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Abstract: With the rapid development of the Internet of Things (IoTs), wireless sensor networks
(WSN’s) and related techniques, the amount of sensory data manifests an explosive growth. In some
applications of IoTs and WSNSs, the size of sensory data has already exceeded several petabytes
annually, which brings too many troubles and challenges for the data collection, which is a primary
operation in IoTs and WSNs. Since the exact data collection is not affordable for many WSN and
IoT systems due to the limitations on bandwidth and energy, many approximate data collection
algorithms have been proposed in the last decade. This survey reviews the state of the art of
approximate data collection algorithms. We classify them into three categories: the model-based ones,
the compressive sensing based ones, and the query-driven ones. For each category of algorithms, the
advantages and disadvantages are elaborated, some challenges and unsolved problems are pointed
out, and the research prospects are forecasted.

Keywords: approximate computation; sensory data collection; internet of things; wireless
sensor networks

1. Introduction

From the physical world to the cyber world, the Internet of Things (IoTs) and wireless sensor
networks (WSNs) have become necessary connections between them, and make it possible for people
to observe the physical world at a low cost. Among all the components of IoT systems and WSNSs,
the sensory data, as the information carriers, are quite important for both IoT systems and WSNss.

Usually, the procedure of dealing with sensory data in IoT systems and WSNs can be divided into
three phases as shown in Figure 1.

1. Sensory Data Acquisition. In the first phase, the sensing equipment samples the sensory data
from the monitoring physical world, which can be seemed as a discrete process for a continuously
varying physical world.

2. Sensory Data Collection. In the second phase, the raw sensor data sampled by each sensor node
are transmitted into the network toward the sink (sinks), where the sink node is a special node to
connect an IoT system or WSN to the cyber world, such as clouds, data centers, etc., and transmit
data information between them.

3. Sensory Data Computation. When the sensory data have been already delivered to the cyber
world in the second phase, the further computations, e.g., numerical analysis, knowledge
discovery, etc., will be carried out according to the applications and users’ requirements.

All of the three phases above are necessary and fundamental for any application of IoT systems
and WSNs, and this survey will focus on the second phase. Since the aim of the data collection phase
is to transmit the sensory data from the sensors to the sink node, the input of such a phase is the raw
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sensory values sampled by the sensors in the network, and the output is the sensory dataset received
by the sink.
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Figure 1. The procedure of dealing with sensory data in [oT Systems.

The Procedure of Dealing with Sensory Data

The naive method for sensory data collection is to deliver every raw sensor value sampled by the
sensors to the sink node, and we call it the exact sensory data collection methods. Such an exact data
collection method guarantees that all the sensory data information are transmitted to the cyber world;
however, it also increase the network’s burden with the growth of sensory data.

With the development of the corresponding techniques, including microelectronics, the embedded
systems, the wireless communication and sensing techniques, in recent years, the scale of sensory data
manifest an explosive growth. According to the annual report of Gartner Inc., (Stamford, CT, USA),
which is a famous American research and advisory firm providing information technology related
insight for IT and other business leaders, 6.4 billion connected things will be in use worldwide in 2016,
up 30 percent from 2015, and will reach 20.8 billion by 2020 [1]. Meanwhile, based on the forecast of
Cisco (San Jose, CA, USA), it is estimated that more than 250 things will connect each second by 2020,
and it is believed that more than 50 billion things will be connected to the Internet by 2020 [2]. Such a
large number of smart “things”, which have sensing abilities, in IoTs will generate a huge amount
of sensory data. Furthermore, the volume of worldwide climate data is about 2.5 Petabytes in 2010
estimated by the World Climate Research Program (WCRP), and it is expected to exceed 100 Petabytes
in 2020 [3]. The Large Hadron Collider System in Europe deploys 150 million sensors and generates
500 Exabytes sensory data everyday [4]. The taxi monitoring system in Beijing, China produces
48 Petabytes GPS data and 1440 Petabytes other sensory data annually by monitoring 67,000 taxis.

Obviously, such a great amount of sensory data already exceeded the transmission abilities of
IoT systems and WSNSs; therefore, the exact data collection method is not affordable by many WSN
and IoT systems due to the limitations on bandwidth and energy. On the other hand, considering that
most sensory data are spatially and temporally correlated since the monitored physical world always
continuously varies in space and time [5], the exact sensory data collection is not necessary since a
sensory data set are highly redundant due to such strong correlation. Therefore, even if exact data
collection is not possible for a WSN or an IoT system, most analysis and computation tasks can still be
successfully carried out using approximate data sets that only involve partial data, instead of exact
data sets which involve all of the data.

Thanks to the correlation feature of sensory data, many approximate sensory data collection
algorithms have been proposed. In this survey, we classify them into three categories, which are
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the model-based ones, the compressive sensing based ones, and the query-driven ones. This survey
summarizes the state of the art of the existing approximate data collection techniques, elaborates
their advantages and disadvantages, and points out some challenges and unsolved problems. Finally,
we also forecast the research prospects in the future.

2. Model-Based Approximate Data Collection Algorithms

One of the earliest pieces of research on approximate data collection algorithms is based on
the mathematical models. Usually, the algorithms belonging to this category mainly consist of the
following steps.

