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Abstract: In order to facilitate cooperation between underwater robots, it is a must for robots to
exchange information with unambiguous meaning. However, heterogeneity, existing in information
pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked
ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs)
ontology, to address information heterogeneity and enable robots to have the same understanding
of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set
of domain-specific ontologies, including the mission and planning, the robotic vehicle, the
communication and networking, and the environment recognition and sensing ontology. In addition,
the SWARMSs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate
context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the
SWARMSs ontology can provide both a formal specification for information that is necessarily
exchanged between robots and a command and control entity, and also support for uncertainty
reasoning. A scenario on chemical pollution monitoring is described and used to showcase how
the SWARMSs ontology can be instantiated, be extended, represent context uncertainty, and support
uncertainty reasoning.
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1. Introduction

Underwater robots are becoming more and more popular to carry out maritime operations,
such as oil spill detection [1], bathymetric survey [2], plume tracking [3] and corrosion repair [4].
Underwater robots include heterogeneous vehicles capable of providing different functionalities, such
as Autonomous Underwater Vehicles (AUVs), Autonomous Surface Vehicles (ASVs), and Remotely
Operated Vehicles (ROVs), to perform maritime and underwater-related tasks. While dealing with
complex missions that outmatch the capabilities of a single robotic vehicle (e.g., it is not realistic to
use a single ROV for constructing a berm on seabed) or operations that are dangerous for divers,
seamless cooperation between different vehicles is demanded to tackle the complexity or riskiness of
maritime missions.

To enable cooperation between a variety of maritime robotic vehicles, namely produced by
different manufacturers, thus opening up new applications and ensuring reusability, is one of the
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main objectives of the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs)
(The SWARMSs project: http://swarms.eu/) project, a European project in the field of underwater
cyber-physical systems (CPS) and robotics. In order to achieve this ambitious goal, the SWARMs
project must tackle a set of challenges [5], e.g., defiant maritime and underwater communication and
data heterogeneity.

1.1. The Need for Semantic Interoperability in the Cooperation of Underwater Robots

In order to cooperatively carry out maritime operations, it is vital that vehicles should be able
to collect information and share it among themselves, and with a command and control entity as
well, without ambiguous meaning. A variety of information could be obtained from different data
producers, such as sensors, vehicles, and external sources (e.g., weather forecast system). Substantial
difficulties arise when attempting to exchange information between vehicles. In particular, data
heterogeneity obstructs effective information exchange between vehicles to a great extent. Information,
pertained to heterogeneous data producers, may be described in different formats, such as JavaScript
Object Notation (JSON), depending on their type and involved manufacturer. In addition, even when
different vehicles use the same terminology, sometimes it is interpreted with different meanings.
For instance, the term Position is used to represent a local frame georeferenced location in robot A
while robot B uses it to express its angular coordinates. Therefore, in order to tackle data heterogeneity,
semantic interoperability must be guaranteed in the SWARMSs system to enable transparent information
sharing. It is a necessity to enable machine computable logic, inference, knowledge discovery, and data
federation between computer systems (e.g., vehicles, and SWARMs platform components). Information
exchanged must be explicitly modeled with rich semantics so that data heterogeneity can be abstracted
and unambiguously understood by all involved robotic vehicles.

1.2. The SWARMs Approach

Ontologies provide a formal specification of conceptualization in a well-defined and unambiguous
manner; thus, they facilitate knowledge sharing and reusing. They are widely used to formally
represent information in many domains, such as semantic web [6], smart home [7], and healthcare [8].
The SWARMSs project also adopts ontologies to model all information that is necessarily exchanged
between vehicles. A networked ontology is developed as a part of the SWARMSs semantic middleware.
As shown in Figure 1, the semantic middleware is defined to provide interactions between vehicles and
the Mission Management Tool (MMT), which is located onshore or on a vessel and is responsible for the
generation of missions, assignment of tasks to robots, and supervising the mission. More importantly,
the semantic middleware can offer a variety of common services (e.g., security, context awareness, and
publishing/subscription) for vehicles and MMT in the SWARMSs project.

The networked ontology, encased in the SWARMS Ontology component, acts as a common
information model to represent different domain-specific information and enables knowledge sharing
within the SWARMs system. Specifically, it abstracts information, which is classified into four
domains, including robotic vehicles, mission and planning, environment recognition and sensing,
and communication and networking. In addition, it also provides valuable inputs for the context
reasoner component to execute effective context reasoning. The context reasoner employs a hybrid
context reasoning method [9], which includes ontological, rule-based, and Multi-Entity Bayesian
Network (MEBN) reasoning. It is worth noting that information that is obtained by sensors or other
sensing instruments is prone to be uncertain in the underwater environment [5] due to partial views,
imperfect instruments, challenging communications, data loss, etc. Thus, uncertainty, as an inherent
characteristic of information, also needs to be formally annotated in the SWARMSs ontology for the sake
of completeness in knowledge representation and also to provide support for uncertainty reasoning
defined in the context reasoner component. The PR-OWL ontology, proposed by Rommel et al. [10],
provides a principled formalism to represent uncertainty complying with the MEBN theory. It defines
a set of ontology constructs that can be used to annotate probabilities about uncertain information and
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provide support for the hybrid context reasoning in the context reasoner. Thus, incorporated with
PR-OWL ontology constructs, the SWARMSs ontology can provide a complete and formal representation
of information exchanged between vehicles, enable information sharing and reuse, and support for the

ease of performing hybrid context reasoning.
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Figure 1. The SWARMSs semantic middleware architecture.

