in Figure 4,
in which serotonin binding to the aptamer resulted in a DNA conformation with higher affinity for the
AuNPs’ surfaces. The interaction between the serotonin-aptamer complex and the AuNPs’ surfaces
improves the AuNPs’ stability; however, the specific AuNP-aptamer interactions that resulted in this
mechanism of response are currently under investigation and are believed to be dependent on the
specific conformational change induced by serotonin binding. Importantly, the assay response can be
observed with the naked eye, as shown in Figure 4B, which shows that this assay has great potential
for interfacing with analytical tools for color quantification developed in portable devices, including
cell phones and tablets, as has been recently demonstrated [23].
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Figure 4. Proposed mechanism of Apt-AuNPs’ response to serotonin. (A) Schematic representation of
the proposed mechanism, in which target binding results in an aptamer conformation that improves
Apt-AuNPs’ stability against salt-induced aggregation. (B) Assay color change in response to serotonin
and its metabolite 5-HIAA.

3.3. Serotonin Assay Response Characterization

With the optimized conditions for Apt-AuNPs’ response, we designed a serotonin assay and
characterized its response over biologically relevant levels. As shown in Figure 5A, a satisfactory
linear response was observed in the physiologically relevant concentration range of 750 nM to 2.5 µM
(132 ng/mL to 440 ng/mL), with a limit of detection based on the signal of the blank minus three
times its standard deviation of ~300 nM (52 ng/mL). The selectivity of the assay was characterized by
comparing the responses to serotonin (600 nM) and its metabolite 5-HIAA (1 µM) (Figure 5B), observing
a minimal response to 5-HIAA even at concentrations well above its typical concentration in blood
(~100 nM) [10]. Similarly, the assay was tested with other relevant neurotransmitters, epinephrine
and norepinephrine (1 µM each), observing responses with no statistical significance. Importantly, the
concentrations tested were one order of magnitude higher than typical blood NE values and at least
two orders of magnitude higher for E. These data demonstrated the selectivity of the assay and showed
promise for serotonin detection in biofluids. We are currently working on addressing the stability of the
Apt-AuNPs over time. In general, the response of the assay is maintained for at least a few weeks when
stored at 4 ◦C, but we have observed that, within a few days of the Apt-AuNPs preparation, the overall
sensitivity of the assay can be affected. For instance, the data in Figure 5B was obtained using a
lower NaCl concentration than 5A, but the aggregation degree was higher since this was run with a
fresh batch of AuNPs. As the particles age, the sensitivity to NaCl decreases, but the response to its
analyte is maintained. We are currently exploring different storage approaches including lyophilization
of the Apt-AuNPs, which has been demonstrated to help maintain Apt-AuNPs’ sensitivity to their
targets [31].
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3.4. Initial Assay Characterization in Biofluids

Finally, we tested the performance of these Apt-AuNPs in spiked fetal bovine serum (FBS),
as a mimic of biological samples. In this case, we could not use 5-HIAA as a negative control, since we
found that the stock methanol solutions of serotonin and 5-HIAA further diluted with FBS resulted
in inconsistent results (the reason for these findings are still under investigation). Therefore, stock
solutions of the hydrochloride salts of serotonin and epinephrine were prepared in a buffer and finally
diluted with FBS. The absence of methanol in the FBS samples seemed to prevent the issues found in the
preliminary experiments. The samples were treated simply by spinning FBS through Amicon filters to
remove proteins present in these biofluids, which was observed in preliminary experiments to prevent
the Apt-AuNPs’ response to serotonin. It was noticeable that the presence of the proteins prevented the
Apt-AuNP aggregation even at high NaCl concentrations. We hypothesized that electrostatic-driven
protein adsorption on the negatively charged Apt-AuNPs resulted in surface passivation that masked
the serotonin binding effect on the Apt-AuNPs’ stability. Accordingly, we observed that the NaCl
concentration needed to promote the assay response was significantly higher than that in the buffer
(690 mM). Importantly, spiked samples with a final FBS content of 75% showed the expected response
to 1.5 µM serotonin with no statistically significant response to epinephrine, showing the robust nature
of these Apt-AuNPs (Figure 6). These findings suggest that minimal sample treatment/dilution might
be necessary to quantify serotonin in biofluids, confirming that these Apt-AuNPs conjugates are
promising biosensors for fast biomarker detection.
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finally diluted with FBS. The absence of methanol in the FBS samples seemed to prevent the issues 

found in the preliminary experiments. The samples were treated simply by spinning FBS through 

Amicon filters to remove proteins present in these biofluids, which was observed in preliminary 

experiments to prevent the Apt-AuNPs’ response to serotonin. It was noticeable that the presence of 

the proteins prevented the Apt-AuNP aggregation even at high NaCl concentrations. We 

hypothesized that electrostatic-driven protein adsorption on the negatively charged Apt-AuNPs 

resulted in surface passivation that masked the serotonin binding effect on the Apt-AuNPs’ stability. 

Accordingly, we observed that the NaCl concentration needed to promote the assay response was 

significantly higher than that in the buffer (690 mM). Importantly, spiked samples with a final FBS 

content of 75% showed the expected response to 1.5 µM serotonin with no statistically significant 

response to epinephrine, showing the robust nature of these Apt-AuNPs (Figure 6). These findings 

suggest that minimal sample treatment/dilution might be necessary to quantify serotonin in 

biofluids, confirming that these Apt-AuNPs conjugates are promising biosensors for fast  

biomarker detection. 

 

Figure 6. Assay response to 1.5 µM analytes in treated-fetal bovine serum (FBS). Samples were diluted 

from a buffer stock solution to a final treated-FBS content of 75% (NaCl = 690 mM). Error bars 

represent the standard deviation from two independent experiments. 

Figure 6. Assay response to 1.5 µM analytes in treated-fetal bovine serum (FBS). Samples were diluted
from a buffer stock solution to a final treated-FBS content of 75% (NaCl = 690 mM). Error bars represent
the standard deviation from two independent experiments.
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4. Conclusions

Aptamer-AuNP conjugates were designed by adsorbing an aptamer to citrate-stabilized AuNPs.
It was observed that the Apt-AuNPs improved their stability against salt-induced aggregation as
a consequence of serotonin binding. A mechanism of response in which an analyte binding to the
aptamer resulted in a target-DNA complex that remained on the AuNPs’ surfaces and improved
the AuNPs’ stability was proposed and is currently under investigation. A plasmonic assay that
responded to serotonin in biologically relevant levels was designed based on these Apt-AuNPs.
Importantly, the assay involved simply mixing the samples with the Apt-AuNPs and, after a 5 min
incubation time, with the addition of NaCl with a total assay time of less than 15 min. The added
stability of the analyte-bound conjugates allowed for the use of the serotonin assay in biofluids,
opening the door for their use in different applications including clinical biomarker quantification and
point-of-care diagnostics.
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