Firstly, a mathematical model is selected to describe the correlations among sensory data, and the
parameters of the chosen mathematical model are learned from the history sensory data.

Secondly, the local prediction models are built according to all parameters obtained in the step
above. Meanwhile, all the parameters of the local models are transmitted to the sink for constructing
the global prediction model.

Finally, when the local and global models have already been constructed, a newly arrived sensory
value does not need to be transmitted if it can be predicted by the local model. Only the sensory values
that cannot be predicted by the local model are required to be transmitted to the sink, and the sink
node will use the global model to estimate the sensory values that are filtered by the local models.

The main challenges of such approximate data collection methods are how to construct and
maintain the local and global models in order to make them be valid all the time. Meanwhile, the
main advantage of these methods is that they only transmit a partial amount of sensory data to the
sink node since a number of sensory values can be predicted by the models. The detailed information
about the algorithms belonging to this category is as follows.

2.1. The Algorithms

The initial work in [6] proposed a statistics prediction model based on multivariate Gaussian
distribution towards historical sensory data. Sensory data with larger estimation confidence do not
need to be transmitted to the sink. This work also considers how to design a query plan to optimize
resource consumption. However, it does not consider network dynamics and still requires a large
amount of historical data to guarantee performance. Meanwhile, the model cannot detect abnormal
events since it relies on historical data.

Another probabilistic model was proposed in [7]. According to the temporal and spatial
correlations of sensory data, local and global probabilistic prediction models are respectively built
at the sensor nodes and sink. If a node finds that the current sensory value can be estimated by the
local model with high probability, it will not send the value to the sink and the sensory value will be
estimated according to the global prediction model. An energy efficient k-coverage algorithms based
on probability driven mechanism is proposed by [8] in wireless sensor networks, besides, the problems
of how to schedule the low-energy nodes, how to balance the energy consumption and optimize the
network resource was also considered. However, it will lead to the extra energy consumption for
maintaining the probabilistic model in the network, meanwhile, such model is also a little ideal and
cannot describe the complicate relationship among sensory data accurately.

A spatial-correlation based data collection algorithm was designed in [9]. A network is divided
into clusters and sub-clusters periodically such that the sensory data in one sub-cluster are similar
and highly spatially correlated. During the data collection process, only a partial amount of data
needs to be collected, while other non-transmitted data in the same sub-cluster can be estimated by
the Multivariate Gaussian model. However, the model incurs huge energy consumption due to the
necessity of frequently updating the sensory data required by the Multivariate Gaussian model. It also
seems too strict to assume that sensory data follow the Multivariate Gaussian Distribution.

In [10], similarly, a network is divided into clusters. Instead of Gaussian Distribution, a linear
regression model is adopted to describe the temporal correlation of sensory data from a node, and
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a correlation graph is utilized to depict the spatial correlation of different nodes in a cluster. Only
representative nodes of each cluster selected from the minimum dominant set are responsible for
reporting data to the sink. Similar to [9], the efficiency and effectiveness of the algorithm depends on
the variance of sensory data. If sensory values vary frequently, the models become invalid quickly.

The work in [11] proposed an approximate data collection algorithm in wearable sensor networks
utilizing the temporal and spatial correlations among sensory data. The algorithm has two parts.
The first part is to determine the transmission order offline, where history data and linear regression
are used to analyze the correlations among different sensors. Then, a weighted directed graph is
constructed according to the correlations, and the topology order of the weighted directed graph is
used to determine the transmission order of different sensors. The second part is to forward sensory
data based on the transmission order. Each node overhears the sensory values from the sensors with
higher priorities, calculates the difference between its values and the overheard ones, and only reports
the difference to the sink. The computation cost for determining transmission order is high and the
delay of data collection is unacceptable for large-scale networks; thus, the algorithm is only suitable
for small-scale networks.

A flexible framework for mobile data collection is proposed by [12] in health care applications.
Such a framework supports the model-based data collection techniques; however, the detailed
algorithms were not provided. In [13], a stochastic model, which is based on the conditional probability
and priori distribution, is proposed to estimate the vehicle speed trajectories during data collection
in vehicle sensor networks. On condition of maximizing the likelihood function, the optimal activity
sequence was determined, and then a detailed vehicle speed trajectory would be reconstructed
accordingly. Since much trajectory data is estimated instead of retrieving it from the sensor nodes,
many energy and transmission costs are saved. Finally, the authors applied this algorithm to a
large-scale vehicle dataset and verified the high performance. Such a model only serves for the regular
trajectory prediction application, and not applicable for other applications such as abnormal event
detection.etc. The works in [14,15] also have introduced the Traffic Estimation and Prediction Systems
(TrEPS) in VANET, which generally provide the predictive information needed for proactive traffic
control and traveler schedule. Such system enhance the performance of the tradition transportation
systems, and their prediction models are also useful to reduce amount of sensory data during data
collection in VANET, however, they has the similar problem with the one in [13].

