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Abstract: Detection of foreign matter in cleaned cotton is instrumental to accurately grading cotton
quality, which in turn impacts the marketability of the cotton. Current grading systems return
estimates of the amount of foreign matter present, but provide no information about the identity of
the contaminants. This paper explores the use of pulsed thermographic analysis to detect and identify
cotton foreign matter. The design and implementation of a pulsed thermographic analysis system is
described. A sample set of 240 foreign matter and cotton lint samples were collected. Hand-crafted
waveform features and frequency-domain features were extracted and analyzed for statistical
significance. Classification was performed on these features using linear discriminant analysis and
support vector machines. Using waveform features and support vector machine classifiers, detection
of cotton foreign matter was performed with 99.17% accuracy. Using frequency-domain features
and linear discriminant analysis, identification was performed with 90.00% accuracy. These results
demonstrate that pulsed thermographic imaging analysis produces data which is of significant utility
for the detection and identification of cotton foreign matter.
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1. Introduction

During harvest and transportation, cotton is contaminated by foreign matter. The most common
type of foreign matter is botanical matter from the cotton plants: leaf fragments, hulls, stems, seeds,
seed coats, and so on; followed by foreign fibers and textiles made of cotton, plastic, and jute; and
least common are inorganic debris and oily substances [1]. Prior to ginning, seeds and seed coats
are also present. During baling and transportation, cotton may be contaminated with baling twine,
fragments of module cover, or grease and oil from machinery. Exogenous debris such as windblown
paper and plastic fragments are also occasionally incorporated during harvest. Much of this debris,
especially large pieces of debris such as seeds and stems, is removed during the ginning and cleaning
process. Other types of foreign matter may be broken into smaller fragments and not removed; leaf
fragments are the most prevalent of these. Following cleaning, cotton is graded according to, among
other metrics, its foreign matter content. Cotton containing a high proportion of foreign matter results
in defects in textiles, as well as interfering with processing equipment by introducing oil and dust [2].
The detection of cotton foreign matter is therefore a paramount financial consideration for growers,
ginners, and textile manufacturers.

The current industry standard device for cotton grading is the High-Volume Instrument (HVI),
which measures properties of the cotton including fiber length, uniformity, and strength, micronaire,
color, and foreign matter content [3]. This is frequently coupled with human grading, especially
for additional analysis of the foreign matter content. It is notable that this system is not capable
of determining the type of foreign matter present, nor are human graders tasked with making this
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determination. United States Department of Agriculture (USDA) standards describe the foreign matter
content of cotton batches in terms of “leaf grade”. The use of this term implies that foreign matter is
comprised primarily of leaves and similar botanical debris. Though this is generally the case, it masks
the diversity of foreign matter types encountered in cotton lint. The Advanced Fiber Information
System (AFIS), another industrial system, shares this shortcoming [4].

The low cost and ease of implementation of charge-coupled device (CCD) and complementary
metal-oxide-semiconductor (CMOS) color cameras have led many researchers to attempt detection
using red-green-blue (RGB) machine vision. Xu et al. used CCD cameras and Xenon illumination
to show a strong correspondence between CCD, HVI, and human grading on estimates of foreign
matter content and cotton color measurements [5]. Later studies by Yang et al. combined color and
ultraviolet (UV) illumination for foreign matter detection and achieved a mean detection accuracy of
92.34% using both color and shape features [6,7]. However, white foreign matter was problematic, and
other researchers have pointed out that shape characteristics are not ideal features, since mechanical
harvesters can produce foreign matter scraps in an endless variety of shapes [8].

Significant research has been devoted to the identification of foreign matter by Fourier-Transform
Near-Infrared Spectroscopy (FT-NIR). These techniques use the absorbance spectra of cotton and
foreign matter as the basis for discrimination between substances. Fortier et al. have produced a pair of
studies using this technique demonstrating 97% accuracy of classification on a set of four foreign matter
types (hull, leaf, seed, stem) [9] and 98% accuracy on a set of eight foreign matter types (hull, leaf, seed
coat, seed meat, stem, plastic, twine) [10]. The primary weakness of FT-NIR detection techniques is
that they are point-based, presenting difficulties for high-volume application; another weakness is the
necessity of compiling libraries of the spectral characteristics of the materials of interest, a significant
complication [2].