1.3. Contributions Offered in This Paper

The main contributions provided by this manuscript can be summarized as follows:

including functional and non-functional requirements;

Thorough analysis of the domain and purpose of the SWARMSs ontology and its requirements,
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e  Presentation of the SWARMSs ontology, which is a network of different ontologies, along with
brief descriptions of its main concepts and relationships; and

e  Exploration of the applicability and extensibility of the SWARMSs ontology by using a chemical
pollution use case and a preliminary proof of its capability of supporting different context
reasoning methods, including ontological, rule-based, and MEBN reasoning.

The remainder of this paper is structured as follows. Section 2 reviews existing ontologies
in the field of cooperative underwater robots and off-the-shelf context reasoning for dealing with
uncertainties. Afterward, Section 3 analyzes the main purpose and scope of the SWARMSs ontology and
requirements that it needs to meet. The SWARMSs ontology is presented in Section 4. Then, a use case
on chemical pollution detection is presented in Section 5 to showcase the applicability and extensibility
of the SWARMSs ontology and also verify its capability to support different context reasoning methods
at a simulated level. Finally, Section 6 provides the conclusions and also points out future work.

2. Related Work

In this section, a review of existing ontologies relevant to the coordination and cooperation of
underwater vehicles is presented. In addition, current solutions for addressing uncertainty in the
knowledge representation and reasoning fields are reviewed.

2.1. Existing Ontologies for the Cooperation and Coordination of Underwater Robots

There is an upsurge in using ontologies to enable a formal representation for the robotic field [11].
The IEEE RAS Ontologies for Robotics and Automation Working Group [12] has been developing a
standard ontology model to represent the knowledge and reasoning in autonomous robots, such as
air, ground, and underwater vehicles. However, this ontology focuses on presenting a very high-level
service representation for vehicles themselves, such as sensors, resources, capabilities, platform, tasks,
and mission. Context, which is useful to characterize the operational environment of vehicles, is not
considered by this ontology. The ontology proposed by Insaurralde et al. [13] also lacks the inclusion
of environmental context, though it provides a good representation of planning and control systems
for AUVs. The KnowRob [14] knowledge processing framework developed a set of ontologies to
abstract robot actions, events, objects, environments, and the robot’s hardware as well as inference
procedures that operate on this common representation. The KnowRob puts its emphasis on improving
the autonomy of individual vehicles instead of enabling the cooperation and coordination of multiple
vehicles. In addition, the household robots, rather than underwater robots, are the target modeling
domain of the KnowRob ontologies. Similar to KnowRob, the ORO [15] system also leveraged a
core robotics ontology to integrate data from diverse sources, such as sensors, domain knowledge,
and human input. Nevertheless, the focus of the ORO ontologies is to help robots in interactions
with humans. The RobotML [16] ontology, also known as PROTEUS ontology, was developed in
the framework of the French research project PROTEUS [17]. The RobotML ontology aimed to
enable scientific knowledge transfer between different robotic communities by formalizing the robots,
their environments, robot parts, operations, mission, planning, their detailed behaviors, scenarios,
etc. However, due to its complexity, the developed RobotML ontology cannot be directly used for
exploitation as users must perform the semi-automatic transformation from the ontology to a UML
representation. Besides, the RobotML is quite specific to their application; thus, it lacks generality to be
reused in the underwater robots field. A reference ontology of collective behavior of autonomous was
developed by Gorodetsky et al. [18]. This ontology provides model of the system and environment,
model of interaction between the system objects and the environment, and model of the behavior
of the system objects and the environment. Ontologies were also extensively adopted to provide
semantic formalizations for many robotic applications, such as monitoring of the execution of robot
plans [19], robots task planning [20], navigation planning [21], urban search and rescue missions with
robots [22], space exploration using robots [23], and supervision of underwater environments for
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robots [24]. All these application specific ontologies for robots are conceived at a too specific and
limited level to cover the overall modeling requirements from the cooperation of underwater vehicles.
It is also worth noting that a common lack exists in all the aforementioned robotic ontologies, except the
KnowRob framework. They assume a deterministic world without considering context uncertainties,
let alone properly model them. In the underwater robots field, uncertainty is the norm rather than
the exception in context data. Therefore, this paper will present an ontology for the representation of
coordination and cooperation of underwater vehicles based on existing relevant robotic ontologies.
The proposed SWARMSs ontology is general enough to cover necessary context from different domains,
such as mission and planning, communication and networking, robotic vehicle, and environment
recognition and sensing. In addition, uncertainties, as an inherent characteristic of context data, will
be modeled in the presented ontology. With the inclusion of uncertainties, the proposed SWARMs
ontology can not only completely represent the world of knowledge but also provide the ease of using
a reasoning system.