An adaptive data collection problem is addressed by [16] in wireless body sensor networks
(WBSNs). In traditional WBSNs, each biosensor node collects data and sends them to the coordination
in a periodic manner. Therefore, a huge amount of data is collected, which brings a huge burden
for transmission and processing. Due to such motivation, the authors proposed a model to reduce
the amount of data during data collection on the condition that the integrity of the sensory data is
guaranteed. According to their model, each sensory value is scored based on an early warning score
system, and the newly coming sensory values won't be collected if it has the same score as the previous
one. Based on such a model, the data fusion method is also proposed using a decision matrix and
fuzzy set theory. The algorithm in [16] largely reduced the transmission costs during data collection.
However, the proposed model seems a little simple so that such a data collection method is only
suitable for emergence detection application.

In [17], the authors surveyed the hierarchical data gathering protocols in WSNs, they have
discussed energy and communication overhead for each category of routing protocol with respect to
design trade-offs, and also points out the advantages and disadvantages of each technique as well.
However, it mainly focused on the exact data gathering protocols and not the approximate ones.

2.2. Summary

All of the aforementioned algorithms try to capture the spatial and temporal correlations among
sensory data by mathematical models such as Gaussian distribution, linear regression, etc. Based on
these mathematical models, many sensory values can be predicted without transmission, so that a
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large amount of energy will be saved. However, these methods all have the following drawbacks.
Firstly, the mathematical models are too ideal to describe the complicated correlations among sensory
data accurately. With the wide use of WSNs and IoT systems, the objects monitored by them becomes
more and more intricate, and the correlations among sensory data sampled from the monitoring objects
are quite complicated as well, so that they may not follow a specific mathematical model, which has
colossal impact on the accuracy of the model-based data collection methods. Secondly, they introduce
extra in-network communication costs for guaranteeing the correctness of the prediction models
and keeping the consistency of the local prediction model and global prediction model. Meanwhile,
these algorithms always have a fixed error bound and cannot automatically adjust according to the
user-specified precision requirement.

3. Compressive Sensing Based Approximate Data Collection Algorithms

Compressed sensing methods have recently become one of the most popular techniques for
approximate data collection. Generally, the algorithms belonging to this category regard the sensory
data sampled by all the sensors in a given time interval as a matrix with n x m size, where 7 is the size
of the network, m is the number of sampling times of each sensor in the given time interval, and the
algorithms assume all sensors are synchronous in the network and the sensory data matrix is sparse in
certain subspaces.

Based on the above assumption, the compressive sensing based approximate data collection
algorithms mainly have the following steps.

Firstly, a series of random vectors are generated to form the bases of a subspace.

Secondly, the sensory data is compressed according to the above subspace by projecting the
original data matrix into the above subspace.

The main advantages of the algorithms in this category are that the compression rate, i.e., ratio
of the dimension of the compressed data matrix to n, can be controlled easily according to users’
requirements, and the compression process can be implemented in a distributed manner after the
bases are determined. On the other hand, the main challenge of the algorithms is how to generate the
appropriate bases. According to the methodology for generating the random bases, the existing works
can be classified into the following three groups.

3.1. Centralized Algorithms for Generating Compression Bases

This group of algorithms generate the bases of the subspace for compression in a central manner.
The common advantage of these algorithms is that they guarantee that the bases are orthogonal
with each other so that redundant information can be minimized after compression. The details are
as follows.

The work in [18] introduced a method by assuming that the sink has already received partial
sensory data. Furthermore, the sampled data are assumed to be compressible and the optimal basis
used for compression is known beforehand. In order to collect additional data, the algorithm first
randomly samples some data from the network. Then, a vector p indicating the set of additional nodes
that need to transmit their data is determined centrally according to the received data and the optimal
compressing basis. p is then broadcasted in the network, and data are transmitted and aggregated
from the nodes specified in p toward the sink. Obviously, the assumption of obtaining the optimal
compressing basis without any knowledge on data distribution is too strong. Even if we can obtain
the optimal compressing basis according to historical data, updating the basis incurs a huge amount
of energy in WSNs. Furthermore, the delay of data collection is large since p needs to be determined
iteratively, and a complicated computation needs to be carried out. Therefore, the algorithm is not
suitable for large-scale WSNs with frequently varied data.

The works in [19,20] indicate that the K-restricted isometry property should be satisfied if we
want to recover N sensory values from M compressed data in polynomial time, where N is the total
number of sensory values, K denotes the sparsity of these values and M (M < N) can be determined
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by K. In order to satisfy the above conditions, the work in [21] constructs a matrix to compress sensory
data during transmission. A chain network is used as an example and it is proved that [ R] is the
matrix guaranteeing the K-restricted isometry property, where I is the M x M unit matrix and R is an
M x (N — M) random matrix. This work is also extended to the spanning tree based networks.

Another work considering the k-restricted isometry property for compressed sensing [22] intends
to recover original sensory data efficiently. The adopted network is an energy harvesting WSN, where
the sensors can gain energy from the environment, e.g., wind or solar energy. However, in order
to guarantee the k-restricted isometry property, the compression size must be determined centrally.
Meanwhile, many parameters such as sparsity of data and transmit probabilities must be known by
the sink in advance, which is almost impossible for large-scale networks.