A combination of machine vision methods and FT-NIR methods is hyperspectral imaging, which
uses the transmittance or reflectance modes to collect spectra for every visible pixel of a sample.
Jiang et al. showed that spectral features derived from this method provide a statistical basis to
separate all of 15 foreign matter types except brown leaves and bract [11]. Guo et al. achieved some
success in this area, particularly for the detection of foreign fibers, which are a common contaminant
in Chinese cotton fields [12]. Using mean NIR spectra collected from a set of 16 foreign matter types
and cleaned cotton lint, Zhang et al. achieved an accuracy of classification of 96.5% using linear
discriminant analysis (LDA) classifiers, including 100% accuracy on the cotton lint [13].

Some researchers have taken advantage of the natural fluorescence of cotton foreign matter
to perform detection. Gamble and Foulk [14] were able to reliably identify leaves and hull by
fluorescence spectroscopy. Mustafic et al. replicated these findings using fluorescence imaging under
blue illumination, and additionally demonstrated excellent classification of paper, plastic module cover,
and commercial plastic bag under UV excitation [15]. Using X-ray microtomography, Pai et al. achieved
an average classification rate of 96% on a sample set including seed coats, bark, and polypropylene [16].
However, the expense of the instrumentation and the necessity of strict controls on worker exposure to
radiation are both obstacles to industrial implementation of this technology.

One imaging modality that has not been applied to the problem of cotton foreign matter detection
is thermal imaging. Thermal imaging has been applied to a wide variety of post-harvest quality
evaluation tasks, such as detecting mechanical damage and bruising in apples [17]; evaluating the
quality of apple wax coatings [18]; detecting soft spots on tomatoes [19]; and detecting insect infestation
in wheat kernels [20]. Pulsed and lock-in thermographic techniques have been used to detect apple
bruises [21–23], with Varith et al. theorizing that the observed difference in the temperatures of bruised
and healthy tissues can be attributed to different thermal diffusivities in the tissues. Specifically, higher
thermal diffusivities in bruised tissues create a “thermal window” which allows the rapid flow of
heat from the exterior to the interior of the apple, resulting in a lower surface temperature in bruised
regions. Meinlschmidt and Maergner demonstrated that hazelnuts have different thermal properties
from typical foreign bodies present in harvested nuts, and developed a thermal imaging system to
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detect these foreign bodies by heating the nuts and foreign bodies with a flash lamp [24]. Detection
was successfully conducted and the researchers concluded that this was possible due to the differing
thermal properties of the nuts and foreign bodies [25]. Since it is also the case that cotton and cotton
contaminants differ in their thermal properties (although the degree of difference may be minimal for
some contaminants), it should be possible to discriminate between cotton and its contaminants using
similar techniques. Furthermore, since cotton is dried with hot air in early ginning stages and then
returned to the general processing floor where temperatures are nearer to ambient, both cotton and
the foreign matter it contains are already exposed to a sharp rise and fall in temperature as part of the
ginning process. This may enable use of the technology without any exogenous heat source.

Some potential advantages of thermal sensing over fluorescence and hyperspectral imaging
which motivate exploration into the use of thermal sensing include the reduced cost compared to
hyperspectral imaging systems, and the ability to determine material properties of samples which do
not show a strong fluorescence under ultraviolet stimulation.

The goal of this paper was to explore the feasibility of using a pulsed thermographic
imaging technique to detect and classify the cotton foreign matter. Specific objectives were to (1)
design and construct a pulsed thermographic analysis system with image acquisition software
and a fully-integrated data processing pipeline; (2) extract and evaluate the effectiveness of
frequency-domain features and thermal waveform features; and (3) perform classification of common
cotton contaminants using these features.

Pulse-Phase Thermography

Thermographic analysis is the estimation of a target’s temperature based on the magnitude of
thermal radiation (infrared radiation) emitted by the target. The relationship between the emitted
radiation and the temperature of the observed object is governed by the Stefan–Boltzmann law [26],
Equation (1):

E = εσT4, (1)

where E is the total emitted radiation in W/m2, ε is the emissivity of the object, dimensionless, σ is the
Stefan–Boltzmann constant in W/m2·K2, and T is the absolute temperature in K. Since temperature is
the dominating term on the right-hand side of the equation, and since emissivity is a static property
for most substances, any observed changes in emitted radiation can be attributed to changes in the
temperature of the object.

