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Abstract: Road traffic anomaly denotes a road segment that is anomalous in terms of traffic flow
of vehicles. Detecting road traffic anomalies from GPS (Global Position System) snippets data is
becoming critical in urban computing since they often suggest underlying events. However, the
noisy and sparse nature of GPS snippets data have ushered multiple problems, which have prompted
the detection of road traffic anomalies to be very challenging. To address these issues, we propose
a two-stage solution which consists of two components: a Collaborative Path Inference (CPI) model
and a Road Anomaly Test (RAT) model. CPI model performs path inference incorporating both static
and dynamic features into a Conditional Random Field (CRF). Dynamic context features are learned
collaboratively from large GPS snippets via a tensor decomposition technique. Then RAT calculates
the anomalous degree for each road segment from the inferred fine-grained trajectories in given time
intervals. We evaluated our method using a large scale real world dataset, which includes one-month
GPS location data from more than eight thousand taxicabs in Beijing. The evaluation results show the
advantages of our method beyond other baseline techniques.

Keywords: road anomaly detection; path inference; tensor decomposition

1. Introduction

Smart vehicles equipped with communication modules and various types of sensors are becoming
an important deployment scenario of IoT (Internet of Things) technology. Harvesting data collected
by sensors mounted on vehicles has been quite fruitful in urban computing [1] and a lot of new
applications have been proposed. Among them, road traffic anomaly detection is critical since they
often suggest underlying events, e.g., accidents, traffic controls, terrorist attacks, protests, disasters,
violent riots, to name a few. The effective detection of road traffic anomaly can not only provide
knowledge for applications such as vehicular ad hoc networks [2,3] but, more importantly, facilitate
the government to deal with the possible emergencies timely.

A road traffic anomaly behaves as a state for a road segment in a specific time when the volume of
vehicles on the segment is significantly unusual. To effectively monitor and summarize the volume of
vehicles on each road segment, traditional techniques are developed including video surveillance [4]
and radio frequency identification devices (RFID) [5]. However, in the urban environment, usually
only a small number of road segments have deployed video surveillance system or RFID readers,
leaving the data of uncovered segments missing. With the profusion of GPS sensors mounted on vast
amount of vehicles, the big location data generated from these sensors will provide a citywide solution
on traffic flow monitoring and anomaly detection.
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Location data collected by vehicles are often in the form of “GPS snippet” which is defined as a set
of timestamped GPS coordinates [6]. Directly using GPS snippets data to find road traffic anomalies is
a particularly challenging task for several reasons. First, the nature of GPS devices makes measured
locations very noisy, where errors may range from meters to tens of meters. Thus the GPS measurements
may not lie in road segments. Second, although the number of vehicles is large, they often report
location records in low-sample-rate time intervals (e.g., in the order of 30–60 s). As a result, many GPS
snippets are very sparse, namely, too coarse-grained for mining road traffic anomalies. To address these
issues, this paper reconstructs fine-grained trajectories from coarse-grained GPS snippets via a path
inference model and then find road traffic anomalies from the inferred trajectories.

For example, Figure 1 shows the basic process of road anomaly detection. In Figure 1a, there are
three vehicles whose GPS snippets are drawn in red, blue and green respectively. Then the full paths
(the solid lines of different colors in Figure 1b) of all vehicles are inferred. Next the fine-grained
trajectories of vehicles are reconstructed. In Figure 1c, the smaller dots on each path of vehicles are
the possible location at given time. According to the fine-grained trajectories, we count the volume
of vehicles on each road segment and detect the suspicious segments through volume data analytics
(Figure 1d).
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Figure 1. Road Anomaly Detection. (a) GPS Snippets; (b) Full Paths; (c) Trajectories; (d) Anomaly Detection.

Reconstructing fine-grained trajectories from noisy and sparse GPS snippets, is often referred
to as map matching [7] or path inference [8]. However, previous studies often overlook road dynamic
context information which is particularly important for path inference. Combined with dynamic
context features (e.g., popularity and average velocity of road segments), path inference algorithms
could evaluate the latent path selections more preciously. Recent advances in data mining domain,
especially the collaborative filter techniques [9], have provided methods of inferring latent dynamic
context from snippets data. The basic idea of collaborative filter is to measure the temporal and spatial
“similarities” between vehicles to infer the probability a vehicle appearing in one specific road segment
at a given time span. In other words, it can discover latent factors of both road segments and vehicles,
that together determine the generation of GPS snippets in different time spans.

In this paper, we propose a method for road traffic anomaly detection via collaborative path
inference from GPS snippets. Our method consists of two main components: a Collaborative Path
Inference (CPI) model and a Road Anomaly Detection (RAD) algorithm. Our CPI model not only
utilize static features for path inference, but learning dynamic features collaboratively via a tensor
decomposition technique. We summarize the contributions of our work as follows:

• Collaborative path inference. CPI model performs collaborative path inference incorporating both
static and dynamic feature into a Conditional Random Field (CRF), and then reconstructs sparse
GPS snippets to fine-grained trajectories;

• Dynamic feature learning. We aim to collaboratively learn dynamic context features hidden in data
via tensor decomposition [10] technique. To tackle the data sparsity problem in the GPS snippets
dataset, we exploit two normalization terms, which are robust and can avert over-fitting;
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• Road anomaly detection. We calculate the anomalous degree for each road segment from counting
the volumes of fine-grained trajectories in given time intervals. Two kinds of road anomalies are
defined in this paper and we devise an algorithm to detect them effectively;

• Real evaluation. We evaluate our solution using a real world dataset including a large number of
taxi traces. Experimental results show that our solutions are effective in path inference and road
anomaly detection especially under low sampling rate between GPS locations.

The rest of the paper is organized as follows. We briefly review related work in Section 2.
In Section 3, we introduce some concept in this paper and give an overview of our method. Section 4
defines the path inference problem and presents our CRF model. We also propose a collaborative
dynamic feature learning method under tensor decomposition in this section. In Section 5, we recognize
two types of road anomalies and perform a statistic test on the volume of road segments for detection.
In Section 6, we evaluate our solution using a large-scale dataset and report the analysis results. Finally
in Section 7 we conclude the paper and envisage the future work.

