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Abstract: The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial
Measurement Units (IMUs) is an essential prerequisite for its applications. However, the
correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot
be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU
time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and
iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP
algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF
algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate
transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement
model and time delay error model of LiDAR and IMU are established. Third, the methodology of
the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental
results are presented that validate the proposed method and demonstrate the time delay error can be
accurately calibrated.

Keywords: LiDAR; inertial measurement unit; iterative closest point; iterated sigma point Kalman
filter; time delay calibration

1. Introduction

In today’s world, Light Detection and Ranging (LiDAR) devices and Inertial Measurement Units
(IMUs) often found on vehicles, airplanes and robots are increasingly being used to perform localization
or for navigation tasks. The LiDAR and IMU sensors, together, can supply accurate attitude estimation
and are very suitable in many applications. However, in GPS-denied environments the IMUs are
usually unreliable with respect to position for long periods of time due to time drift, which may cause
large cumulative errors, the a LiDAR is a device which uses laser beams to determine the distance and
azimuth from the sensor to an object, which can provide 3D localization information with high accuracy
and efficiency to reduce or bound IMUs drift. Therefore, the integrated LiDAR-IMU system can provide
highly accurate position and pose information over long periods of time in GPS-denied environments.

Usually combining information from multiple sensors offers several potential advantages,
including enhanced accuracy and improved robustness, but these come at a cost: a fundamental
requirement in any multiple sensor system is time delay calibration. To ensure optimal performance,
the LiDAR and IMU sensors must be properly time delay calibrated, including estimates of the relative
timing of each sensor measurement, coordinate transformation between the different sensors, and time
delay calibration parameters estimation are required [1–4].

Several methods exist for LiDAR, IMU and camera time delay calibration. The work of
Kelly et al. [5] presented a time delay iterative closest point method for determining the time delay
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between inertial and visual sensor measurements. Aghili et al. [6] presented a robust 6-Degree of
Freedom (DOF) relative navigation sysetm by combining the iterative closest point (ICP) registration
algorithm and a noise Adaptive Kalman Filter (AKF) in a closed loop configuration together with
measurements from a LiDAR and an IMU. Pothou et al. [7] investigated the determination of the
misalignment between the IMU body frame and the LiDAR frame, using a Quality Assurance/Quality
Control (QA/QC) technique to evaluate the LiDAR-IMU bore sight misalignment. Deymier et al. [8]
proposed the self-calibration of a vehicle’s acquisition system with cameras, IMU and 3D LiDAR.
Jian et al. [9] integrated two complementary technologies—Inertial Navigation System (INS) and
LiDAR Simultaneous Localization and Mapping (SLAM)—into one navigation frame with a loosely
coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each
system to establish a stable long-term navigation process. Mirzaei et al. [10] presented an EKF for
precisely determining the unknown transformation between a camera and an IMU. Yun et al. [11]
developed the IMU/Vision/LiDAR integrated navigation system which can provide accurate relative
navigation information in GNSS-denied environments; and construct an overall integrated navigation
filter based on the EKF approach. Li et al. proposed [12] a method of integrating the measurements
from a LIDAR and a Micro-Electro-Mechanical System (MEMS) IMU, and using the Kalman Filter (KF)
to estimate the error of IMU and LIDAR sensors.

As mentioned above, the AKF, EKF, KF and ICP algorithms are used in LiDAR, IMU and
camera sensors to calibrate the time delay. During the course of LiDAR-IMU calibration, neither
the EKF algorithm nor AKF algorithm can avoid time delay calibration bias and filtering divergences.
Initially, the correspondences between LiDAR and IMU measurements are usually unknown; as a
result the relative time delay information between the LiDAR-IMU data flows cannot be computed
directly [13–16]. The question is posed differently as follows: first, the measurement rate information
of LiDAR and IMU cannot be directly compared. Second, in general, the rigid body transformation
between the LiDAR and the IMU is unknown. Third, both signals are discrete and have different
temporal resolutions, the LiDAR typically scanning information is available at 5–20 Hz or less, however
the IMU produces data is normally available at 100 Hz or more [17–20].

In order to solve the problem of LiDAR-IMU time delay calibration, we present a fusion method
based on ICP and an iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP
and ISPKF [21–23]. The total least squares cost function is used by the ICP algorithm for registration,
which allows us to merge the IMU orientation measurement uncertainty in a principled way, and to
reduce the longer time intervals due to the accumulated noise effects by integrated LiDAR orientation
measurement. The ISPKF algorithm measurement update step is iterated until the change in the
posterior state estimate drops below some small threshold, and can optimally estimate the time delay
calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU
frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU
sensors are established. Third, the methodology of the ICP and ISPKF procedure is presented for
LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed
method and demonstrate the time delay can be accurately calibrated.