2.2. Existing Solutions for Modeling Uncertainties

The W3C UR3W-XG group [25] proposed an ontology of uncertainty which captures top-level
classes and properties for characterizing the uncertainty consideration in ontologies. Uncertainty
that might exist in ontologies is classified into five main types: ambiguity, randomness, vagueness,
inconsistency, and incompleteness. Different mathematical theories could be used to deal with different
types of uncertainty reasoning: fuzzy logic, Bayesian network (BN), Markov logic network, etc.
In order to model different kinds of uncertainty and further provide support for uncertainty reasoning,
several attempts have been followed. For instance, Bobillo et al. [26] introduced fuzzy logic in
crisp ontologies to capture and represent vagueness of uncertain information. They proposed to
model fuzzy ontology elements (e.g., fuzzy data types, fuzzy concepts, and fuzzy modifiers) by
using the Web Ontology Language (OWL) 2 annotations. Probability is the best-known formalism for
computational uncertainty reasoning, particularly effective for addressing randomness, inaccuracy, and
incompleteness of uncertain information. While introducing uncertainty in knowledge representation
languages has been an afterthought, it is common to use simple XML tags to express the probability
value which is a number ranging from 0 to 1. However, this is just one simple aspect of probabilities.
Probability has been regarded by many authors to be more about structure than it is about numbers.
For instance, to model uncertainty from a probabilistic aspect and enable the ease of applying BN
reasoning, Yang et al. [27] proposed a probability-annotation approach. Specifically, three ontology
concepts, including “PriorProb”, “CondProb”, and “FullProbDist”, were defined to conceptualize
collections of Bayesian related definitions. In addition, a data property “ProbValue” was proposed
to link “PriorProb” and “CondProb” with the probabilistic value varying from 0 to 1. BN is effective
to model and reason a fixed number of hypotheses. However, it cannot reason problems which
involve a varying number of entities. To address this shortcoming of BN, Multi-Entity Bayesian
Network (MEBN) [28], as an extension of standard BN, was proposed by Laskey et al. The PR-OWL
ontology [29], which complies with the MEBN theory, was also proposed to annotate probability
information about uncertain context. The MEBN could be very effective in reasoning problems in
the presence of uncertainties with a varying number of entities involved. The approach of using the
PR-OWL ontology to annotate uncertainty information in ontologies and provide support for MEBN
reasoning has been adopted in many applications, such as procurement fraud detection [30], maritime
awareness [31], and knowledge-driven analysis for cultural heritage [32]. As addressing context
uncertainty, particularly focusing on its inaccuracy, incompleteness, and randomness features, this
paper will firstly introduce the use of PR-OWL to annotate probability information and further provide
support for MEBN reasoning over uncertainties in the underwater robot field. Incorporated with
ontology constructs defined in the PR-OWL ontology, the proposed SWARMs ontology can properly
model uncertainties and provide a complete representation for the coordination and cooperation of
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underwater vehicles. In addition, the probability-annotated SWARMs ontology can provide support
for a hybrid context reasoning mechanism, including ontological, rule-based, and MEBN reasoning.

3. Modeling Considerations for the SWARMSs Ontology

In this section, several modeling considerations are presented for the devisal of the SWARMs
ontology. Specifically, Section 3.1 states the main purpose and scope of the SWARMs ontology. A set of
functionalities that the SWARMs ontology can provide is discussed in Section 3.2.

3.1. Ontology Purpose and Scope

It is very important to clarify the domain and scope of the target modeling information. With a
clear understanding of the purpose and scope, it is possible to define what concepts should be
included or excluded from the SWARMSs ontology. In addition, the viability, domain, and objectives of
the SWARMSs ontology can set requirements for the ontology design and provide an initial idea
of the underlying semantics. The SWARMSs ontology intends to model all information that is
necessarily exchanged between any maritime or underwater vehicles and architecture components
(e.g., middleware modules, MMT modules). In the scope of the SWARMSs project and its application
scenarios (e.g., oil spill detection, plume tracking, and berm construction), the wide range of
information could be summarized into four different domains: robotic vehicles, mission and planning,
environment recognition and sensing, and communication and networking. The purpose of developing
the SWARM s ontology is to provide a formal representation of all four domain-specific information so
that context heterogeneity can be abstracted and a common understanding can be achieved by vehicles
and any SWARM s architecture components or entities. In addition, it is necessary to ensure extensibility
of the SWARM s ontology so that it could be tailored to different scenarios with application extensions.

3.2. Ontology Requirements

In order to achieve the purpose and ensure an appropriate outcome, the SWARMs ontology
should meet a set of requirements. These requirements can be grouped by non-functional and
functional requirements.

3.2.1. Non-Functional Requirements

Non-functional requirements are general requirements or aspects that an ontology should fulfill
for the sake of modeling quality. They also refer to those ontological principles that guide the
design process. According to the NeOn [33] methodology, interoperability, modularity, reusability, and
extensibility are the important characteristics that an ontology should offer. Specifically, the SWARMs
ontology should ensure interoperability between heterogeneous vehicles or software components
in terms of syntax and semantics. With the interoperability feature, the SWARMSs ontology will
enable vehicles with a common understanding of the information exchanged between themselves.
The SWARMSs ontology should also be modular so that minimum coupling and maximum cohesion
could be achieved. In addition, reusability is a must for the SWARMSs ontology, thus supporting
that its portions could be re-engineered in different domains or applications. The SWARMs ontology
should be able to be extended with application enrichment. With the extensibility, it could be stretched
in width in order to suit different applications or scenarios. In addition, the SWARMs ontology
should be formalized following two more non-functional requirements [34]. (1) Understandability:
The nomenclature of the SWARMs ontology should be easily understandable to all stakeholders,
e.g., ontology engineers, marine experts, end users and operators. The naming for the SWARMs
ontology elements should be self-explanatory and reveal an intuitive meaning; (2) Conciseness: To model
the same domain of interest, a lightweight ontology is usually preferable to heavier ones. The SWARMSs
ontology should use the least number of words to express the most without redundancies so as to
decrease the complexity of the design process.
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3.2.2. Functional Requirements

The SWARMSs ontology can fulfill a set of functional requirements, namely, content-specific
requirements, to fully represent information within the target scope. The functional requirements are
grouped as follows.

e The SWARMs ontology must provide the mission and planning modeling. Two levels of
abstraction of the mission and planning can be described by the SWARMSs ontology. Firstly,
the high-level planning that allows the user to describe different tasks regarding operations
performed by a set of robotic vehicles without specifying the exact actions that each robotic
vehicle needs to perform. The output of the high-level planning is a global mission plan consisting
of the tasks that the swarm of robotic vehicles needs to perform. Secondly, low-level planning that
is carried out at the robotic vehicle level and includes generation of waypoints, actions, and other
similar low-level tasks. The output of the low-level planning is a vehicle plan. The mission and
planning procedure needs to be decomposed and well represented in the SWARMs ontology so
that vehicles can share tasks/operations/actions and understand them in the same manner so
that cooperation and coordination could be fostered.