2. Related Work

2.1. Path Inference

With the growing popularity of GPS-based applications such as VANETs [3,11], the requirements
for fine-grained trajectories are more ubiquitous. The problem of mapping GPS points onto a
map is first studied in [12], which uses several simple approaches to match GPS points to nearest
road segments. We categorize existing methods into two class: deterministic and probabilistic.
Deterministic approaches associate each observation to a segment in road network. They utilize
geometric information of road network by considering the shape of the roads [13], or the connectivity
and contiguity information [7]. In [14], frèchet distance is used to match partial trajectories to road
segments. All those algorithms are very fast, however, they are sensitive to noisy GPS observations.

To overcome the uncertainty of observations, many probabilistic algorithms have been proposed
by adopting the idea of particle filter [15], Kalman filter [16] and Interactive-Voting [17]. Under the
assumption of Markov independence relations, Hidden Markov Model (HMM) [18] and Conditional
Random Fields (CRF) [8] have been explored. Both HMM and CRF need to utilize various features for
designing the transition probability of states, which encourage the weight learning algorithm using
inverse reinforcement learning [19]. However, these algorithms show that the performance is poor
when the intervals of GPS observations exceed 5 min [18].

One of the problems of HMM and CRF is that they use context-unaware features when computing
the transition probability. These features could not reflect the real traffic condition spatially and
temporally. In this paper, we introduce the collaborative method [9] to extract dynamic context-aware
features from observations. Two influential collaborative filter techniques are matrix factorization and
tensor decomposition [10], which have become increasingly popular recently. Tensor decomposition
is adopted to process mobile network data for a number of data mining tasks, such as travel
time estimation [20], demographic attributes inference [21], social networks [22], and link pattern
prediction [23], to name a few. In this paper, we utilize incomplete GPS snippets with different time
intervals to extract dynamic features using tensor decomposition, and then construct a CRF model for
path inference.

2.2. Road Anomaly Detection

Over the past decades, road traffic patterns or anomaly detections have been extensively
studied [24,25]. Many traditional tools are developed such as video surveillance [4], sensor
networks [26] and RFID [5] technique. With the profusion of GPS devices driven location-based
techniques, the spatio-temporal data have ushered road anomaly detection problems very challenging
and attracted many researches. Given GPS observations, one class of anomaly detection technique is to
discover individual suspicious vehicles such as wandering round vehicles [27]. The other class is road
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traffic based anomaly detection, whose aim is to monitor the inflows or outflows of road segments and
extrapolate possible events from volumes of stay vehicles. For example, the authors of [28] used GPS
data from taxicabs to find out the emergence of unexpected or abnormal traffic behavior. The authors
of [29] focused on inferring the root cause in road traffic anomalies, and the authors of [30] discovered
the spatio-temporal causal interactions from traffic data streams. However, all these studies assume the
GPS data are fine-grained. In this paper, we detect road traffic anomalies from original GPS snippets
by inferring fine-grained trajectories.

To judge the anomaly degree, threshold-based methods always set the upper and lower limits
learned from historical data [31,32]. An alternative way to determine the anomaly degree is Likelihood
Ratio Test (LRT) [33] which is a statistical hypothesis test based method. One of the advantages of LRT
technique is that it doesn’t need a hard threshold, but a statistical significance level. Thus we adopt
LRT to detect two kinds of road traffic anomalies defined in this paper.

3. Background

In this section, we define several concepts for path inference and anomaly detection used
throughout this paper and give problem definitions of road traffic anomaly detection. Finally we
overview the system framework of our method.

3.1. Path Inference

We first introduce related concepts in this subsection. Figure 2 shows an example to illustrate
these concepts.

GPS Snippets
Observations
States
Candidate Path

Road Segments
GPS Snippets
Observations
States
Candidate Paths

Figure 2. Concepts on path inference.

Road Network. A Road Network is an undirected graph N = {V , E}, where E is a set of edges
denoting the road segments and V is a set of vertices representing the intersections or terminal points
of the road segments. Each road segment e ∈ E is associated with a number of attributes such as
segment ID, start node, end node, and length.

GPS Observation and Snippet. Millions of GPS measurements can be organized by vehicles
within a time span [1, T]. A GPS observation g is represented as a triple: (latitude, longitude, time stamp).
For a given vehicle, we denote a GPS snippet with n observations as G = {g1, g2, · · · , gn} where
gt denotes the observation at t. The time span between two neighbouring observations is sampling
interval, which can be different for different vehicles.

State. Due to the noisy nature of GPS measurements, state x = (l, o) is a projection of observation
g to a road segment l, where o is the offset of projection from the start node of l. As one observation gt

can be projected to a number of roads, we can get It different candidate states xt = {xt
1, xt

2, · · · , xt
It}.

Path. Between two adjacent states xt
i ∈ xt and xt+1

i′ ∈ xt+1, only a small number of road segments
can be taken by a vehicle. We denote the set of candidate path selections between two consecutive
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observations gt and gt+1 as Ωt = {ξt
1, ξt

2, · · · , ξt
Jt}, where Jt is the number of candidate selections at

time stamp t. Note that a candidate path selection ξt
j may be one road segment or consists of several

conjoint road segments. If the distance of two observations is close (e.g., on one segment), ξt
j is a road

segment. Otherwise if this distance is very far, then ξt
j can be a set of conjoint road segments.

Then we define Path for GPS snippet G as a sequence of latent states and road segments, starting
and ending with a state, denoted as τ = x1ξ1x2ξ2 · · · ξn−1xn, where xt and ξt are element of xt and Ωt

respectively. We denote the path space as T , whose dimensions are I1 × J1 × I2 × J2 · · · Jn−1 × In.
In Figure 2, three locations labeled in red solid circles constitute a GPS snippet, in which each

location is defined as observation. Each observation may generate a small different number of states,
which are labeled as red hollow circles. A path is a set of road segments passing through states for
every observations, e.g., three candidate paths colored in purple, blue and green. The path inference
problem then can be defined as:

Definition 1 (Path Inference). Given the road networkN and the raw GPS snippets G, Path Inference is to
find the most likely path τ∗ in the latent variable space T for the vehicle that generates GPS snippets G.