This paper is organized as follows: the coordinate transformation between LiDAR and IMU are
described in Section 2. In Section 3, we establish the LiDAR and IMU measurement models and the
time delay error model in LiDAR-IMU. Section 4 given the implementation procedure of ICP-ISPKF
for LiDAR-IMU time delay calibration. Section 5 experimental studies and analysis the results using
LiDAR, IMU and optical measuring system based our proposed method are described, followed by
the conclusions in Section 6.
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2. Coordinate Transformation between LiDAR and IMU

2.1. Coordinate Frame

In general, there are basically four coordinate frames in the LiDAR and IMU, The relationship
between these frames is shown in Figure 1:

(1) LiDAR frame, {L}, is represented in this frame of reference, in which the axes are defined as right,
forward and up.

(2) IMU frame, {I}, is defined by the IMU, in which angular rotation rates and linear accelerations are
measured, with its origin at a point on the IMU body.

(3) Object frame, {O}, is the coordinate of moving object, the axes in the object frame are forward,
right and down.

(4) World frame, {W}, is considered to be the fundamental coordinate frame and serves as an absolute
reference for both the {I} and the {L}.
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2.2. Transformation from LiDAR Frame to IMU Frame

2.2.1. Transformation from LiDAR Frame to the World Frame

Suppose a point WP in the {W} frame is located at LP in the {L}, the transformation from the {W}
coordinate to the {L} coordinate system can be expressed as [24]:

LP = RL
W

W P + LTLW (1)

where RL
W is a 3 × 3 orthonormal matrix representing the rotation from the {W} frame to the {L} frame,

and LTLW is the translation vector. The subscript is the origin of the {L} coordinate, and is the origin of
the tangent frame. Our goal is to calculate RL

W and LTLW .
The transformation is implemented through the observation of LiDAR scanning to a calibration

plane. A geometric constraint can be obtained between LiDAR scanning points and the calibration
plane. Since LiDAR scanning points lie on the calibration plane, and Wr is the normal vector to the
plane, we have:

Wr ·W P = d (2)

where WP is the coordinate of LiDAR scanning point in {W} frame; d is a scalar representing the
distance from the origin of the {W} frame to the calibration plane, which is calculated from the position
and orientation of the calibration plane. From Equation (1) we know that:

W P =
(

RL
W

)−1(LP− LTLW

)
(3)
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By substituting Equation (3) into Equation (2), we have:

Wr ·
(

RL
W

)−1(LP− LTLW

)
= d (4)

For any given LiDAR scanning point and calibration plane position, Equation (4) gives a constraint
on RL

W and LTLW . It will be solved in two consecutive steps: a linear solution, followed by a non-linear
optimization [25,26]:

(1) Linear solution. The LiDAR scanning plane in the {L} is LZ = 0. Each LiDAR scanning point
can be represented as LP = [LPx

LPy
LPz]

T . Then Equation (4) is rewritten as:

Wr ·
(

RL
W

)−1


 LPx

LPy
LPz

− LTLW

 = Wr ·
(

RL
W

)−1


 1 0 0

0 1 0
0 0 1

− LTLW


 LPx

LPy
LPz

 = d (5)

Let’s define Z =
(

RL
W
)−1


 1 0 0

0 1 0
0 0 1

− LTLW

, Equation (5) is rewritten as:

Wr · Z · LP = d (6)

where Z is the parameter to be solved, which is the integration of two unknown parameters RL
W

and LTLW .
Equation (6) can be solved using the standard linear least squares algorithm. In order to obtain

a better result, multiple calibration planes should be used in the transformation. Suppose in the
transformation we use a total of N calibration planes, with Mi (i = 1, . . . ,N) LiDAR scanning points

on the i-th plane. Let Z =

 z11 z12 z13

z21 z22 z23

z31 z32 z33

, the normal vector for the i-th plane Wri = [ri,1 ri,2 ri,3],

the distance from origin of the {W} frame and the i-th calibration plane is di and the j-th LiDAR
scanning point on the i-th calibration plane is LPij = [LPij,x

LPij,y
LPij,z]

T , Equation (6) is rewritten as:

(ri,1z11 + ri,2z21 + ri,3z31) · LPij,x + (ri,1z12 + ri,2z22 + ri,3z32) · LPij,y + (ri,1z13 + ri,2z23 + ri,3z33) · LPij,z = di (7)

where i = 1,2, . . . ,N, j = 1,2, . . . ,M.
Therefore for each LiDAR scanning point we have a linear equation which is a row in Equation (7)

can be calculated using the standard linear least square algorithm. Then RL
W and LTLW will be obtained

from Z.
(2) Nonlinear solution. The linear solution is obtained by the least squares method, which aims to

minimize an algebraic distance. A nonlinear minimization method is used to minimize the differences
between the measured Euclidean distances as well as the calculated distance from the LiDAR scanning
points to the calibration plane, which is physically meaningful.

Equation (4) gives two types of distances: d is the distance from the calibration plane to the origin
of the {W} frame obtained by a field survey, and Wr·

(
RL

W
)−1

(LP− LTLW) is the calculated distance.
The difference between these two distances is defined as the distance error for one calibration plane
pose. The nonlinear solution aims to minimize the sum function of the distance errors for all the plane
positions. The sum function is defined as:

sum = ∑N
i=1 ∑Mi

j=1

(
Wri ·

(
RL

W

)−1(LPij − LTLW

)
− di

)2
(8)
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where ri defines the i-th calibration plane, di is the distance from the i-th plane to the center of the {W}
frame, and Pij is the j-th LiDAR scanning point with the i-th calibration plane; the pair of RL

W and LTLW
that minimize Equation (8) are considered to be the rotation and translation matrix to be calculated.
Equation (8) can be minimized as a nonlinear optimization problem by getting the translation and
rotation matrix between the {W} frame and LiDAR scanning points in the {W} frame can be converted
to a point in the {L} frame.