e The SWARMSs ontology must provide a well-defined classification for the robots and vehicles that
are used in the different missions and their attributes. Any information that could be useful for
operators to understand the vehicles and their conditions is modeled in the SWARMSs ontology.
Different properties used to describe vehicles, such as motorized, propelled, non-motorized,
speed, position, battery level, equipment, capabilities, and sensors onboard, are modeled with
semantic annotations in the SWARMSs ontology.

e The SWARMs ontology must provide an abstraction for communication and networking in
the SWARMs architecture. It must describe the communication links available in SWARMs
architecture to transfer information from the command and control station (CCS) to the vehicles
and backward. In addition, it must provide modeling of the protocol and types of messages that
can be transmitted within the SWARMs system.

e  The SWARMSs ontology must support the environment recognition and sensing modeling. Robotic
vehicles involved in a mission should have a complete picture of the underwater environment
so that they could better adapt to it accordingly. Thus, the SWARMSs ontology provides a good
representation of the underwater environment. Any information, that is defined targeting to
characterize the environment, its recognition, and associated sensing, is properly modeled in the
SWARMSs ontology. For instance, sensors play a very significant role in sensing the environment
and producing useful context data to represent it. The environment is defined through a set of
main concepts, which are specified by particular properties that define the surroundings of the
location where a mission or task takes place involving robotic vehicles. A variety of environmental
properties, such as water salinity, conductivity, temperature, and currents, are formalized in the
SWARMSs ontology.

e The SWARMSs ontology must model context uncertainties and support for uncertainty reasoning.
The harsh maritime and underwater environment typically introduces uncertainties in context
data, particularly in such data obtained by sensors or other sensing instruments. The SWARMs
ontology can provide a suitable representation for context uncertainties for the sake of
completeness and comprehensiveness. In addition, the uncertainty annotations provided by the
SWARMs ontology are useful for further reasoning. In other words, the SWARMSs ontology can
enable the ease of applying uncertainty reasoning in order to generate more useful information.

4. The SWARMSs Ontology

To fulfill all the requirements presented in Section 3, the SWARMSs ontology is designed as a
network of ontologies. The overview of the structure of the SWARMs ontology can be seen in Figure 2.
As depicted in Figure 2, the SWARMs ontology mainly consists of four domain-specific ontologies
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which model common concepts and aspects of certain domains, including mission and planning,
environment recognition and sensing, robotic vehicle, and communication and networking. All these
domain-specific ontologies are interlinked through a core ontology. In addition, the SWARMSs ontology
could be enriched with application extensions to suit certain use cases and scenarios. In the following
sections, the specific design for different domain-specific ontology model and their relationships in the
SWARMSs ontology will be presented.

En\lironmina!/wo%/

Environment
Recognition
& Sensing
Ontology

SWARMs

Robotic Core
Vehicles

Ontology Ontology

2RO 3PiYya,
13pojp uoissWN

Communication
&
Networking
Ontology

1

(¢}
Communica'ﬂonm

e

Application Extensions

Figure 2. Overview of the SWARMs ontology.

4.1. Core Ontology

The SWARMSs ontology aims to model information mainly related to four domains. In order
to link domain-specific ontologies and provide a coherent representation, a core ontology, shown in
Figure 3, is presented. In Figure 3, the main concepts from the mission and planning ontology are
depicted in white while concepts from the environment recognition and sensing domain are marked
in grey, yellow, and red. In addition, ontology elements from the communication and networking
domain and concepts from the robotic vehicles domain are displayed in orange and green, respectively.

As illustrated in Figure 3, services or capabilities (abstracted as the Concept Service in the mission
and planning ontology) which are necessary to fulfill any task (modeled as the concept Task in the
mission and planning ontology) are linked with Asset (defined in the robotic vehicles ontology) by
using a pair of inversive relationships, namely, providedBy and contributes. The mission and planning
ontology could also be interrelated with the robotic vehicles ontology at a lower abstraction level.
Specifically, the concept VehicleLevelTask could be linked with RoboticVehicle by object properties
(assignedTo and allocatedTo). In addition, a pair of inversive object properties, namely, performedBy
and canPerform, are defined to describe the relationships between the concept Action and the concept
RoboticVehicle. The concept Sensor from the environment recognition and sensing ontology and
the concept CommunicationLink from the communication and networking ontology are modeled
as subclasses of the concept System in the robotic vehicles ontology. The main concept Vehicle from
the robotic vehicles ontology is subsumed into the concept ManmadeObject from the environment
recognition and sensing ontology. With all the aforementioned ontology statements, the core ontology
is able to glue different ontology elements from independent domain-specific domains and enable the
building of a network of ontologies.
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Figure 3. A representation of the overall structure of the core ontology.

4.2. Robotic Vehicles Ontology

The Robotic Vehicles ontology models the robots and vehicles that are used in the different
SWARMSs missions (in the water domain only). Some important elements that capture the model are:

e  Mobile robots are vehicles and robots (polymorphism);

e  Robots are either autonomous robots, automated robots or remotely piloted robots (disjunction);
e  Vehicles are either underwater vehicles or surface vehicles (disjunction); and

e  Vehicles are either motorized or propelled by the environment/unmotorized (disjunction).