Given an inferred full path, our next aim is to reconstruct a fine-grained trajectory for every
snippet. We consider the trajectory of a path to be a dense synthetic GPS snippet, which is formally
defined as:

Trajectory. Given a time interval [1, T], for every granularity 1 < t1 < t2 < · · · < tm < T,
a trajectory is a set of consecutive locations on road segments L = {l1, l2, · · · , lm}, where li = (ti, ri, oi),
ti is a specific time stamp, ri indicates a road segment in road network and oi is the offset from the start
node of the segment.

Note that once the full paths of vehicles are inferred, the trajectories can be estimated from paths.
We leave the details in Section 5.1.

3.2. Road Anomaly Detection

After the process of path inference, the fine-grained trajectories for all vehicles are reconstructed.
We can naturally count the volumes staying on every segment e ∈ E of road network N . Specifically,
segment e is associated with a set of vehicle volumes during recent time interval [1, T]. From all volume
sets of road segments in E , we aim to detect two types of anomalies.

• Self-Evolving Anomaly (SEA). Given time interval [1, T], assume all road segments have the
same type of expected volume distribution. A Self-Evolving Anomaly is a road segment e ∈ E ,
such that in time interval [1, T] the values of associated volume set deviate from the expected
distribution according to its historical values.

• Context-Evolving Anomaly (CEA). A Context-Evolving Anomaly is a road segment e ∈ E , such that
in time interval [1, T] the values of associated volume set deviate from the values of its connected
neighbors in a region. Note that since we focus on road segments within local area, even two
remote road segments could behave similarly but we leave this out of scope.

Figure 3 shows an example for the two types of anomalies. In Figure 3a, the segment in red is
a SEA in time interval [18,20]. We can see the volumes of staying vehicles are evidently lower than the
mean values. However, in Figure 3b, the segment in red color is not a SEA, but a CEA in the context
of the selected region. The volumes of the test segment in time interval [19,20] are much higher than
other segments in the region. Both SEA and CEA anomalies may suggest an event such as a parade
or traffic control. Therefore, the goal of this paper is to find out road traffic anomalies of both types.
We define this problem as follows.
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Figure 3. Two types of road anomalies. (a) Self-Evolving Anomaly; (b) Context-Evolving Anomaly.

Definition 2 (Road Traffic Anomaly Detection). Given a road network N and large amount of GPS
snippets in recent time interval [1, T], detect all the Self-Evolving Anomalies and Context-Evolving Anomalies
from segments set E .

3.3. System Framework

Figure 4 shows the framework of our method. Our method consists of two main components:
a Path Inference component and an Anomaly Detection component.

Road
Network

Gps
Snippets

Dynamic Feature

CRF Model

Path Inference

Anomaly Detection 
Algorithm

Anomaly Detection

Trajectory
Reconstruction

Tensor Filter

Path

SEA

CEA

Road  Anomalies

Likelihood Ratio
Test

Figure 4. Overview of our method.

The first component, namely path inference, is to complete full paths from incomplete or sparse
GPS snippets, which are the inputs of our model. We separate the path inference process into two
phases. In the first phase, road network and raw GPS snippets are filled into a three order tensor which
is also incomplete. A tensor decomposition is employed to construct a completed tensor and extract
collaborative dynamic features. To deal with data sparseness, reasonable regularization terms are
added to perform the tensor decomposition procedure. In the second phase, dynamic features, as well
as the static features, are filled into a conditional random field (CRF) model to run the path inference
algorithm. The outputs of path inference process are full paths for all snippets of vehicles.

The goal of second component is to detect road traffic anomalies from the completed full paths
of vehicles. First, trajectory reconstruction transforms paths to fine-grained trajectories such that the
volumes of staying vehicles on all segments at any specific time are derived. Then second, given recent
volume sets of road segments, a Likelihood Ratio Test (LRT) method can determine whether a segment
is a road traffic anomaly. Finally, the RN-Scan algorithm searches the whole road network to find out
all possible anomalies including SEA and CEA. We show the detailed contents of our method in the
following sections.
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4. Path Inference

In this section, we firstly propose a probabilistic graphical model for path inference. Then we
illustrate how to learn dynamic features using tensor decomposition technique. Under both static and
dynamic features, our model can better predict hidden paths that vehicles may pass through.

4.1. CRF model

4.1.1. Model Specification

Conditional Random Fields (CRF) model is one of discriminative undirected probabilistic graphical
models. CRF is usually used to encode relationships between observations and hidden variables.
For a specific vehicle, given a sequence of GPS observations g1:n = g1, · · · , gn and an associated path
τ = x1ξ1 · · · xn, a CRF encapsulates both GPS observations and unobserved states and paths, as shown
in Figure 5.

Figure 5. A conditional random field (CRF) model with n observations.

There are two kinds of cliques in this model. One includes gi and xi, which represent observations
and latent states respectively. The other contains xi, xi+1 and ξ i, which model the relationship among
latent states and paths. Instead of modeling the joint probability distribution, the CRF model intends
to infer the most likely path among all candidates in the path space T , given the observations g1:n.
The conditional probability of a candidate path τ can be modeled as the product of factors or potential
functions over all cliques. The un-normalized conditional distribution is defined as follows

φ(τ|g1:n) =

[
n−1

∏
i=1

ω(gi|xi)η(ξ i, xi, xi+1)

]
·ω(gn|xn) (1)

where ω(·) and η(·) are potential functions over cliques. ω(·) describes a distribution generating noisy
observation gi from state xi, while η(·) defines an un-normalized joint distribution that assigns weight
to the clique from state xi to state xi+1 via path ξ i.