2.2.2. Transformation from LiDAR Frame to IMU Frame

The transformation of the LiDAR frame to the IMU one is to obtain the geometric relationship
between the {L} frame and {O} frame. The IMU consists of three gyros and three accelerometers.
The gyros provide change of Euler angles, while the accelerometers give the specific force.
By integrating the output of the gyros and the accelerometers, we can obtain the translation and
rotation matrix between the {W} frame and the {O} frame. Let the rotation matrix be RW

O , and translation
vector be OTWO, then a point in the {O} frame can be converted to a point in the {W} frame by:

W P = RW
O

OP + OTWO (9)

where W P is the point in the {W} frame, and OP is the point in the {O} frame.
Finally, by substituting Equation (1) into Equation (9) we have:

LP = RL
W

(
RW

O
OP + OTWO

)
+ LTLW (10)

Equation (10) is the transformation from the {O} frame to the {L} frame.

3. LiDAR and IMU Measurement Model

3.1. LiDAR Measurement Model

The LiDAR scans the laser beam through 360◦. Therefore, a post which will be modeled as a
vertical line in the tangent frame will appear as a point in the LiDAR frame. Similarly, a wall which
will be modeled as a vertical plane in the tangent frame will appear as a line in the LiDAR frame of
references. The LiDAR position and point feature detection are shown in Figure 2.
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Figure 2. The LIDAR position and point feature detection.

Consider a mapped vertical post at P0. The post will appear as a point in the LiDAR return.
The vector from T to P0 in world frame is W TLPO = [N0 E0 0]T , which is known from the survey.
The line is denoted as:

W TWP(m) = W TWPO + me3 (11)
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where W TWP(m) is the vector in world frame from T to a point P at height m on the post, m is a scalar
with m ∈ (0,+∞). The vector e3 is parallel to the post. In our application, all the posts and planes are
modeled as vertical. For a vertical post e3 = [0 0 1]T in the world frame.

For any feature point P, the vector from the LiDAR to the point is:

TLP = TWP − (TWO + TOL) (12)

As is shown in Figure 3. Equation (12) is valid for all the reference frames.
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In Equation (12) and Figure 3, TWP is a constant in the world frame known from the feature survey.
TWO will be calculated in the world frame. TOL in the object frame is known, and can be determined
by the pre-calibration.

RL
O is the rotation matrix from the object frame to the LiDAR frame, so the vector from the LiDAR

to a feature point in LiDAR coordinates is denoted as:

LTLP = RL
O

(
RO

W(W TWP −W TWO)− OTOL

)
(13)

By substituting Equation (11) into Equation (13) we have:

LTLP(m) = RL
O

(
RO

W(W TWP + me3 −W TWO)− OTOL

)
(14)

which is the vector in the LiDAR coordinates from the origin of the LiDAR sensor to a point with
height m on the post. By expanding Equation (14), the coordinate of LTLP(m) in the −LZ direction is:

Z(m) = eW
3 · LTLP(m) = m · eW

3 · RL
O · RO

W · e3 + eW
3 · RL

O

(
RO

W(W TWP −W TWO)− OTOL

)
(15)

Equation (15) is the theoretical equation. Note that for a single-planar LiDAR, the scan plane in
LiDAR coordinate is LZ = 0. Therefore, for all the LiDAR points we have LZ = 0, and we can use this
fact to calculate m as:

m = −
eW

3 · RL
O
(

RO
W(W TWP −W TWO)− OTOL

)
eW

3 · RL
O · RO

W · e3
(16)

By substituting Equation (16) into Equation (14), the detected point is:

LTLP(m) = RL
O

(
RO

W(W TWP −
eW

3 · RL
O
(

RO
W(W TWP −W TWO)− OTOL

)
eW

3 · RL
O · RO

W · e3
e3 −W TWO)− OTOL

)
(17)



Sensors 2017, 17, 539 7 of 19

Equation (17) is the LiDAR measurement model.

3.2. IMU Measurement Model

The IMU consists of three gyros and three accelerometers. The gyro provides change of Euler
angles, while the accelerometers give the specific force. This model is based on the inertial measurement
system error modeling method presented by Jonathan Kelly [5,27] and integrates the modified
Rodrigues parameters kinematic equation. We obtained the IMU measuring equations as follows:

.
PI(t) = F(t)PI(t) + PI(t)FT(t) + G(t)Qg(t)GT(t) (18)

F(t) =
∂

.
ρ(t)
∂v

=
1
2

(
(ρT(t) ·ω(t))I3 − [ω(t)]× + ρ(t)ω(t)T −ω(t) · ρT(t)

)
(19)

G(t) =
∂

.
ρ(t)
∂ng

= −1
4

(
(1− ‖ρ(t)‖2)I3 + 2[ρ(t)]× + 2ρ(t)ρT(t)

)
(20)

.
ρ(t) =

1
4

(
(1− ‖ρ(t)‖2)I3 + 2[ρ(t)]× + 2ρ(t)

)
ω I(t) (21)

where PI(t) is the IMU orientation covariance at a time t, Qg(t) is an additive noise vector, ρ(t) is
the modified Rodrigues parameters vector, F(t) and G(t) are the system matrix for ρ(t), [ρ(t)]× is the
skew-symmetric cross-product matrix for ρ(t), I3 is the 3 × 3 identity matrix, ωI(t) = ωm(t)− bg − ng(t)
is the true angular velocity of IMU, and bg and ng(t) are the gyroscope bias vector and the noise
vector, respectively.