Figure 4 shows the taxonomy of vehicles and robots used in SWARMSs. A vehicle models any
platform in or by which someone travels or something is carried or conveyed. Vehicles can travel
underwater or operate on the surface of the water (e.g., Vessel). Motorized vehicles (e.g., ROV, USV,
and Vessel) have propulsion systems on-board, unlike unmotorized vehicles (e.g., UnderwaterGlider,
SurfaceGlider, and Buoy). A robot is a mechanical device that is capable of performing a variety
of complex tasks on command or by being programmed in advance. It operates by remote control,
automatically or autonomously. In a general view, this also includes humanoid and service robotics.
A robotic vehicle is a physical object designed by a human agent to provide a service by acting here on
the water domain. Remotely piloted robots (e.g., ROV) are robots that are piloted by one or several
human operators that use sensory feedback. Automated robots are robots not remotely piloted (in their
main role) that are able to act as an automation but not to adapt to changes in the environment and/or
to follow scripted plans. Autonomous robots (e.g., AUV and ASV) are robots neither remotely piloted
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nor automated (in their main role) that are able to perform high level tasks and adapt to changes in
the environment and operations with limited human intervention. Underwater robots (e.g., AUV and
ROV) are underwater and robotic vehicles. Surface robots (e.g., ASV and USV) are surface and robotic
vehicles. In this robotic vehicle domain-specific ontology, the UnderwaterGlider and SurfaceGlider
can glide using density-volume changes without a propulsion system and they are subsumed into the
AUV and ASV class, respectively.

AutonomousRobot

RemotelyPilotedRobot
AUV

Robot AutomatedRobot

(-

\‘ UnderwaterGlider

ROV
RoboticVehicle ————» UnderwaterRobot

Vehicle SurfaceRobot

ASV

T

—» UnderwaterVehicle SurfaceGlider

SurfaceVehicle

—» UnmotorizedVehicle

A

Vessel

“»  MotorizedVehicle
Buoy

Figure 4. Robotic vehicle taxonomy.

4.3. Mission and Planning Ontology

The mission and planning ontology provides a general representation of the whole mission
composition and planning procedure and of the low-level planning at a vehicle level as illustrated
in Figure 5. A mission is defined as a set of goals to be performed by a swarm of vehicles (e.g., AUV,
ROV, and USV) where each goal represents an objective to be achieved. Goals can be divided into
subgoals. A goal is achieved by executing 1 to n tasks. These tasks can be of three types: operator
level, vehicle level or high-level tasks. An operator level task is manually carried out by an operator.
A vehicle level task can be carried out by one single vehicle (AUV, ROV or USV) whereas a high-level
task is an assembly of tasks (operator level, vehicle level and/or high-level) that will be carried out
by a swarm of vehicles. Tasks require capabilities to be performed (e.g., bathymetric sensors, H,S
sensor or camera), a minimum battery level and have a start and end location. Vehicle level tasks lead
to a set of actions (e.g., dive, go to waypoint, follow row or communicate status) to be performed by
the vehicle.

Hence, a mission plan is abstracted as the sequence of scheduled low-level tasks (operator and
vehicle level tasks) that need to be carried out by the swarm of vehicles to achieve a mission, with
dependencies between tasks and approximate time duration. In addition, a vehicle plan is modeled as
the sequence of actions that need to be carried out by a vehicle to achieve the set of tasks assigned to it
in the global mission plan.
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4.4. Environment Recognition and Sensing Ontology

This domain-specific ontology targets to characterize the environment, through recognition and
sensing, where maritime or underwater missions will be carried out. The environment can be defined
through a set of abstract concepts, which are specified by particular associated properties, that define
the surroundings of the location where a particular mission or tasks take place involving robotic
vehicles. This ontology is structured around a set of three disjoint spatial domain concepts, represented
in blue, i.e., Surface, WaterColumn, and Seabed, each being characterized by multiple properties, some
of which similar, e.g., Temperature and where Entities and Landmarks or Features can exist, and be
found/recognized, or not, through sensing, in such SWARM s typical environment. Such concepts’
data properties, e.g., Temperature and most other sensed characteristics, must always be associated
to a position and timestamp, which are typically provided by the vehicle that supplies the respective
sensor(s) reading(s) in the characterization process.

Entities can be Biotic, i.e., animals or plants, or ManmadeObjects. Landmarks (or Features)
represent all other kinds of objects that can be considered /recognized as landmarks, e.g., big rocks,
as well as geological formations on the seabed. Infrastructures are considered usually as landmarks
due to their size and construction records, i.e., are registered and mapped, and are also obviously
manmade objects (polymorphism). Other objects, besides Infrastructures and objects with Sensors
(e.g., AUV and ROV) are also considered, namely since it could be important in a mission or task to
find /recognize them, e.g., oil pipes or components of an infrastructure.

Moreover, in the representation of the Environment recognition and sensing ontology in Figure 6,
the concepts in red indicate the ones that could be important to be recognized after sensing, according
to the specific SWARMSs mission. In a comparable way, the Sensor concept is represented in yellow
since it is the one that clearly is associated to the sensing part of the ontology, being the source of all
sensing data, which is used to characterize the respective environment and allows the recognition of
entities or objects and landmark or features. Typically, the Sensors are installed on robotic vehicles, but
can also eventually be attached to other manmade objects, including Infrastructures. ManmadeODbjects
and Sensors are therefore evidently the interfacing concepts between this domain-specific ontology
and the robotic vehicles ontology.
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Other objects (Object with sensors) Infrastructure

Figure 6. The environment recognition and sensing ontology.

4.5. Communication and Networking Ontology

This information model, shown in Figure 7, describes the communication links available in
SWARMSs to interconnect the different agents involved in a global mission execution and supervision,
i.e., the ashore control station, support ships, USVs, AUVs, and ROVs.

The communication network should allow the data exchange in different environments
(underwater and surface). The underwater environment is especially challenging as the propagation
delay is significant, communication links are highly unstable and channel bandwidth is very limited.