Then we define the score of a candidate path τ as the normalized conditional probability as follows

π(τ|g1:n) =
1
Z

φ(τ|g1:n) (2)

where Z is the partition function denoted by

Z = ∑
τ∈T

φ(τ|g1:n) (3)
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Since Z is a constant for each candidate path τ, we need not calculate it in model inference.
Based on this CRF model, the most likely path τ∗ is the one with the largest conditional probability

τ∗ = argmax
τ∈T

π(τ|g1:n)

= argmax
τ∈T

φ(τ|g1:n)
(4)

4.1.2. Model Inference

Two potential functions are used in Equation (1). First, function ω(·) is the observation model,
representing the probability distribution of observation gi given the state xi. We assume that this
probability is related to the distance between xi and gi, and with the Gaussian noise of GPS device:

ω(gi|xi) =
1√
2πσ

exp(−|g
i − xi|2
2σ2 ) (5)

where parameter σ denotes the variance, and | · | denotes the Euclidean distance.
Another type of potential functions in π(·) is driver model η(·). It models the joint distribution of

two adjacent states and their associated path, and assigns a weight to any possible path ξ. We consider
the driver model to be an exponential function defined as

η(·) ∝ exp (µ1φs(ξ) + µ2φd(ξ)) (6)

where φs, φd are static and dynamic feature functions respectively, and µ1, µ2 are parameters.
Previous studies [8,18] usually use static feature function φs with static features such as the

length of road segments, the turns of a path, the speed limit of roads, etc. There are two problems
in using static features. First, it may be difficult to get those features. Second, those features are
context-unaware, making the probabilistic inference not reliable especially on large sampling rate of
GPS snippets. Unlike these works, we add dynamic feature function φd in Equation (6) such that both
static features and dynamic context features can be utilized. Here dynamic context features denote
features varying with time for different road segments, e.g., weather, road popularity, road average
velocity, etc.

When the feature functions φs and φd are specified, the potential function π(·) is defined. The last
issue is the inference of our CRF model, which is analogous to a dynamic programming problem
that can be solved by Viterbi algorithm. We observe from Figure 5 that the most likely state of xt

is determined by ξt−1 and gt. If denoting the factor of those variables as Ψt(xt, ξt−1, gt), the Viterbi
recursion can be defined as

δt(j) = max
i

Ψt(j, i, gt)δt−1(i) (7)

Once the latest state of δ is determined, we can identify the most likely sequence using the
backwards recursion:

xt
∗ = arg max

i
Ψt(xt+1

∗ , i, gt+1)δt(i) (8)

After a forward and a backward recursion, the most likely path τ∗ for GPS snippets G is inferred.
For the further details, we refer readers to corresponding reference [8].

4.2. Collaborative Tensor Filter

In previous subsection we have proposed a CRF model to incorporate both static and dynamic
features. In this subsection, we first introduce Tensor Filter, a collaborative dynamic feature learning
model. Then we propose an effective algorithm to optimize the objective for tensor decomposition.
Finally, we extract the dynamic features into the CRF path inference model.
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4.2.1. Tensor Construction

We firstly illustrate the key idea of collaborative feature learning model. To start with, note that
most vehicles are influenced by traffic conditions spatially and temporally. We believe that a vehicle’s
appearance is determined by some latent factors not only from the vehicle’s routine behavior, but also
from the road traffic conditions and time stamps. Vehicles may select different paths according to the
road context at different time.

Based on this intuition, we exploit a large number of GPS snippets from different vehicles to
reveal latent factors among road segments, times and vehicles in a collaborative way. Unlike using
matrix, we propose a tensor filter, which converts the GPS raw data into a three-order tensor A to
represent the relationship among road segments, times and vehicles. Specifically, we firstly assign
unique indexes to all vehicles, segments and time stamps. Secondly we fill the tensor A by values
under the following rules. If a vehicle i appeared in road segment j at time stamp k, then (i) entry
(i, j, k) is set to 1; (ii) for all segments j′ ∈ E \ j, entry (i, j′, k) is set to 0; and (iii) otherwise if we did
not observe the location of vehicle i at time stamp k′, then entries (i, j, k′) are missing for all j ∈ E .
Note that the original tensor A is incomplete for there are missing entries, because the GPS snippets
are sparse and we could not observe the locations of all vehicles at every time stamp.

The reason we assign 0 or 1 to an entry is that we consider the value of entry (i, j, k) to be the
probability of vehicle i appeared in road j at time stamp k. For the missing entries ofA, their values can
be assigned a probability between 0 and 1 after tensor decomposition. As shown in Figure 6, the original
tensor is sparse and a complemented tensor is derived by a tensor decomposition procedure. We can
see that A is factorized into a core tensor C and three factor matrices: V,R, and T. Let the core tensor C
multiplies factor matrices V,R, and T in different directions, we could get a complemented tensor A∗
where all values are filled.

A A
*

V

T

R
C

R
o
a
d

Vehicle

Original Tensor Latent Factors Complemented Tensor

Figure 6. Tensor Decomposition.

4.2.2. Tensor Decomposition with Regularization

To get the latent factors and complement the missing values, we conduct a tensor decomposition
method as well as dealing with the data sparse problem. Assume the original three-order tensor
A ∈ RI1×I2×I3 . , where I1, I2 and I3 are the number of vehicles, segments and time stamps respectively.
We assign random initial values between 0 and 1 to all the missing entries of A and latent matrices.
Then A can be factorized by minimizing the objective function below

L(C, V, R, T) =
1
2
‖ A− C×V V ×R R×T T ‖2 +R1 +R2 (9)

where C ∈ RdV×dR×dT is the core tensor reflecting the link between vehicles, segments and time
stamps. V ∈ RI1×dV , R ∈ RI2×dR , T ∈ RI3×dT are three latent factor matrices representing the low
dimensional structure of vehicles, segments and time stamps respectively. ‖ · ‖ denotes the L2

norm. The symbol ×R is introduced to tensor-matrix multiplication, and the subscript R indicates the
direction of multiplication. R1 andR2 are regularizations.
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To deal with data sparseness, reasonable regularizations need to be considered for Equation (9).
We introduce the widely used L2 norm on all latent factor matrices, which encourages the entries of of
factor matrices decay to zero unless supported by data:

R1(C, V, R, T) =
1
2

(
‖ C ‖2 + ‖ V ‖2 + ‖ R ‖2 + ‖ T ‖2

)
(10)

In addition, we notice the observation that adjacent road segments always experience similar
traffic conditions. Under this observation, a vehicle which appeared in road segment r at time t,
would be likely to appear in the neighbors of r in recent time. Thus we normalize the topology of road
network as a regularization term denoted by

R2(C, V, R, T) =
1
2 ∑

ri∼rj

‖ Ri − Rj ‖2 (11)

where ri ∼ rj means road segments ri and rj are connected directly.
As Equation (9) is non-convex and there is no closed-form solution, we adopt a gradient descent

method to compute a local optimum. The details are shown in Algorithm 1.