The algorithm in [23] uses a function to denote the relationship between sensory data and a sensor
node ID, where the base of the function is constructed through a Discrete Cosine Transform. It is
assumed that the coefficient of the function is sparse according to the base, such that the compressed
sensing technique can be used to compress these coefficients. However, this assumption is too strong
for WSNs. Moreover, the accuracy for recovering the original data cannot be guaranteed. Furthermore,
the considered topology in this work is not practical for real WSNS.

3.2. Distributed Algorithms for Generating Compression Bases

The aforementioned centralized algorithms consume much energy since all the bases need to be
broadcasted in the network. This motivates the design of distributed algorithms.

A typical work is proposed in [24], where the matrix for compressing sensory data during
collection is constructed in a distributed manner. The main steps are as follows. First, each node
generates random vectors according to its ID and the random seed is broadcasted by the sink. Second,
for each sensor, a new data vector is obtained by the multiplication of its sensory values and the
random vector. Finally, the sink computes the random vectors based on the random seed and sensors’
IDs to derive a random matrix, and the sensory data can be recovered according to the received data
vectors and the random matrix. The similar idea is adopted in [25] except that original data is recovered
by linear programming. The authors in [26] extended the idea by proposing their own routing scheme.
They also analyzed the capacity and delay for both single-sink and multi-sink networks under the
proposed routing scheme.

Another related work for vehicle networks is proposed in [27]. It is assumed that the sampled
data are k-sparse, where k is obtained by analyzing historical data. According to k, the number of
the seed vehicles, m, is calculated centrally, where m determines the amount of compressed data that
the sink will receive. During in-network transmission, the routing tree having m seed vehicles as leaf
nodes is used. First, a new data collection process is initiated by each seed vehicle, and the distributed
compressed sensing based algorithm, such as that shown in [24], is adopted to deal with such a process.
After that, the sink will receive m compressed data.

The work in [28] proposed a new compressed sensing based data collection algorithm in order
to detect outlier readings and broken links. Since the sparse property of outlier readings is different
from that of the normal ones, different identity matrices for compression are used to discover outliers
and broken links. However, the work neither provides any theoretical bound to guarantee detection
accuracy nor clearly describes the compression rate.

Most of the existing compressive sensing based algorithms assume that sensory data have a
known constant sparsity, which is not practical in WSNs. Therefore, the authors in [29] proposed an
adaptive compressed data collection scheme in WSNs to deal with the situation in which the sparsity
of sensory data varies with time and space. However, the computation at each node is complicated,
which is also a challenge for sensor nodes since their computation ability and energy are limited.

Although the above algorithms save much energy since the compression bases are generated in a
distributed manner and need not be broadcasted in a network, they all have the following problems.
First, they do not consider the spatial-correlation so that the compression rate is not small enough by
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using a random matrix. Second, they assume that sensory data can be transformed into a sparse data
matrix, which may not be practical for WSNs. Even if this is possible, its sparsity is hard to be obtained
by the sink especially for large-scale WSNs. Third, since the random vectors are generated individually
by the nodes, they cannot be orthogonal with each other, resulting in redundant information in the
compressed data. Fourth, the information loss rate cannot meet an arbitrary user-specified precision
requirement, so the dimension of the random matrix cannot be automatically adjusted accordingly.

Another compressive sensing based approximate data collection algorithm was proposed by [30].
The algorithm firstly decides the number of the required measurements, denoted by M, according
to the sparsity of the sensory data using the compressive sensing technique. Then, M random walks
are initiated to route and aggregate the required measurements to the sink node for further recovery.
Such work was also based on the assumption that the sparsity of the sensory data is known. Meanwhile,
the redundant information is also included in the compressed data since the random walk process
may involve the same sensor many times.

In [31], an implementation method of the compressive sensing was provided on condition that
the lossy nature of the WSN is sufficiently explored. The authors of [31] thought that not only the
information of sparsity but also the spatial correlation among sensors were known ahead, and both
of such prior pieces of information are helpful with compressing sensory data during collection.
By combining both the random sampling matrix and the random selection matrix, no computation on
sensory nodes was required while achieving the desired data reduction. Such a method saves lots of
energy for each sensory node while implementing the compressive sensing techniques. However, the
assumption of such seems a little strong.

The work in [32] proposed a hierarchy routing strategy to transmit and aggregate the data
measurements returned by a compressive sensing technique. Based on [32], the whole network
is divided into clusters, and the number of the required measurements in each cluster is decided
according to the cluster size and the sparsity of the network. Since it still assumes that the sparsity of
the whole network is known, the application of such schema is limited due to the strong assumption.

3.3. Hybrid Algorithms

Some researchers proposed combining the compressive sensing based algorithms with other ones,
such as the straightforward packet forward method without compression.

The works in [33-35] proposed three hybrid algorithms in WSNs. In [33], the sensor nodes in the
form of a spanning tree are grouped into two subsets, and only the ones that receive enough data apply
a compressive sensing based method to compress data before transmitting them along the spanning
tree towards the sink. In [34], the nodes are clustered based on the assumption that the distribution
of nodes follows the Poisson point process. A compressive sensing based technique is applied at
cluster-heads during the transmission. In [35], a packet forward strategy without compression is
adopted during data collection.