In particular, the link between surfaced AUVs, USVs or buoys and the support ship is made
through a radio frequency (RF) connection. In addition, satellite communication could be used with
the CCS hosting the MMT, when offshore. For the underwater communication, acoustic modems
are used with AUVs whereas ROVs are connected to the support ship by cables, which are used to
transmit command and control signals between the operator and the ROVs.

hasPriority
———3» N

Communication Link

N

'y repetition

instanceOf

Radio WIFI Satellite Cable Acoustic

R33I l_‘ usesModem
y

signed integer

AcousticModem

%

WLMNK HF acoustic Evologic 52CR
modem 18134

Figure 7. Communication and networking ontology.
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4.6. Application Ontology

When dealing with different scenarios (e.g., oil spill detection, plume tracking, berm construction,
and corrosion repair), the SWARMSs ontology need be enriched with application extensions in order to
accommodate application-specific requirements. In order to annotate uncertainties that are associated
with context data in real applications, the PR-OWL ontology is inherited in the SWARMSs ontology.
The PR-OWL ontology provides a principled means to represent and reason about uncertainty. It goes
beyond simply annotating ontologies with probabilities to provide a means of expressing subtle
features required to express MEBN theories. A set of ontology constructs is defined to annotate
uncertainty about attributes of and relationships among the entities compliant with MEBN theory.
For instance, the mapping of PR-OWL random variables and OWL properties can be seen in Figure 8.
The relationship between PR-OWL random variables and OWL properties is formalized using the
relation definesUncertaintyOf. Besides, the relation definesUncertaintyOf can be used to relate the
PR-OWL random variable isObjectOfInterest (Entity) to the OWL property isObjectOflnterest. Properties
isSubjectIn and isObjectIn are defined to link arguments of the random variables with their OWL
properties depending on whether they refer to the domain or range of the OWL property. The full
specification for the PR-OWL ontology can be found in [10].

By providing a formal modeling of uncertainties in ontologies, the PR-OWL ontology could serve
as a supporting tool for SWARMSs applications that want to benefit from probabilistic inference within
an ontology language. Incorporated with probabilistic extensions defined in PR-OWL, deterministic
ontologies can be annotated with probability information about uncertain context and upgraded to
probabilistic ontologies [10]. The development of the PR-OWL ontology and the formalization of it
in OWL language can be enabled by the open source software tool UnBBayes (https:/ /sourceforge.
net/projects/unbbayes/). With the incorporation of PR-OWL, the SWARMSs ontology can provide a
comprehensive representation of specific applications in the presence of uncertainties. In addition,
when attempting to represent a real application, the SWARMSs ontology can be instantiated and provide
support for the MEBN reasoning.

OowL
rdf:Property
rdf:}ype
P hasB N
domain range
PR-OWL

hasB_RV hasPossib\e\lalues-
I

hasArguement|hasArguement

hasArgNumber hasArgNumber

definesUncertaintyOf

isSubjectin | isObjectin

isSubsBy Y isSubsBy

hasB
‘/ ~
domain range

hass——>{ 8 |

Figure 8. Mapping of PR-OWL random variables and OWL properties.
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5. Implementation and Evaluation Using an Example

5.1. Formalization

The proposed SWARMs ontology is developed using Protégé (http:/ /protege.stanford.edu/)
and formalized in OWL. The formalization of the SWARMSs ontology in OWL allows a great level of
expressivity while producing a model that can be easily shared through the web and thus be open
to third party extensions. The proposed SWARMs ontology has been continuously inspected and
evaluated by marine experts and ontology engineers along the development process. In addition, the
reasoning result using the Pellet (https://www.w3.0org/2001/sw/wiki/Pellet) reasoner has shown
that the proposed SWARMs ontology is consistent. The hierarchy of the proposed SWARMs ontology
is shown in Figure 9.

It is worth mentioning that the Semantic Web Rule Language (SWRL) (https:/ /www.w3.org/
Submission/SWRL/) is adopted in the SWARMSs ontology to compensate the inability of OWL
to express complex rule formations and relations. Essentially, SWRL rules are defined in an
antecedent-and-consequent implication. By adding SWRL rules, the SWARMs ontology can be
enhanced in terms of logicality, human-readability, expressivity, and completeness. Operators or
marine experts can define rules through the MMT. The Rules and Policies Creator can translate those
rules into the SWRL format and store them in the ontology model. Thus, the SWRL rules along with
ontology instances in the ontology model can be important inputs for rule-based reasoning. Here, an
example rule is provided by using the syntax of SWRL math built-ins.

Example rule:

WaterSurface(?x),hasWind(?x,?y), Wind(?y), WindSpeed(?y,?z) swrlb:greater Than(?z,?20)->StrongWind(?y)

The rule above uses the SWRL syntax to express the definition of the concept StrongWind.
It indicates that the wind speed, above the investigated water surface, which is faster than 20 m/s, can
be classified as strong wind. Based on this SWRL rule, the rule-based reasoning can deduce if the wind
above the water surface can be regarded as strong or not.

—[-®Thing
[=-® CommunicationDomain
AcousticModem
[+-® CommunicationLink
[H-® Message
Source
Target
[=/-® EnvironmentDomain
DataProcessor
Entity
Landmark
ProcessedData
Seabed
SensingData
Sensor
VehicleCapability
WaterColumn
WaterSurface
MissionPlanningDomain
H Action
Event
Goal
Mission
MissionPlan
[+-® MissionSpecification

-

HE

I

=

[+-® Person
Service
[+-® Task
[+-® TaskSpecification

[+-® Vehicle

- VehiclePlan

[=|-® RoboticVehicleDomain
[+-® Robot

[+-® vehicle

Figure 9. A snapshot of the hierarchy of the SWARMSs ontology.
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5.2. A Use Case on Chemical Pollution Monitoring

In this section, the proposed SWARMSs ontology will be verified by using a chemical pollution
monitoring scenario in terms of its applicability and extensibility. In addition, its capability of
annotating uncertain information and supporting MEBN reasoning will be shown through this
case study.