Algorithm 1: Tensor Decomposition Procedure
Input: tensor A and an error threshold ε

Output: core tensor C, latent factor matrices V,R,T
1 Initialize C,V,R,T with random values between 0 and 1;
2 while loss> ε do
3 for Aijk 6= 0 do
4 Update C,Vi∗,Rj∗,Tk∗ in the direction of gradient descent;
5 end
6 loss←norm(A,C,V,R,T);
7 end
8 return C,V,R,T;

In Algorithm 1, line 4 updates the initial values to new ones that toward the direction of gradient
descent. We can easily compute the derivatives of F with respect to C,V,R and T. Note that from line 4,
we use an element-wise estimation instead of a batch gradient descent for efficiency [20]. The norm
function in line 6 calculates the L2 norm, denoted by the loss, of original tensorA and the new updated
tensor. The procedure stops unless the loss exceeds the threshold ε. Moreover, in every iteration of the
procedure, tensor-matrix and tensor-vector multiplications are needed for computing intermediate
tensors and we use an open tensor toolbox [34] to get the results.

4.2.3. Dynamic Feature Extraction

After tensor decomposition, latent factor matrices are derived. We can not directly use these
matrices to infer path as it could not reflect vehicle’s preference. Instead we utilize the complemented
tensor A∗ = C ×V V ×R R ×T T, where entry (i, j, k) indicates the probability that vehicle i pass
through segment j at time stamp k.

For vehicle i, let a candidate path τ = x1ξ1 · · · xn. We denote the kth candidate segments set by
ξk = rk

1|rk
2| · · · |rk

m where rk
i is the ith segment composing ξk. We define the dynamic feature function of

ξk as

φd(ξ
k) =

1
N ∏

rk
j∈ξk

A∗ijk (12)
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where N is the normalization term. In fact, φd(ξ
k) in Equation (12) can be expressed by the probability

of vehicle i pass through path ξk at time stamp k. Take Equation (12) into Equation (6), we derive all
potential functions for our collaborative path inference model. After model inference introduced in
Section 4.1.2 for each GPS snippet, we have completed the full paths for vehicles.

5. Road Traffic Anomaly Detection

In this section, we aim to detect road traffic anomalies by three processes. The first process is to
reconstruct trajectories from full path of vehicles (Section 5.1). Then we calculate the volume sets of
vehicles to perform a Likelihood Ratio Test in Section 5.2. We give an algorithm for road anomaly
detection in the end of this section.

5.1. Trajectory Reconstruction

To calculate the volumes of staying vehicles on each segment in recent time interval [1,T], we need
to specify the locations of vehicles at every time stamp. However, the full path of a vehicle only consists
of several paths and states, which could not reflect the locations at any given time stamp. Hence in this
subsection we estimate the locations at any time stamp to construct fine-grained trajectories.

Assume we are given the full path τ = x1ξ1 · · · ξT−1xT , for a set of time stamps 1 ≤ t1 < t2 <

· · · < tm ≤ T, our aim is to construct a trajectory L = {l1, l2, · · · , lm}, where lj = (tj, rj, oj),j ∈ [1, m].
To simplify the problem, we assume vehicles travel in a constant speed along sub-path between two
consecutive states. Then the average velocity between states xi and xi+1 along sub-path ξ i can be

calculated by v̄i =
|ξ i |

ti+1−ti , where | · | denotes the length of path. Note that the superscript i indicates
the time stamp of states. Let time stamp tj ∈ [ti, ti+1], we can conclude that segment rj must be in
sub-path ξ i. More importantly, since we know the average velocity and the length of every segments
in ξ i, we can easily infer which segment rj is and the corresponding offset oj. Then the fine-grained
trajectory in time interval [1, T] is reconstructed by doing this operation iteratively. We perform the
same computation on all paths of vehicles and finally derive a large number of fine-grained trajectories.

5.2. Likelihood Ratio Test

Given the fine-grained trajectories, we can get the volume sets of each segment in road network
N . For segment e ∈ E , we count the volumes of staying vehicles at time stamps 1 ≤ t1 < t2 < · · · <
tm ≤ T. We denote the volumes set as Se = {Ve

1 , Ve
2 , · · · , Ve

m}. Then the aim of this subsection is to
evaluate whether segment e is a SEA or CEA in this time interval.

5.2.1. Self-Evolving Anomaly Detection

We utilize a Likelihood Ratio Test (LRT) on volumes set Sk to detect a SEA. The LRT statistic is
one of hypothesis tests that exhibit the comparison of the fitness of two models: the null model
versus the alternative model. The comparison result is based on the likelihood ratio, which can
be used to extrapolate how many times more likely the data are under one model than the other.
The two models have identical likelihood functions, which are specified by a certain distribution with
different parameters.

In this paper, the null model is associated with the hypothesis that there is no anomaly on
the tested road segment, while the alternative model is associated with the hypothesis that there is
an anomaly. For the volumes set Se, we assume the items in it are independently identically distributed
(i.i.d.) and follow a Gaussian distribution N(· | θ) with parameter θ = (µ, Σ), where µ and Σ are the
mean volume and corresponding variance respectively. Let θ0 = (µ0, Σ0) be the parameters of null
model which is already known. The test statistic of two models is:

λ(e) =
∏m

j=1 N(Ve
j | θ0)

sup
θ∈Θ

∏m
j=1 N(Ve

j | θ)
(13)
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where θ is the new parameter in space Θ that fits the observed volume set data best, and sup denotes
the supremum function maximizing the likelihood distribution.