3.3. Time Delay Error Model

We will identify a specific instantaneous local LiDAR frame as {Lk} with timestamp tLk according
the receiver clock, for k = 1, . . . ,n LiDAR poses. Similarly, for j = 1, . . . ,m IMU poses, the {Ij} will be
identified as a specific instantaneous local IMU frame with timestamp tIj . In general, the IMU data are
available at a substantially higher rate than the LiDAR data, and m > n.

To compare LiDAR and IMU measurement data, a common representation is required; we use the
orientation measurements to match IMU and LiDAR. The IMU orientation is measured with respect to
the initial sensor pose. The LiDAR orientation is measured relative to a series of calibration planes.
Our algorithm employs the modified Rodrigues parameters as a minimal and convenient orientation
representation. The use of the modified Rodrigues parameters vector representation allows us to
propagate the IMU orientation uncertainty forward continuously in time [28].

We have the following relationship at any time tIj :

W
I ρ(t) = W

L ρ(t + τ) · L
I ρ (22)

where L
I ρ is the modified Rodrigues parameter vector with the orientation from the {I} frame to the {L}

frame. W
L ρ(t + τ) is the modified Rodrigues parameter vector with the orientation from the {L} frame

to the {W}, τ is the time delay. W
L ρ(t) is the modified Rodrigues parameter vector with the orientation

from the {I} frame to the {W} frame.
Although the orientation of the rate measurement information supplied by the IMU cannot be

measured directly, by integrating the IMU gyroscope data, we can obtain the IMU measurement
orientation change over a period of time. Similarly, we can conveniently compute the LiDAR measured
orientation relative to the {W} frame. The measurement relationship between the {I}, {L} and {W} frame
can be computed as:

I0
I ρ(t) = I0

Wρ ·WL ρ(t + τ) · L
I ρ (23)

where I0
Wρ is the modified Rodrigues parameter vector with the orientation from the {I0} frame to

the {W} frame.
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(1) Position error analysis: the error in position can be calculated as follows:

δ
(

W
.
TWO

)
= RW

O · OV − R̂W
O · OV̂ = R̂W

O · δ
(

OV
)
−WV̂ · ρ (24)

where RW
O = R̂W

O (I + ρ), I =
(

RL
W
)T ·RL

W , ρ is the calibration plane tilt error, and OV = OV̂ + δ
(OV

)
.

(2) Velocity error analysis: the error in velocity is modeled as follows:

δ
(

O
.

V
)

= O
.

V − O
.

V̂ = OaO −
(
ΩO

IL + ΩO
IO
)
· OV − O âO +

(
Ω̂O

IL + Ω̂O
IO
)
· OV̂

= R̂W
O

((
∂(gW)

∂(W TWO)
+ WV̂ · ∂(W ωIL)

∂(W TWO)

)
δ
(W TWO

)
+
(

gW + WωIL
(WV̂

)T −
(WωIL

)T ·WV̂ · I
)

ρ

)
−
(
Ω̂O

IL + Ω̂O
IO
)
δ
(OV

)
− δba − OV̂ · δbg − γa − OV̂ · γg

(25)

where gW is the local gravity vector at the moving object location represented in the {W} frame,
WωIL is the angular rate of the {W} frame origin to the {I} frame represented in the {L} frame. γg is the
white Gaussian measurement noise, bg is the gyro bias, which is modeled as a random constant plus
random noise.

(3) Attitude error analysis: the attitude error is given by:

δ
( .

Θ
)
=

.
Θ−

.
Θ̂ = Ω−1

E ·
Wω̂IW − δ

(
WωIW

)
− R̂W

I
(
δbg + γg

)
(26)

where δ(WωIW) can be calculated as:

δ
(

WωIW

)
= −ωIL ·

 sin α

0
cos α

 · ∂Θ
∂(W RIW)

· δ
(

W RIW

)
(27)

(4) Time delay calibration parameters error model: the measurement noise vector, the time delay
parameter vector and process noise vector of LiDAR-IMU can be expressed as:

x =
[

δ
(W TWO

)
δ
(OV

)
δΘ δωba δωbg

]T

b =
[

ba bg

]T

γ =
[

γa γg

]T

(28)

where the x, b and γ are the time delay of the error state vector, process noise vector and measurement
noise vector, respectively.

According to the Equations (25)–(28), the time delay calibration parameters error model of
LiDAR-IMU can be computed as:

δ
(

W
.
TWO

)
δ
(

O
.