The aforementioned algorithms can reduce energy consumption to some extent. However, they
all have many drawbacks. For example, the algorithm in [33] requires that each node needs to hold the
random vectors for other nodes, resulting in storage waste. The algorithm in [34] consumes lots of
energy to cluster the nodes and broadcast the locations of clusters. The algorithm in [35] requires each
parent node to wait for all of its children’s nodes’ data before transmitting, which increases the delay
of data collection. Furthermore, the energy consumption could still be large since some sensory data
are not compressed at the beginning and the additional information, such as sensor ID, still needs to be
transmitted during data collection. Finally, these algorithms lead to imbalanced energy consumptions
among the nodes in a network because the computation and transmission costs of some nodes are
much larger than those of the other nodes.

The work in [36] studied how to combine the compressive sensing based technique with the
principle component analysis technique, and proposed a novel data collection framework. It is
assumed that sensory data can be converted to an L-sparse vector by the principle component analysis;
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thus, it only needs to sample data with probability L/ N during data collection, where N is the size of
the network and the compressive sensing based technique is used to forward data. Since the sparsity
of sensory data varies, the authors also provided a method for adjusting the sampling probability as
follows. First, since all sensory data from a network can be estimated by the compressed bases, the
relative difference between the real collected values and their estimations can be calculated. If such
a relative difference is larger than a given bound, the sampling probability is enlarged C; times;
otherwise, it decreases C, /N, where C; and C; are constants. The above data collection framework
takes the advantages of both the compressive sensing based techniques and the principle component
analysis techniques. However, it still has the following drawbacks. First, the randomly sampled data
cannot guarantee to recover the original data even if the data are L-sparse. For example, if all the
samples fall in one cluster, the data of the other clusters cannot be acquired and recovered. Second,
the principle component analysis is based on historical data, which may be invalid at the current
time when the sensory values vary frequently. Third, to estimate relative errors, the matrix used by
the compressed sensing technique also needs to be transmitted in the network, resulting in more
energy consumption. Fourth, the principle component analysis, the relative error computation and
the sampling probability estimation are implemented centrally, which is not suitable for WSNs. Fifth,
the sampling probability needs to be updated and broadcasted in every time slot, which increases
energy consumption. Finally, the theoretical error bound of the above method is not provided, and the
information loss rate cannot meet an arbitrary precision requirement.

In [37], the algorithms integrating compressive sensing and clustering were proposed based
on block diagonal matrices. Firstly, the network is divided into clusters. Then, each cluster-head
collected the sensory values within its cluster and generate Compressive Sensing (CS) measurements.
Finally, such CS measurements were forwarded to the base station for recovery. Two routing strategies
were also proposed in [37]. Such algorithms are efficient to reduce the scale of sensory data in a
distributed manner. However, it still has the following problems. First, the block diagonal matrix
may not be appropriate to describe the relationship among sensory data since the sensory values
belonging to different clusters may be correlated with each other. Second, the authors decided the
compression rate of each cluster based on the number of sensors in it; however, it may not be a good
choice and the distribution of the sensory data should be also considered. Third, there also exists some
redundant information since the correlations of the sensory values belonging in different clusters are
not considered. Finally, the overhead of each cluster-head is quite high, so that it would lead to an
imbalance of energy consumption in the whole network and shorten the lifetime of the WSN.

The JSM-2 model is introduced by [38] for data compression in sensor networks, where “JSM” is
short for Joint Sparsity Model. According to the distributed compressive sensing theory, there are three
different joint sparsity model (JSM), which are JSM-1, JSM-2 and JSM-3. The JSM-2 model is known
as the Common Sparse Support model and requires that all the sensing signals are constructed from
the same sparse set of basis vectors. Hence, the original sensory signals can be recovered using the
same bases via Simultaneous Orthogonal Matching Pursuit algorithm. Due to the common sparsity
structure of different sensing signals, the transmission cost can be largely reduced. However, the
assumption in [38] also seems a little strong. Since the sensing data distribution of two sensor nodes
may be quite different when the monitoring area is large, the common sparsity cannot be achieved and
is impractical for this case.

According to the above discussion, most of these compressive sensing algorithms assume that
the sparsity of the sensory data is constant and known. In practice, such an assumption seems too
ideal since the sensory values continuously vary. Due to such a reason, the work in [39] proposed
an adaptive data gathering schema which combined compressive techniques and network coding
methods. Such schema allow the sink to query those interesting nodes adaptively for acquiring an
appropriate number of measurements. Finally, in order to minimize the overall transmission cost, the
authors also defined an NP-complete problem and proposed a greedy approximation algorithm to
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solve it. Such work is flexible and efficient for data collection; however, it only considers the scalar
data and is not suitable to process multi-modal sensory data.

3.4. Summary

In conclusion, the idea of compressive sensing based data collection algorithms is to decrease
the dimension of sensory data matrix as much as possible according to the users’ requirements.
These methods are quite efficient and effective when the sensory data matrixes are sparse in certain
subspaces. However, such a fact may not be always true and seems a little strict for WSNs and IoT
systems. Even if the above fact is true, it is also quite hard to get the sparsity (i.e., which subspace makes
sensory data to be sparse) of sensory data, so that the compression rate of such algorithms cannot be
derived theoretically. Second, all of the algorithms have a fixed global information loss rate, which
cannot meet an arbitrary user-specified precision requirement. Moreover, for the centralized algorithms
of generating compression bases, the communication cost is huge since these bases need to be
broadcasted in a network. For the distributed algorithms of generating compression bases, they cannot
guarantee that the bases are orthogonal with each other since each basis is generated independently, so
that there still exist some redundant information after compression and the compression rate cannot
reach the optimal one either. The hybrid algorithms provide a valuable idea for approximate data
collection. However, the existing works seem a little simple and have their own drawbacks.