According to Equation (13), we need to compute a maximum likelihood estimate (MLE) over
space Θ. To directly determine whether the alternative model is anomalous, the test statistic λ(e) is
often transformed by negative twice the difference in the log-likelihoods as follows:

Λ(e) = −2 log λ(e) (14)

We subsequently refer to Λ as the LRT statistic which can be approximated by an asymptotic
Chi-Squared distribution χ2(Λ, d f ), where d f = p− q is called the degree of freedom. p, q are the
number of free parameters of the null model and the alternative model, respectively. This indicates that
the Λ value of an anomaly possibly lies in the tail of χ2 distribution. Figure 7 shows the Probability
Distribution Function (PDF) of two Chi-Squared distribution with df equals 1 and 3. The shaded area
is the tail in which an anomaly may drop in. We define the anomaly degree of SEA as:

d = χ2_cd f (Λ, d f ) (15)

where χ2_cd f (·) denotes the cumulative density function of the Chi-Squared distribution. Thus given
a significance level α, if d > 1− α, then the segment e is considered as a SEA.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

PD
F

 

 

df=2
df=3

Figure 7. Chi-Squared Distribution.

Let us take an example. Suppose there is a volume set Se = {85, 88, 94, 92, 96, 95}. The null model
is a Gaussian with parameters θ0 = (65, 20). Then the anomaly degree of segment e is calculated
as follows:

(a) The likelihood of null model: Lnull = ∏m
j=1 N(Ve

j | θ0) = 2.7× 10−13;

(b) Estimate the parameter θMLE for the alternative model: µMLE = 1
m ∑m

j=1 Ve
j = 91.7, ΣMLE =

1
m ∑m

j=1

(
Ve

j − µMLE

)2
= 18.7;

(c) The likelihood of alternative model: Lalter = ∏m
j=1 N(Ve

j | θMLE) = 8.3× 10−11;

(d) Calculate Λ(e) and d: Λ(e) = −2 log( 2.7×10−13

8.3×10−11 ) = 11.46, d = χ2_cd f (11.46, d f = 2) = 0.9968.

Note that given a significance level α = 0.05, d = 0.9968 > 0.95. We can confidently say that
segment e is a SEA.

5.2.2. Context-Evolving Anomaly Detection

A Context-Evolving Anomaly (CEA) is a segment who significantly deviates the volumes
distribution of its neighbor segments in a given region. To contrast the volume datasets, we also
utilize the LRT technique. Unlike the Self-Evolving Anomaly detection, both the null model and the
alternative model are not known beforehand and need to be estimated from data.
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Assume the test segment e has a volume set Se = {Ve
1 , Ve

2 , · · · , Ve
m}. The neighboring segments set

of e is denoted by NS(e). For each e′ ∈ NS(e), the corresponding volume set is Se′ = {Ve′
1 , Ve′

2 , · · · , Ve′
m }.

Then the test statistic of two models is

λ(e) =

sup
θ0∈Θ

∏m
j=1 N(Ve

j | θ0)

∏m
j=1 N(Ve

j | θ∗)
(16)

where θ0 is the parameter in space Θ that best fits the observed volume set data Se of tested segment e;
θ∗ is the parameter in space Θ′ = Θ− θ0 that best fits all the neighborhood segments volume sets data
of e. θ∗ can be derived by maximizing the likelihood as follows:

θ∗ = sup
θ∈Θ′

∏
e′∈NS(e)

m

∏
j=1

N(Ve′
j | θ) (17)

The next phase of CEA test is similar to SEA, including the calculation of the test statistic Λ(e)
and anomaly degree d. They are defined in Equations (14) and (15). We summarize the process of CEA
detection as follows:

(a) Estimate the MLE parameter θ0 from Se for the null model;
(b) Calculate the likelihood of null model given θ0;
(c) Estimate the MLE parameter θ∗ from the neighbors volume data sets of Se′ ,∀e′ ∈ NS(e);
(d) Calculate the likelihood of alternative model given θ∗;
(e) Calculate test statistic Λ(e), anomaly degree d, and give judgement.

In the last part of this section, we summarize all the details of anomaly detection component in
an algorithm called RN-Scan. The details are listed in Algorithm 2 as follows. Note that the functions
SEA(·) and CEA(·) denote the process of examine a segment e by corresponding LRT defined in
Sections 5.2.1 and 5.2.2 respectively.

Algorithm 2: RN-Scan (Road Traffic Anomaly Detection)
Input: Inferred vehicle path set, Road Network N
Output: SEA set A, CEA set C

1 for each inferred path do
2 Reconstruct path to a fine-grained trajectory;
3 end
4 for each segment e ∈ E do
5 for each time stamp ti in time interval [1,T] do
6 Count the volume of staying vehicles at ti from trajectories of vehicles;
7 end
8 Build the volume set Se;
9 end

10 for each segment e ∈ E do
11 if SEA(e) == true then
12 e→ A;
13 end
14 if CEA(e) == true then
15 e→ C;
16 end
17 end
18 return A, C;
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6. Experiments

Our experiments consist of three parts: (1) experimental settings including the data set and
experimental environment; (2) the results and discussions of collaborative path inference; and (3) the
evaluation effects of proposed road traffic anomaly detection algorithm.

6.1. Dataset

We use a benchmark GPS dataset, the Beijing Taxi Cab dataset which collected GPS data from
8602 taxi cabs in Beijing, China, during one month period in May 2012. It contains over 29,893,141
GPS measurements and the expected sampling rate of GPS snippets is 30 s. However, for many
reasons a large number of vehicles have non-uniform sampling intervals ranging from 30 s to 10 min.
Besides the GPS data, the map data used in our experiments are obtained from the Open Street Map
(http://www.openstreetmap.org) of Beijing urban area, covering the whole Beijing area and storing in
geo-database format. We use ArcGIS 10 as the GIS (Geographic Information System) platform to map
and visualise those geographical data, as can be seen in Figure 8a.