V
)

δ
.

Θ
δ

.
ωba

δωbg


=


R̂W

O
∂(gW)

∂(W TWO)
R̂W

O −WV̂ 0 0

0 −
(
Ω̂O

IL + Ω̂O
IO
)
−R̂W

O gW −I −OV̂
0 0 Ω̂−1

E 0 −R̂W
O

0 0 0 0 0
0 0 0 0 0

 ·


δ
(W TWO

)
δ
(OV

)
δΘ

δωba
δωbg



+


−I 0 0 0
0 −OV̂ 0 0
0 −R̂W

O 0 0
0 0 I 0
0 0 0 I

 ·


γa

γg

ba

bg


(29)
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4. Time Delay Calibration Using the ICP-ISPKF Integration Method

The ICP algorithm can be used to register the spatial data from IMU and LiDAR measurements,
which operates by aligning two curves in a 3-D orientation space generated from integrated IMU
gyroscope data and from LiDAR scanner data. Each point on the respective curve has a corresponding
timestamp, identifying the time at which the measurement arrived at the receiver. By registering the
orientation curves, we are able to use the timestamp values to estimate the relative delay between
IMU and LiDAR data streams. ICP incorporates in a principled way the uncertainty in the LiDAR
orientation measurements and accounts for the fact that the integrated IMU orientation becomes less
accurate over longer intervals due to the incorporation of noise. We specifically avoid this using the
ISPKF because of The ISPKF algorithm measurement update step is iterated until the change in the
posterior state estimate drops below some small threshold, and can optimally estimate the time delay
calibration parameters. The ISPKF is shown to achieve superior performance in terms of efficiency
and accuracy compared with the KF, EKF and UKF, also the Gabe Sibley et al. [29] have compared
the ISPKF with KF, EKF, UKF and Gauss-Newton filter, and demonstrate the ISPKF’s capabilities in
avoiding IMU measuring noise. Therefore, in order to solve the problem of LiDAR-IMU time delay
calibration, we use the fusion method based on ICP and ISPKF algorithm.

As shown in Figure 4, the LiDAR-IMU time delay calibration is integrated with ICP and ISPKF
method. Firstly, once the ICP succeeds matching the LiDAR measurement points, the LiDAR-IMU state
estimations are updated with the precise registration value. Secondly, at the time delay filter estimate
step, the obtained predicted pose is required to find the corresponding points between LiDAR and
IMU measurements. Thirdly, at each time step, the recursive algorithm is used to update the related
covariance estimates and precise registration value for LiDAR-IMU. The ICP convergence information
and the fault-detection logic are used to adaptively adjust ISPKF reliable estimate of motion state and
a set of related parameters. In closed-loop ICP-ISPKF architecture, through ICP initial guess and fault
detection, the LiDAR-IMU robust pose tracking and automatic fault recovery are established. Finally,
the pose prediction information used to align the time delay error for ICP [6,30].

Sensors 2017, 17, 539 9 of 19 

 

 

 

 
 

 

 

 

1

ˆ ˆ ˆ 0 0 0 0 0

ˆ0 0 0
ˆ ˆ ˆ ˆ0

ˆ0 0 0
ˆ ˆ0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0

W

W W WW W
O OWO WOW

WO
OO O

O O W W O

IL IO O W

O
W

E O
ba ba

bg bg

g
R R VT T I

T
VV V

R g I V
R

R I

I

 

 

 

 

 



 
     

    
     
         

        
     
    
    

    
 

a

g

a

g

b

b





 
  
  
   
  
  
   

 

 (29) 

4. Time Delay Calibration Using the ICP-ISPKF Integration Method 

The ICP algorithm can be used to register the spatial data from IMU and LiDAR measurements, 

which operates by aligning two curves in a 3-D orientation space generated from integrated IMU 

gyroscope data and from LiDAR scanner data. Each point on the respective curve has a 

corresponding timestamp, identifying the time at which the measurement arrived at the receiver. 

By registering the orientation curves, we are able to use the timestamp values to estimate the 

relative delay between IMU and LiDAR data streams. ICP incorporates in a principled way the 

uncertainty in the LiDAR orientation measurements and accounts for the fact that the integrated 

IMU orientation becomes less accurate over longer intervals due to the incorporation of noise. We 

specifically avoid this using the ISPKF because of The ISPKF algorithm measurement update step is 

iterated until the change in the posterior state estimate drops below some small threshold, and can 

optimally estimate the time delay calibration parameters. The ISPKF is shown to achieve superior 

performance in terms of efficiency and accuracy compared with the KF, EKF and UKF, also the 

Gabe Sibley et al. [29] have compared the ISPKF with KF, EKF, UKF and Gauss-Newton filter, and 

demonstrate the ISPKF’s capabilities in avoiding IMU measuring noise. Therefore, in order to solve 

the problem of LiDAR-IMU time delay calibration, we use the fusion method based on ICP and 

ISPKF algorithm. 