5.2.1. Description of the Scenario

Chemical pollution inspection is a significant use case defined in the SWARMSs project.
The effective inspection could be very useful mainly in three situations, including corrective/predictive
chemical pollution inspection, after an extreme condition weather, or after an earthquake. For instance,
after an earthquake, marine biologists observe some dead fishes on the beach. They suspect that the
Hydrogen Sulfide (H,S) in a given area of sea (rgn1) is the cause. A mission (mission1: inspect the water
column rgnl) is given to the MMT. Based on available vehicles and their capabilities, the MMT generates
a mission plan (mp1) in order to achieve the goals (e.g., goall: pollution is detected, goal2: emergency level
of pollution is estimated) of the mission1. The mp1 is a plan which involves two AUVs (auv1 and auv2)
with different capabilities (e.g., take videos and measurement of the concentration of H,S) to accomplish
the mission. Equipped with sensors such as H,S probe, underwater camera, lighting system and side-scan
sonar, the two AUVs collaboratively detect H,S at two different depths (p1 and p2). In addition, a set of
context information, such as weather (is clement in rgn1), windspeed (is fast in rgn1), and different
concentration level (H,S in p1 is thin while H,S in p2 is dense) are also obtained. Based on available
context data, marine biologists want to know the emergency level of the polluted region so that they
can estimate the biological impact of HpS and further take remedial measures accordingly.

5.2.2. Ontology Extensions for the Scenario

To represent the specific scenario described in Section 5.2.1, some ontology elements defined in the
SWARMSs ontology need to be instantiated. Besides, additional ontology extensions, such as concepts
and object properties, need to be added in order to provide a complete modeling for the scenario.
Specifically, The mission1: inspect the water column rgnl is an individual of concept Mission. Its goals
(e.g., goall and goal2) can be inserted as instances of concept Goal. The mission plan mp1 generated by
the MMT is an instance of concept Mission. The mp1 would include a set of tasks which could be created
as instances of concept Task and refined as instances of concept LowLevelTask or HighLevelTask
depending on their level. Vehicles involved in this mission, auv1 and auv2, are individuals of concept
AUV defined in the robotic vehicle domain-specific ontology. Different capabilities provided by
vehicles, such as move, take videos, measure the concentration of H,S, can be instances of concept Service
and be linked to concept AUV through an object property providedBy. Sensors like H»S probe, underwater
camera with lighting system, and side-scan sonar, are created as instances of concept Sensor. The detected
chemical material, H,S, can be populated as an instance of concept Pollutant (as a sub-class of other
objects concept) within the environment recognition and sensing domain-specific ontology.

It is worth noting that some environmental context data, useful to describe this scenario, including,
weather, depth, concentration level, and spread speed, need to be captured and modeled into the
SWARMSs ontology in order to fully meet the application-specific modeling requirements. In addition,
uncertainty, inherent to instances of context data, should also be modeled. As mentioned previously,
the MEBN theory is adopted to model and reason about context uncertainty. Therefore, in order to
model the application-specific information, an MEBN model, shown in Figure 10, is created using the
UnBBayes tool and formalized in a probabilistic ontology (https:/ /archive.org/download/purl_xinli)
using PR-OWL constructs.
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Figure 10. The probabilistic ontology for estimating emergency level of pollution in an MEBN theory.

The probabilistic ontology, shown in Figure 10, models that the weather and wind speed in
the investigated sea region can affect the currents in the same region. Currents, along with the
concentration of H,S, depth of H,S, and earthquake occurrence in the sea region, are the influential
factors to estimate the emergency level of the polluted sea region. The probabilistic ontology uses
ontology constructs defined in the PR-OWL ontology to annotate probability information of those
factors. For instance, the joint probability distribution of emergency level, shown in Figure 11, can be
annotated using OWL constructs shown in Figure 12. Specifically, the probability distribution of
EmergencyLevel is annotated as a string by using a hasDeclaration datatype. For the demonstration
purpose, the probability information shown in Figure 11 is directly provided by marine experts.

Figure 11. The joint probability distribution of emergency level.

if any rgn have ( Currents = & Earthquake = 11
if any H2S h: Concentration = & Depth = )’
High=1, Lo

else ifanyH2S h & Depth = )
High=10.7,

else ifany H2S | Concentration = & Depth = )’
High=10.6,

else [ High w=05]]

elseifany rgn ( Currents = & Earthquake = )’
if any H2S ( Concentration = & Depth = )’
High=10.8, =02]

else ifany H28 h Concentration = &Depth = )
High=10.7,

else ifany H2S h Concentration = & Depth = )
High=0.7,L

else [
High=0.8, Low=04]]

elseifanyr ( Currents = & Earthquake = )’
if anyH2S ( Concentration = & Depth = )’
High=10.8 =0.2]

else ifany H28 h Concentration = &Depth = )
High=0.7, Lo 3]

else ifany H2S have ( Concentration = &Depth = )’
High=0.5, Low=05]

else [
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else [
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High=104, =06]

else ifany H28 h Currents = & Depth = )’
High=0.37, Low=0.63]

else [

High=0.2, Low = 0.8]]
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<hasProbDist>