(a) (b)

Figure 8. Map and Data Visualization. (a) Beijing Urban Area; (b) Selected Regions.

6.2. Evaluation on Path Inference

6.2.1. Evaluation Approach

We select four different regions in Beijing as our test regions, and each region is about 20× 10 km2.
Figure 8b displays the four regions. These regions have different functions, for example, region 3
(bottom-left of Figure 8b) is Beijing’s administrative center which is inside the Third Ring road.

For each test region, we firstly clean the map data by removing and merging some neighboring
road segments to construct an undirected road network for each selected region. Then we pick out
vehicles which have GPS measurements in those regions to build a GPS snippets database. We divide
the GPS snippets into two subsets: a training set that all snippets are sampled within 1 min, and
another test set for evaluation. Note that the test set has non-uniform intervals. To get the dynamic
features, in our model both training snippets and test snippets are used to construct the tensor. We will
test the effects by adjusting the proportion of training snippets versus test snippets in Section 6.2.2.

We evaluate the performance of proposed path inference method by three typical metrics: error,
precision and recall. The error is defined as the route mismatched fraction, which refers to the ratio
of the number of different segments both in inferred path τ and in the true path P, against the the
total number of the true path in P. The precision of a path τ refers to the ratio of the number of true
segments in τ against the total number of all road segments in τ. While the recall refers to the ratio of
the number of true road segments in τ against the total number of true road segments P.

We use static CRF (SCRF) model [8] and HMM [18] model for path inference as baseline algorithms,
both adopting the static features such as length of road segment. For our tensor filter, we set λ1 and λ2

http://www.openstreetmap.org
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to 0.01 for Equation (9). Next we fix the value of dimensions of latent matrices as dV = dT = dR = 10 .
For Equation (12) we set N to be the number of road segments a trajectory have. In the end, we adjust
parameters µ1 and µ2 in Equation (3) to get the best performance.

To get the ground truths of path inference, we developed a path labeling system helping experts
to label the ground truth path according to incomplete GPS snippets. As shown in Figure 9, the blue
cross points are GPS measurements and red line is manually labeled path. We recruited 10 experienced
drivers who had 3+ years of driving experience in Beijing to label those selected snippets. Each labeler
was responsible for 100 snippets and each snippet was labeled by at least 3 labelers. Then the ground
truth was derived by majority voting.

E

E

E

E
E

E

Figure 9. Path Labeling.

6.2.2. Results

Effect of time interval. As the ratio of snippets in training set can affect the result of experiments,
we first fix the ratio to 90% by selecting 450 snippets in training set and 50 snippets in test set.
Then we vary the intervals of test snippets and use 5 round cross validations to get the average
values. Generally the intervals of test snippets are 30 s, but we let part of GPS measurements missing
to meet the test granularity requirement. Figure 10 shows the results that as the intervals between
two observations grows, the performances of all methods reduce. But our collaborative method CPI
(blue line) outperforms two other methods by all metrics. In detail, we can see that when intervals
are lower than 2 min, the error of our CPI method is within 90% while other methods can only
achieve 80%. Both precision and recall are more than 95% for our CPI method, outperforming SCRF
and HMM. But the difference is not high for these three methods. This is because that the higher
sampling rate of GPS snippets, the higher entropy they have for better reconstructing the original
hidden trajectories. However, when time intervals increase to more than 5 min, our CPI method
greatly outperforms others because it considers the dynamic context spatially and temporally. Even the
intervals are 10 min, the error is lower than 30%, and the precision and recall are higher than 80% for
our method. Note that if more static features are adopted, SCRF and HMM [19] could have a better
performance than depicted in Figure 10, but the improvements are very limited. Our method uses
dynamic context features automatically extracted from observations, with little static features but,
can achieve high accuracy.

Effect of training vs. testing ratio. We next evaluate the performance by changing the proportion
of snippets of training set vs. snippets of testing set. Since the snippets in training set have small
intervals, generally 30 or 60 s, the dynamic features extracted from our tensor filter would be affected
seriously. But for baselines there are none of affections, as shown in Figure 11 where both the HMM
and SCRF are horizonal lines. We can see that when training set ratio decreases, the error grows greatly
to 80% as well as the precision and recall dropping to 0.2. When training set ratio is lower than 0.7,
the precision and recall of our method are lower than the baselines. However, if the training set ratio is
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larger than 0.7, our method performs better. That’s because with the “help” of more high-sampling
snippets in training set, the collaboration of all vehicles could do better for discovering the latent
trajectories for vehicles.
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Figure 10. Experimental results by different sampling time intervals. (a) Error; (b) Precision; (c) Recall.
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Figure 11. Experimental results by different training ratios. (a) Error; (b) Precision; (c) Recall.

6.3. Evaluation on Anomaly Detection

6.3.1. Settings

We also use previous taxi dataset to verify the effectiveness of the proposed road anomaly
detection method. Taxicabs represent one of significant components contributing the traffic volumes
on the road network for big city. It is reported that about 20% of traffic on road segments in Beijing
is generated by taxicabs [35]. We choose region (3) as the test region (bottom-left in Figure 8b) and
retrieve all the GPS snippets of one months data for evaluation. Region (3) is within the third ring road
of Beijing area. To simplify the computation, we only take the main roads into consideration and omit
some low-class streets. The simplified road network of region (3) contains 185 road segments and all
of them are bidirectional.

We use our collaborative path inference (CPI) model to reconstruct the incomplete GPS snippets,
and count the traffic volumes for each road segment every ten minutes. Then each road segment has
an associated historical volume time series.