4. Query-Driven Approximate Data Collection Algorithms

As important providers of sensory data sources to provide the sensory data, the WSNs and IoT
systems also can be seemed as a database system, so that it is quite important for them to deal with
various queries. Therefore, a group of data collection algorithms are designed accordingly. Since such
data collection algorithms serve a certain query, the comment steps are as follows.

Firstly, based on the inputted query and the precision requirements, a distributed query plan,
which involved a number of sub queries, is determined and diffused in-network.

Secondly, the proper sensory data set with a minimal size are retrieved by each sensor when it
has received the corresponding sub query. Such partial results are transmitted and aggregated in the
network toward the sink.

The main challenges of the algorithms in this category are how to determine the proper sensory
data set for each query and how to aggregate the partial results, and the main advantage of these
algorithms is that the transmission cost is extremely small since they are designed with the purpose of
serving specific queries.

The existing works belonging to this category can be classified into two types, the sampling-based
algorithms and the coding-based algorithms. The details are as follows.

4.1. Sampling-Based Algorithms

In many WSN applications, the statistic queries, such as aggregation and top-k queries, are the
most popular ones. To answer such queries, the sampling techniques are good choices for designing an
approximate data collection algorithm since only a small subset of sensory data needs to be transmitted.

The work in [40] proposed a sampling based approach to process top-k queries. The nodes
with larger historical sensed values are selected to transmit data to the sink with a high probability.
A group of linear programming functions are adopted to assign a sampling probability to each
node. The algorithm is only applicable to top-k queries and is hard to be extended to other queries.
Meanwhile, abnormal events are hard to be detected based on historical data.

The works in [41] proposed a uniform sampling algorithm to collect sensory data in order to
process aggregation queries in static WSNs. The works in [42,43] introduced several Bernoulli sampling
based algorithms to deal with aggregations in dynamic WSNs. The authors proved that the result
accuracies can satisfy an arbitrary user-specified precision requirement, and the sampling ratio is
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quite small, i.e., only a few nodes are involved in data collection and the total communication cost is
extremely small. However, similar to [40], these algorithms are only applicable to aggregations.

The works in [44,45] studied the sampling-based quantile computation algorithms. Although
the algorithm in [44] has a fixed error bound and the work in [45] only considers one-hop networks,
resulting in a large amount of energy saving, the collected data can only be used to obtain the quantile
information. To overcome the above problem, the algorithms to retrieve e-quantile and (e, §)-quantile
were proposed by [46], using special data structure, tree-based routing and sampling techniques,
the authors proved that the error bounds of the algorithms can be arbitrarily small. However, the
algorithms in [46] only store the quantile information in-network and do not conserve the kernel
information of the original sensory dataset.

Based on Bernoulli and uniform sampling techniques, another frequency and holistic aggregation
algorithms were proposed by [47—49], respectively. In these works, the optimal sampling probability
and sampling size are determined theoretically, so that the algorithms transmit the minimal size of
sensory data during data collection while the desired query accuracies are guaranteed. Such algorithms
save lots of energy during data collection; however, similar to the aforementioned ones, they are serving
for specific queries and are not suitable for recovering original sensory datasets.

An energy-efficient data collection algorithm is proposed by [50] to process skyline queries for
massively multidimensional sensory data, and several effective data reduction techniques were also
introduced, such as dynamic filter, tuple-cutting strategy.etc. Such algorithm is also only suitable for
dealing with skyline queries and not applicable for recovering original sensory datasets.

4.2. Coding-Based Algorithms

The basic idea of coding-based algorithms is to use coding techniques to reduce raw sensory data
while guaranteeing accuracy. Some representative works are presented as follows.

A Bloom filter based approximate data collection protocol was studied in [51] in mobile WSNs.
The nodes are partitioned into two categories, with collectors being responsible for collecting data
and transmitting data to the sink, and non-collectors being responsible for sending data to reachable
collectors. A collector first maps multi-dimensional values to real numbers and compresses them by
the Bloom filter technique if its local buffer is full. Then, the collector transmits the stored values to the
sink when the mobile sink is in its transmission range. According to the protocol, the original sensory
values are hard to be recovered and the computation cost of collectors is high.

The work in [52] proposed a sketch based approximate data collection algorithms in WSNSs.
The algorithm requires each sensory value to be mapped to a binary sketch in order to compress data
during transmission. However, this algorithm suffers from the same problem as [51] where it is hard
for the compressed data to be recovered.

A joint coding-based data compression framework was proposed by [53] to reduce data
redundancy during collection in in Wireless Multimedia Sensor Networks. The framework firstly uses
an entropy-based divergence method to predict the compression efficiency of adopting the joint coding
on the images collected by spatial-correlated cameras. A distributed multi-cluster coding protocol is
then provided based on the prediction results. Although the framework guarantees that the overall
compression rate of multimedia sensory data is maximized on the condition that the compressed data
can be decoded by the sink with high precision, and the algorithm also produces redundant codings
during data compression.