As shown in Figure 4, the LiDAR-IMU time delay calibration is integrated with ICP and ISPKF 

method. Firstly, once the ICP succeeds matching the LiDAR measurement points, the LiDAR-IMU 

state estimations are updated with the precise registration value. Secondly, at the time delay filter 

estimate step, the obtained predicted pose is required to find the corresponding points between 

LiDAR and IMU measurements. Thirdly, at each time step, the recursive algorithm is used to 

update the related covariance estimates and precise registration value for LiDAR-IMU. The ICP 

convergence information and the fault-detection logic are used to adaptively adjust ISPKF reliable 

estimate of motion state and a set of related parameters. In closed-loop ICP-ISPKF architecture, 

through ICP initial guess and fault detection, the LiDAR-IMU robust pose tracking and automatic 

fault recovery are established. Finally, the pose prediction information used to align the time delay 

error for ICP [6,30]. 

LiDAR ICP

Fault
Detection

IMU

ISPKF

Scanning 
point cloud

Time delay 
alignment

Pose estimation

Pose prediction

Measurements

 

Figure 4. The Architecture of ICP and ISPKF Integration method. 

  

Figure 4. The Architecture of ICP and ISPKF Integration method.

4.1. The ICP Algorithm for Estimation the Time Delay and Relative Orientation of LiDAR-IMU

The ICP algorithm is utilized to estimation the LiDAR-IMU time delay and relative orientation.
At the beginning, the transforms between the LiDAR-IMU orientation curves are computed
through iteratively selecting n correspondences point using the ICP algorithm. We employed the
TD-ICP algorithm registration rules proposed by Jonathan Kelly [5,31] and by adjusting the search
corresponding time scale and the orientation curves converge, this ICP algorithm can be described in
two steps:
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Step I: Registration Rules.

The ICP algorithm operates by iteratively selecting the closest point between the IMU orientation
curve and the LiDAR measurement point, and the concept of ICP proximity requires a suitable distance
measurement. The minimum value of distance function can be computed as

dij = (W
Li

ρ, I0
Ij

ρ) = 4arctan
√

σT
ij σij (30)

σij = −(I0
W ρ̂ ·WLi

ρ ·LI ρ̂) ·I0
Ij

ρ (31)

where dij is the incremental rotation arc length taking from W
Li

ρ to I0
Ij

ρ in radians orientation, and σij is
the spatial transform model on the unit sphere.

Step II: Nonlinear Iterative Registration Rules.

We can getncorrespondence relationship between IMU and LiDAR orientation measurement
curves by selecting the closest IMU point for LiDAR point. The cost function used to align the IMU
and LiDAR orientation curves can be calculated as

U
(

I0
Wρ, L

I ρ
)
=

n

∑
k=1

skP−1
Lk

sT
k +

n

∑
k=1

tkP−1
I f (k)

tT
k (32)

sk =
W
Lk

ρ −W
Lk

ρ̂ (33)

tk =
I0
I f (k)

ρ − I0
I f (k)

ρ̂ (34)

where PLk and PI f (k)
are the associated covariance matrices, s and t are the stacked residuals vectors,

and the I0
Wρ and L

I ρ are transform parameters.
By using Lagrange multipliers and incorporating the constraints I0

I f (k)
ρ̂ = W

I0
ρ̂ · W

Lk
ρ̂ · L

I ρ̂,

differentiating and rearranging, Equation (32) can be minimized as

U
(

I0
Wρ, L

I ρ
)
=

[
n
∑

k=1
Jk(PI f (k)

+ HkPLk HT
k )
−1 JT

k

]−1[ n
∑

k=1
( I0

I f (k)
ρ̂ −W

I0
ρ̂ ·WLk

ρ̂ · L
I ρ̂)Jk(PI f (k)

+ HkPLk HT
k )
−1 JT

k

]
(35)

H(I0
Wρ, W

Lk
ρ, L

I ρ) =

∂(I0
Wρ ·WLk

ρ · L
I ρ)

∂(I0
Wρ)

,
∂(I0

Wρ ·WLk
ρ · L

I ρ)

∂(L
I ρ)

 (36)

where Hk is the block-diagonal Jacobian matrix of the constraints with respect to W
Lk

ρ, and Jk is the

stacked Jacobian matrix of the constraints with respect to the transform parameters I0
Wρ and L

I ρ.

4.2. Iterated Sigma Point Kalman Filter (ISPKF) Algorithm for Compensation Calibration Parameters

After the relative orientation and optimal time delay estimation for the LiDAR-IMU, the ISPKF
algorithm is used for compensation of the time delay calibration parameters between the LiDAR and
IMU measurements.

The ISPKF algorithm uses the process noise component to implement the incremental state vector
and the state covariance matrix, as expressed in:

X̂a(tk) =

[
X̂(tk)

n(tk)

]
(37)
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where n(tk) is the noise vector in measurement process, X̂a(tk) is the augmented state vector. At time
tk−1, shortly after the LiDAR and IMU measurement update, the enhanced state covariance matrix
P+

a (tk−1) and the enhanced state mean X̂+
a (tk−1) can be formed as:

P+
a (tk−1) =

[
P+(tk−1) 0m×12

012×m Qc(tk−1)

]
(38)

X̂+
a (tk−1) =

[
X̂+(tk−1)

012×1

]
(39)

where the state vector X̂+
a (tk−1) has size m = 26 + 3n and Qc(tk−1) is the continuous-time covariance

matrix for the noise vector n(tk−1), when n calibration points are included, for the Cartesian and
inverse calibration points parameterization, respectively. The scaled form is employed for unscented
transform, which requires a scaling term:

λ = α2(N + β)− N (40)

The α parameter is used to control the sigma points spread with respect to the mean of the state;
we usually set a small positive value for parameter α. In the a posteriori state distribution Taylor series
expansion, the β parameter is used to correct the higher order term. We set β = 2 and minimize the
joint Gaussian distribution fourth-order error.