<DeclarativeDistrdf:ID="EmergencyLevel_Table">

<hasDeclaration rdf:datatype="http://www.w3.0org/2001/XMLSchema#string ">

ifanyrgn have ( Currents =Strong & Earthquake =True) [ if any H2Shave (
Concentration = Dense & Depth = DeepWater ) [ High=1, Low = 0] else if any H2S have (
Concentration =Dense & Depth = ShallowWater ) [ High = 0.7, Low = 0.3] else if any H2S
have ( Concentration =Thin & Depth = DeepWater ) [ High= 0.6, Low = 0.4] else [ High =
0.5, Low =0.5] ] else if any rgn have ( Currents =Strong & Earthquake =False) [ if any
H2Shave ( Concentration = Dense & Depth = DeepWater ) [ High = 0.8, Low = 0.2] else if
any H2S have ( Concentration = Dense & Depth = ShallowWater ) [ High= 0.7, Low = 0.3]
elseif any H25 have ( Concentration = Thin & Depth = DeepWater ) [ High = 0.7, Low = 0.3
]else [ High=0.6, Low = 0.4] ] else if any rgnhave ( Currents = Weak & Earthquake =True
) [ if any H2S have ( Concentration = Dense & Depth = DeepWater ) [ High = 0.8, Low = 0.2
] elseif any H2S have ( Concentration = Dense & Depth = ShallowWater ) [ High=0.7, Low
=0.3] else if any H2S have ( Concentration = Thin & Depth = DeepWater ) [ High = 0.5,
Low =0.5]else[ High=0.4, Low = 0.6] ] else [ if any H2S have ( Currents =Strong &
Depth = DeepWater ) [ High =0.5, Low = 0.5] else if any H2S have ( Currents = Strong &
Depth = ShallowWater ) [ High =0.4, Low = 0.6] else if any H2S have ( Currents = Weak &
Depth = DeepWater ) [ High =0.37, Low = 0.63] else [ High=0.2, Low = 0.8] ]
</hasDeclaration>

<isProbDistOfrdf:resource="#Domain_Res.EmergencyLevel"/>

</DeclarativeDist>

</hasProbDist>

Figure 12. The OWL annotation for the emergency level probability distribution.

Incorporating with the probabilistic enrichments, the SWARMSs ontology is able to accommodate
new application requirements and provide a comprehensive representation of this scenario and also
its context uncertainty.

5.2.3. MEBN Reasoning for the Scenario

Beyond the capability of representing the specific scenario, the SWARMSs ontology could also
provide support for the MEBN reasoning in order to deduce the emergency level of the polluted sea
region. The information encased in the SWARMSs ontology could serve as valuable inputs for the
MEBN reasoning. With information, including an earthquake occurred in the sea region, the weather
above the sea region is clement, the wind speed is fast, H,S pollution 1 is found in deep water, H,S
pollution 2 is found in shallow water, the concentration of pollution 1 is dense, and the concentration
of pollution 2 is thin, the MEBN reasoning, shown in Figure 13, can infer that the pollution in the
inspected sea region rgnl is quite serious with a probability of 86%. Based on the reasoning result,
marine biologists can have a more direct impression on the severity of the situation.
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Figure 13. The MEBN reasoning for the emergency level.
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6. Conclusions

To enable heterogeneous underwater robots with a common understanding of information that
is necessarily exchanged between themselves is a challenge in the cooperation of underwater robots.
The SWARMSs project is a European project that targets to tackle this challenge. The approach defined
in the SWARMSs project has been presented in this paper along with preliminary results. Specifically, a
networked ontology, namely the SWARMSs ontology, which is defined within the scope of the SWARMSs
project, has been introduced in this paper. The SWARMSs ontology consists of several domain-specific
ontologies, which are interrelated by a core ontology. Specifically, information, related to the mission
and planning, the robotic vehicles, the environment recognition and sensing, and the communication
and network domains, has been abstracted in the SWARMSs ontology. In addition, uncertainty, as an
inherent characteristic of information obtained in the harsh maritime and underwater environment,
has been modeled in the SWARMSs ontology by using ontology constructs defined in the PR-OWL
ontology. The uncertainty modeling in the SWARMs ontology has followed the MEBN theory. Thus, the
SWARMSs ontology can provide both a comprehensive representation of information and support for a
hybrid context reasoning, including ontological, rule-based, and uncertainty reasoning. Underwater
robots and CCS/MMT can exchange information without ambiguous meaning if they comply with
the SWARMSs ontology. In this way, further cooperation and coordination of a group of vehicles
could be potentially achieved. A chemical pollution scenario has been described and it has been
used to showcase how the SWARMS ontology can be instantiated, be extended with application
enrichments, represent context uncertainty based on the MEBN theory, and provide support for the
MEBN reasoning.

Future work could be focused on the following aspects.

The SWARMSs ontology should be tested with more use cases (e.g., berm construction, plume
tracking) defined in the scope of the SWARMSs project in terms of its applicability and extensibility.

Currently, the SWARMs ontology has been fully implemented. However, it has not been integrated
into the ontology model component defined in the SWARMs middleware architecture. To develop it in
the middleware architecture and ensure its interactions with other middleware components are also
intended as the future work. With the complete implementation, evaluation of the SWARMs ontology
can be more convincible.

Although the SWARM s ontology is designed to provide a common information model for the
cooperation of underwater vehicles in the scope of the SWARMSs project, the possibility of reusing it or
its portions in other underwater robotics projects is worth to be explored.

The SWARMSs ontology has inherited ontology constructs defined in the PR-OWL ontology
to annotate context uncertainties based on MEBN theories. In this way, three aspects of context
uncertainty, namely, inaccuracy, randomness, and incompleteness, have been resolved. However,
other aspects of context uncertainty, such as vagueness and impreciseness, also need to be tackled.
Introducing fuzzy logic into the SWARMSs ontology to represent the vagueness and impreciseness of
information will also be done in the future.
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