The work in [54] provided a compressive data collection strategy based on a novel data structure
named compression tree. However, the problem of finding the optimal compression tree is NP-hard;
thus, the complexities of the two algorithms in [54] are high. Furthermore, the ratio bound is not
acceptable in real applications.
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4.3. Summary

The query-driven approximate data collection algorithms are sufficient considering the users’
requirements during data collection, and they only transmit the data that are valuable to users so
that many transmission costs are saved. However, these methods are only designed for specific kinds
of queries. These algorithms do not consider correlations among sensory data and cannot recover
original data. Furthermore, the coding-based algorithms still require all of the nodes to transmit their
data to the sink, incurring a large communication cost. For the sampling-based algorithms, the core
information of the raw data may not be preserved.

5. Other Works

For the convenience of reading the main advantages and disadvantages of the approximate data
collection algorithms belonging to the three aforementioned categories are summarized in Table 1.

Besides the aforementioned algorithms, there are some other approximate data collection works
in WSNs.

Table 1. Comparisons among different approximate data collection algorithms.

Properties )
Algorithms Advantages Disadvantages

(1) The mathematical model are usually
too ideal

(2) Lots of in-network communication
are involved to determine parameters
of prediction models and guarantee
the consistence between local and
global models

(3) The algorithm has the fixed error
bound and cannot be adjusted
automatically

(1) The assumption is strong and the
sparsity of sensory data is very
hard to be obtained

(2) All algorithms have the fixed global
information loss rate

(3) The centralized algorithms cost too
much to transmit the bases, while
the distributed one also have
redundant information since the
bases are not orthogonal

(1) The algorithms are only designed for
the specific kind of queries

(2) They do not consider the correlations
among the sensory data and cannot
support to recover the original
sensory data

(3) The kernel information of the sensory
data is not preserved

(1) The spatial and temporal
correlations among sensory
Model Based Algorithms data are considered
(2) Only a partial of sensory values
need to be transmitted

(1) The compress ratio can be
controlled according to
users’ requirements

(2) Efficient when the sensory
data matrix are sparse

Compressed-Sensing
Based Algorithms

(1) The transmission cost is
extremely small
Query-Driven Algorithms  (2) Sufficiently consider the users’
requirement and only transmit
the valuable sensory data

The work in [55] discussed how to adjust the compression rate adaptively during data collection.
Since a large compression rate can reduce communication cost but increase computation cost, it is
important to find a trade-off. The authors of [55] proposed an algorithm for this problem. It is assumed
that the data entropy of every node is available, and the lower bound L; of compression rate for node i
satisfies L; = %, where Hi; is the data entropy of node i. It is also assumed that L; > L; if node j is
on the path from i to the sink. Based on such assumptions, each node i computes the energy costs for
communication and computation, respectively, during transmission. If the computation cost is larger,
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then the compression rate of node i is reduced to L;. Otherwise, it keeps the same compression rate
as its child. The problems of the above algorithm are as follows. First, the assumptions are too strict
for WSNs, e.g., the data entropy of an internal node in a spanning tree not only depends on its own
sensory values, but also depends on the data received from its child nodes; thus, it is hard to obtain
the data entropy in advance. Meanwhile, the assumption on the lower bound of compression rate
seems unconvincing since there does not exist any theoretical analysis to guarantee its correctness.
Third, the algorithm only considers the compression problem on one path, which is not practical for
WSNs since a network is usually organized as a tree. Finally, the algorithm cannot recover data with
the information loss rate satisfying an arbitrary user-specified precision requirement.

To overcome the problem that the global information loss rate cannot be guaranteed, the authors
in [56,57] proposed distributed algorithms to draw the dominant data set from big sensory data.
The spatial correlations among different nodes are described by a correlation coefficient matrix.
According to this matrix, the redundancy among data is reduced and the dominant data set can
be extracted during transmission. For any given € > 0, it is proved that the proposed algorithm
can return the dominant data set whose information loss rate is no larger than €. Meanwhile, the
distributed dominant data set drawing algorithm and the correlation coefficient maintaining algorithm
have constant communication and computation complexities (O(1)) for each node. However, this
algorithm also has several problems. First, it only reduces the amount of data in the spatial domain and
does not consider the temporal domain. Furthermore, it is assumed that the sink has unlimited storage
and processing ability, which may not be possible in some applications such as the ones employing
smart phones or other hand-held devices for data collection.

6. Further Works

As shown in our Introduction section, approximate data collection is one of the most important
issues for WSNs, and many efficient sensory data collection methods have proposed in recent years.
However, with the appearance of IoT systems, there still exist some unsolved problems that need to be
investigated in the future.