We use the augmented state vector X̂+
a (tk−1) to generate a set of sigma points according to the

following equation:
χ
(0)
a (tk−1) = X̂+

a (tk−1)

χ
(l)
a (tk−1) = X̂+

a (tk−1) + (S(tk−1))j, j = l = 1, · · · , N

χ
(l)
a (tk−1) = X̂+

a (tk−1)− (S(tk−1))j, j = 1, · · · , N, l = N + 1, · · · , 2N

S(tk−1) =
√
(λ + N)P+

a (tk−1)

(41)

where P+
a (tk−1) is the augmented state covariance matrix, (S(·))j expresses the j-th column of the

matrix S. The weight values of the associated sigma point can be described as:
W(0)

m = λ/(λ + N)

W(0)
c = λ/(λ + N) + (1− α2 + β)

W(j)
m = W(j)

m = 1
2(λ+N)

, j = 1, · · · , 2N

(42)

A single σ-point can be propagated by the enhanced nonlinear process model function fa. Over
the time interval t ∈ [tk−1, tk), the a priori state estimate and covariance tk can be computed as:

χ
(p)
k = fa

(
χ
(p)
a (tk−1)

)
, p = 0, · · · , 2N

X̂−k =
2N
∑

p=0
W(p)

m χ
(p)
k

P−k =
2N
∑

p=0
W(p)

c

(
χ
(p)
k − X̂−k

)(
χ
(p)
k − X̂−k

)T

(43)
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Through propagating each σ point through the nonlinear measurement model function h, we can
determine the predicted measurement vector as follows:

Z(p)
k = h

(
χ
(p)
k

)
, p = 0, · · · , 2N

Ẑk =
2N
∑

p=0
W(p)

m Z(p)
k

(44)

Through computing the a posteriori state vector, the state covariance matrix, and the Kalman gain
matrix, we can perform the state update as follows:

PẐk Ẑk
=

2N
∑

p=0
W(p)

c

(
Z(p)

k − Ẑk

)(
Z(p)

k − Ẑk

)T

Kk = PX̂k Ẑk

(
PẐk Ẑk

+ Rk

)−1

X̂+
k = X̂−k + Kk(Zk − Ẑk)

P+
k = P−k − KkPẐk Ẑk

KT
k

(45)

where Rk is the measurement covariance matrix for Zk, while PẐk Ẑk
and PX̂k Ẑk

are the predicted
measurement covariance matrix and the state-measurement cross-covariance matrix, respectively.

5. Experiments and Discussion

To verify the effectiveness of the proposed algorithm, a field experiment was performed on the
fourth floor of the School of Mechanical and Electrical Engineering building on the campus of China
University of Mining and Technology. The experimental layout is shown in Figure 5. The experiments
were conducted with a VLP-16 LiDAR (Velodyne, Morgan Hill, CA, USA) and Spatial FOG IMU
(Advanced Navigation Company, Sydney, Australia). The specifications of the IMU and LiDAR are
listed in Table 1.Sensors 2017, 17, 539 13 of 19 
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Table 1. The specifications of the IMU and LiDAR.

IMU
LiDAR

Navigation Sensors Accelerometers Gyroscopes

Horizontal Position Accuracy: 0.5 m Range 10 g 490◦/s Channels 16
Vertical Position Accuracy: 0.8 m Bias Instability 15 µg 0.05◦/h Range 100 m

Velocity Accuracy: 0.007 m/s Initial Bias <1 mg <1◦/h Accuracy ±3 cm
Roll & Pitch Accuracy: 0.01◦ Scaling Error <0.03% <0.01% Vertical FOV 30◦

Heading Accuracy: 0.05◦ Scale Stability <0.04% <0.02% Horizontal FOV 360◦

Output Data Rate: Up to 1000 Hz Non-linearity <0.03% <0.005% Output Data Rate 300,000 pts/s