6.3.2. Evaluation for SEA

Baseline methods. We introduce three baseline methods: Snippet-Threshold method (ST),
Snippets-LRT method (SL) and Trajectory-Threshold method (TT). Snippet-Threshold method first
uses the incomplete GPS Snippets to count the volume of vehicles staying in road segments, and the
I-threshold (an individual threshold-based method [31]) to detect road anomalies. Snippets-LRT
method also uses the incomplete GPS Snippets, but the likelihood ratio test for road anomaly detection.
Trajectory-Threshold method utilizes the same path inference model as proposed method to reconstruct
trajectories from GPS snippets, but I-threshold to detect anomalies.
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We evaluate the proposed method with baselines for Single-Evolving Anomaly. We select three
time span for testing: (1) 8:00–9:00; (2) 13:00–14:00; and (3) 18:00–19:00. According to Equation (13),
we first learn parameter θ0 for all segments on tested time span. Note that the values of θ0 for same
segments are different in weekdays and weekends. In this experiment, we use the volume values in
weekdays for training and testing. Since there are no ground truth anomalies in our dataset, we adopt
two alternative way.

The first way is volume replacement since the volumes of road segments on weekdays are
significantly different from on weekends. For all segments, we take their real volumes on a weekend
day to replace their corresponding real volumes on the testing weekday. Then we can safely assume all
segments are SEA in the testing time span. The detection performance is shown in Figure 12a. We can
see that the average precision of proposed method is nearly 90%, which is about 20% higher than the
highest average precision of baseline. The variance of proposed method is also the smallest, compared
to other baselines.

Note in this scenario, the ground truths are not very accurate. The reason is that although for
many time intervals the test volumes of segments are anomalous, they also exist segments whose
volumes show little changes. Figure 13 presents the detected abnormal segments in different time
spans. The segments in dark blue color are detected road anomalies while segments in light blue color
are not. We can see that in the rush hour (Figure 13a,c) we have detected more anomalies especially on
the second and third ring road, which indicates that the ring roads are heavy-traffic roads and likely to
make congestions. While in the afternoon the volumes of most segments on weekdays are similar to
that of weekends, which generate less road anomalies (Figure 13b).

For the second way, we use the anomaly injection technique. That is, we manually generate
the volumes for tested segments, with values larger than θ0 + 3σ, where θ0 is the mean and σ is the
standard deviation of historical traffic volumes. Thus we can treat all tested segments abnormal.
The experimental results are shown in Figure 12b. The precision of proposed method achieves nearly
98%, outperforms other baselines. Although the average precision of Trajectory-Threshold (TT) method
is also high, its variance is larger than our method.
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Figure 12. Performance of Single-Evolving Anomaly Detection. (a) The first way; (b) The second way.



Sensors 2017, 17, 550 18 of 21

(a) (b) (c)

Figure 13. Single-Evolving Anomaly within the third ring road in different time. Segments in dark
blue are anomalies. (a) 8:00–9:00; (b) 13:00–14:00; (c) 18:00–19:00.

6.3.3. Evaluation for CEA

After the evaluation of SEA, we perform experiments for detecting Context-Evolving Anomaly
(CEA). The aim of CEA detection is to find out inconsistence of road segments with their neighbor
segments within a region. We tested the data in a weekday and report the number of detected
anomalies in Table 1. The compared baseline is the Snippet-LRT method, which uses the original GPS
snippets and the same LRT anomaly detection algorithm as ours. The results show that the proposed
method can find out more Context-Evolving Anomalies than the baseline.

Table 1. The number of detected CEA in a day.

8–10 11–13 14–16 17–19 20–22

proposed 7 6 4 5 5
Snippet-LRT method 3 3 4 1 3

We examine these anomalies according to the traffic reports from Beijing Traffic Management
Bureau (BTMB) and find out that Context-Evolving Anomalies can be categorized into two types.
For the first type, the volume of detected segment is significantly larger than its neighboring segments
(Figure 14a), which means the detected segment was a traffic congestion and an event was likely to
happen. For the second type, however, the volume of detected segment is significantly smaller than its
neighboring segments (Figure 14b), which indicates that the detected segment may experience a road
closure or it is not convenient to direct traffic flows from congested roads.

(a) (b)

Figure 14. Two types of Context-Evolving Anomaly. The segments indicated by arrow is the test
segments, and the area in the dotted oval is the context region. (a) Higher volume than neighbors;
(b) Lower volume than neighbors.
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6.4. Efficiency

Our implemented algorithm ran on a desktop machine with Intel Core I5-3380 2.90 GHz dual
core CPU and 8 GB memory. For path inference part, it would cost about 5 min to carry out the tensor
decomposition. Once the dynamic context features are derived, the cost time of inference is within
2 min for all snippets in our test set. For anomaly detection part, we can detect all the road traffic
anomalies within Beijing’s third ring toad in 100 ms.

7. Conclusions

GPS snippets collected from vehicles are characterized by noisy and sparse measurements which
pose challenges on directly using them for road traffic anomaly detection. In this paper, we develop
a two-stage method to effectively detect traffic anomalies from GPS snippets. To address the noisy GPS
measurements, we adopt a probabilistic graphical model, i.e., Conditional Random Fields to infer the
latent states and paths. The advantage of CRF model is that it is robust to noise and it can utilize both
static and dynamic context features. Because of the sparse nature of snippets, dynamic features can
help promote the accuracy of path inference. To get the latent dynamic features, we design a tensor
factorization algorithm with reasonable regularization to collaboratively learn from snippets data.
In the stage of anomaly detection, we define and recognize two types of road traffic anomalies, namely
SEA and CEA, and propose an algorithm called RN-Scan to effectively find them. Our algorithm
leans on the Likelihood Ratio Test (LRT) superseding traditional threshold based method to evaluate
the anomaly degree for each segment in road network. In view of real-world experimental results,
we discover that our method can effectively achieve the proposed objects, both on path inference and
road anomaly detection. We believe that our work will not only advance the research on IoT and urban
computing, but also benefit many real-world location-based applications.

However, there could be other road traffic abnormal patterns, such as normal volume of traffic
with much slower velocity than usual, or several faraway segments behave abnormal on volumes.
A thought is that other traffic pattern related information could be included to the tensor decomposition
for refined dynamic feature discovery. Further more, we could collect multi-source location-based
datasets such as taxicabs, check-ins, smart card records, etc. Those data could also be utilized to
discover abnormal traffic patterns from different points of view. We could combine them into one
model and perform multi-task learning to jointly detect traffic anomalies. We leave all these problems
for future work.
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