Firstly, the appearance of IoT systems make the amount of sensory data manifest explosive growth.
As shown in Section 1, the number of connected “things” will reach 20.8 billion by 2020, and such
a huge number of the intelligent “things” would generate a great number of sensory values, which
make the amount of sensory data to exceed TB, PB even EB easily. In a word, the era of big sensory
data is coming. The big sensory data bring us much information from monitoring physical world;
however, the huge amount is also largely beyond the processing ability of most existing data collection
techniques. Therefore, a series of new algorithms are eagerly required to collect big sensory data
efficiently. Considering the existing techniques, the sampling is one of the feasible ways to design the
lightweight and effective algorithms for dealing with big sensory data. However, most of the existing
sampling based methods are designed for specific kinds of simple queries and do not support data
recovery accurately. Thus, a group of new sampling based data collection algorithms are still worth
being studied in the future.

Secondly, different from the traditional WSN, an IoT system has various types of sensor nodes.
For example, an intelligent traffic monitoring system could include many monitoring sensors, e.g.,
electronic eyes, GPS devices, intelligent traffic lights, etc. Such sensors will sample multiple types of
sensory data from the monitoring environment. A crowd sourcing application based on smart phones
might utilize the sensors embodied in it, including accelerometer, digital compass, gyroscope, GPS,
microphone, camera and so on. Therefore, sensory data sampled by these sensor nodes also consist
of various modality, that is, the scalar data, the vector data, the multimedia data, etc. are always
involved in the same sensory dataset, and the variety of sensory data bring many challenges for data
collection. However, the current works on sensory data collection only focus on single modular data
and rarely consider the problem of how to collect multi-modal sensory data efficiently. To solve the
above problem and make multi-modal sensory data be collected cooperatively, the correlation among
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different types of sensory data should be analyzed thoroughly. Then, new frameworks, which can
make multiple types of sensory data become integrated, are going to be constructed. Finally, new
distributed and energy-efficient data collection algorithms need to be designed according the above
correlations and frameworks. In order to achieve the three steps above, the stochastic process based
methods and the time series analysis, etc. are suitable to be adopted.

Thirdly, although the amount of raw big sensory data sets is quite huge, there exists massive
redundant information in them since the sensory data are strongly correlated with each other.
Considering that the network’s energy and resource are quite limited for WSNs and IoT systems,
we only want to transmit and collect the useful sensory dataset instead of the raw ones. We call such
datasets kernel datasets, and the method of retrieving the kernel dataset from big sensory data is rarely
taken into account by the existing works, although it is significant for dealing with big sensory data.
Therefore, a series of new techniques to draw kernel datasets in WSNs and IoT systems need to be
explored in the future. To achieve such an aim, the global information loss rate, which is an important
metric to evaluate the quality of kernel dataset, should be firstly defined. To the best of our knowledge,
the work in [56] is the unique literature to give the formal definition of the global information loss
rate based on statistics. However, the metric in [56] is suitable for the scalar data; moreover, it also
requires that the sensors in the network should be synchronous and sample sensory data with the
same frequency. Such constraints may be common for WSNs, but seem a little strong for IoT systems,
especially when multi-modal sensory data are involved. Thus, the complicated correlations among
sensory data should be taken into account, and the new metrics to evaluate the global information loss
rate need to be reconsidered. Since the sensory data can be regarded as the information carriers, the
information entropy based metric may be a good choice to define the global information loss rate, and
the entropy based techniques may be valuable for designing the kernel dataset drawing algorithms.

Fourth, the sensor nodes in IoT systems are usually very cheap and their abilities on sensing,
computation, storage and communication are quite limited, so that the quality of sensory data is
extremely low. Furthermore, some of the battery-free nodes may also be involved in some IoT systems,
which makes the quality of sensory data to be even harder for controlling. Taken the currency as an
example, the battery-free sensor nodes in a given IoT system cannot sensory data if the energy gained
from environment does not exceed a certain threshold, and thus it cannot guarantee that the object is
monitored in real time. Similarly, the precision, completeness and consistency of a sensory dataset also
cannot be guaranteed in some IoT systems. Thus, the sensory data should be repaired during collection
in order to provide the high quality dataset to users. Unfortunately, few of the existing methods have
considered such a problem. Therefore, the cooperative data repairing techniques during collection
are also worth being studied in the future. Similar to constructing the kernel data drawing methods,
the correlations among the sensory data are very useful for designing cooperative data repairing
algorithms, where the logistics based techniques, stochastic process based models (e.g., continuous
Markov model) etc., can be utilized for sensory data repairing.

Finally, the data collections to support the advance applications deserve to be studied intensively
in the future as well. For example, visualization has become a popular application for networks and
provides a friendly interface for users to observe and comprehend the physical worlds. However,
almost none of the existing data collection methods consider how to support such an application.
Furthermore, in future IoT systems, the data collectors may no longer be computers, and they could
be smart phones, Pads or other small hand-held devices, so that the data collectors may have limited
abilities on processing and exhibition. These limitations should be sufficiently taken into consideration
in order to transmit the processable sensory data only and save energy during data collection.

7. Conclusions

Since data collection is a fundamental topic for both WSNs and IoT systems, lots of efficient
and effective data collection algorithms have been proposed. This paper summarizes the existing
contributions on sensory data collection into four categories, introduce their main ideas, analyzed
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their advantages and pointed out their disadvantages. Finally, we are looking forward to the future
research problems on such topics and provide five unsolved ones that are quite worthy of being
carefully studied.
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