The LiDAR consists of 16 laser scanners that collectively span a 27◦ of vertical field of view. Firstly,
in each experiment, we initialize the IMU biases and keeping the IMU stationary for 3 s. We begin
recording data from the LiDAR and the IMU, the moving objector carrying the LiDAR-IMU platform
automatically moves following different configurations in front of the calibration plane. The IMU
update data is recorded at 100 Hz, while the LiDAR scanning data rate is 100,000 points/s. We chose a
set of three different trajectories for the LiDAR-IMU, and for each trajectory, we experimented with
a different time shift and a different initial orientation estimate. In all trajectories, the initial true
relative orientation of the IMU with respect to the LiDAR was the same. In the experiments, the
moving objector ran three different trials, with the LiDAR-IMU platform translating and rotating in
front of the calibration plane for approximately 5 s, and the LiDAR-IMU platform then ran in three
different orientation and time delay configurations. For configuration 1, we set the IMU-camera relative
orientation to a nominal value (a roll of 90◦, pitch of 0◦, and yaw of 90◦), and fixed the estimated time
delay value at zero. For configuration 2, we used the mean LiDAR-IMU relative orientation computed
by averaging the roll, pitch, and yaw values, while again fixing the time delay at zero. Finally, for
configuration 3, we used the averaged LiDAR-IMU relative orientation and the mean time delay value
from configuration 2, and we determined the performance of each configuration by computing the
RMS error. Once the LiDAR and IMU measurements for each configuration of the calibration plane
were available, we used the method described in Section 4 to accurately estimate the LIDAR-IMU time
delay calibration parameters and the LIDAR-IMU transformation parameters.

The experimental results for LiDAR-IMU time delay calibration as shown in Figure 6.
Figure 6a,d,g, shows the initial alignment between IMU and LiDAR in East, North and Up orientation
respectively. Figure 6b,e,h, shows one time alignment using ICP-ISPKF between IMU and LiDAR in
East, North and Up orientation, respectively. Figure 6c,f,i, shows ten times alignment using ICP-ISPKF
between IMU and LiDAR in East, North and Up orientation respectively. We examined the error in the
LiDAR-IMU time delay calibration using ICP-ISPKF for ten times, as shown in Table 2.

Table 2. Time delay calibration times using ICP-ISPKF for LiDAR-IMU.

Time Delay Calibration
Times Using ICP-ISPKF

Time Delay Error
(ms)

Alignment Error
in East (m)

Alignment Error
in North (m)

Alignment Error
in Up (m)

0 9.58 0.093 0.168 0.089
1 4.67 0.067 0.097 0.063
2 2.45 0.043 0.068 0.041
3 1.66 0.037 0.047 0.035
4 1.17 0.031 0.039 0.029
5 0.87 0.026 0.032 0.025
6 0.63 0.023 0.027 0.021
7 0.57 0.020 0.024 0.019
8 0.53 0.019 0.021 0.018
9 0.51 0.018 0.020 0.018
10 0.50 0.018 0.019 0.017
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According to the Table 2 and Figure 6, the initial time delay alignment error is 9.58 ms, the
LiDAR-IMU alignment errors in the East, North and Up orientation are 0.093 m, 0.168 m, 0.089 m
respectively. After one time calibration using ICP-ISPKF converged, the time delay alignment errors
are reduced to 4.67 ms, and the alignment errors in the East, North and Up orientation are reduced
to 0.067 m, 0.097 m, 0.063 m, respectively. For clarity, after ten times calibration using ICP-ISPKF
converged, the final time delay alignment error was reduced to 0.50 ms, and the final alignment errors
in the East, North and Up orientation were reduced to 0.018 m, 0.019 m, 0.017 m, respectively.

In order to prove the efficiency and accuracy of the ISPKF method, we used the ISPKF, KF and
EKF methods to estimate the LIDAR-IMU time delay calibration errors. Since obtaining the initial
truth time delay value is very difficult, we supposed the initial time delay alignment errors between
LiDAR and IMU are zero, when the LiDAR and IMU measurements for each configuration of the
calibration plane were available, the ICP-KF, ICP-EKF and ICP-ISPKF method are used to perform the
time delay calibration for LiDAR-IMU.

The experimental results are shown in Figure 7, where the red line is the time delay alignment
error result using the ICP-KF method, the blue line is the time delay alignment error result using
the ICP-EKF method, the green line is the time delay alignment error result using the ICP-ISPKF
method, and the one time calibration mean alignment errors using the ICP-KF, ICP-EKF and ICP-ISPKF
methods are 0.233 m, 0.151 m, 0.067 m, respectively.
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truth time delay value is very difficult, we supposed the initial time delay alignment errors between 

LiDAR and IMU are zero, when the LiDAR and IMU measurements for each configuration of the 

Figure 6. Time delay calibration using ICP-ISPKF for LiDAR-IMU. (a) Initial alignment between LiDAR
(red dots) and IMU(black line) in East orientation; (b) time delay calibration one time using ICP-ISPKF
between LiDAR (magenta dots) and IMU(black line) in East orientation; (c) time delay calibration
ten times using ICP-ISPKF between LiDAR (blue dots) and IMU(black line) in East orientation;
(d) initial alignment between LiDAR (red dots) and IMU(black line) in North orientation; (e) time
delay calibration one time using ICP-ISPKF between LiDAR (magenta dots) and IMU(black line) in
North orientation; (f) time delay calibration ten times using ICP-ISPKF between LiDAR (blue dots) and
IMU(black line) in North orientation; (g) initial alignment between LiDAR (red dots) and IMU(black
line) in Up orientation; (h) time delay calibration one time using ICP-ISPKF between LiDAR (magenta
dots) and IMU(black line) in Up orientation; (i) time delay calibration ten times using ICP-ISPKF
between LiDAR (blue dots) and IMU(black line) in Up orientation.
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