One method that can reveal additional properties of the target object is active thermography:
in active thermographic techniques, an external source of heat is applied to the object. The change
in the object’s temperature over time is then monitored. A specific technique within this family is
pulsed thermography: a radiative heat source is turned on and off at set time intervals, applying one
or more pulses of heat to the object. The redistribution of heat within the object is influenced by a
variety of material properties, such as thermal diffusivity, heat capacity, and the geometry of the object.
In addition to radiated energy, the object may lose heat from conduction or convection, both of which
will also be related to various properties of the material.

Pulse-phase thermography is an analytical technique for pulsed thermographic analysis [27].
In this technique, the changing temperature of each pixel of the observed object is considered as
a thermal signal with a temporal dimension, and the Fourier transform is applied to this signal,
decomposing it into a sum of sinusoidal components (Figure 1). Since the full characterization of the
thermal signals of the object pixels is contained in both the amplitude and phase data, both of these
values are of interest as potential features for discrimination of samples.
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Figure 1. Illustration of temporal Fourier transform of cotton foreign matter pulsed thermography 
videos: temporal image stack produces phasegram and ampligram image stacks. 

2. Materials and Methods 

2.1. Samples 

For this study, eleven types of common cotton contaminants were examined: bark, bract, brown 
leaves, green leaves, hulls, module cover, paper, seed coats, seeds, stems, and twine (Figure 2). 
Botanical foreign matter samples were extracted from seed cotton samples of four cultivars planted 
and harvested in 2012: Delta Pine 0912; Delta Pine 1050; PhytoGen 499; and FiberMax 1944. Paper 
and twine samples were purchased through common consumer channels. Module cover samples 
were taken from a cotton gin in Tifton, GA. Large scraps were collected and roughly cut into small 
squares with side lengths in the range 2–5 mm. For each foreign matter type, 20 samples were 
analyzed. Additionally, 20 samples of cleaned cotton lint of the aforementioned cultivars were 
analyzed. In total, 240 samples of cotton and foreign matter were used in this study. 

Samples were relatively homogenous in their sizes within each class. It is known that 
contaminants show significant variance in size and geometry as encountered in cotton lint, but 
adjusting for these variations presents significant challenges, since controlling for edge effects is 
among the more problematic issues in thermal modeling. For this reason, a wide variety of 
geometries of samples was not employed in this study. This issue may be addressed in later studies. 

Figure 1. Illustration of temporal Fourier transform of cotton foreign matter pulsed thermography
videos: temporal image stack produces phasegram and ampligram image stacks.

2. Materials and Methods

2.1. Samples

For this study, eleven types of common cotton contaminants were examined: bark, bract, brown
leaves, green leaves, hulls, module cover, paper, seed coats, seeds, stems, and twine (Figure 2).
Botanical foreign matter samples were extracted from seed cotton samples of four cultivars planted
and harvested in 2012: Delta Pine 0912; Delta Pine 1050; PhytoGen 499; and FiberMax 1944. Paper and
twine samples were purchased through common consumer channels. Module cover samples were
taken from a cotton gin in Tifton, GA, USA. Large scraps were collected and roughly cut into small
squares with side lengths in the range 2–5 mm. For each foreign matter type, 20 samples were analyzed.
Additionally, 20 samples of cleaned cotton lint of the aforementioned cultivars were analyzed. In total,
240 samples of cotton and foreign matter were used in this study.

Samples were relatively homogenous in their sizes within each class. It is known that contaminants
show significant variance in size and geometry as encountered in cotton lint, but adjusting for
these variations presents significant challenges, since controlling for edge effects is among the more
problematic issues in thermal modeling. For this reason, a wide variety of geometries of samples was
not employed in this study. This issue may be addressed in later studies.
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Figure 2. Color photographs of foreign matter and cotton lint samples representative of the classes 
used in this study. 

2.2. Pulsed Thermographic Imaging System and Data Acquisition 

A pulsed thermography system was constructed to facilitate the performance of pulsed 
thermographic analysis (Figure 3). A general-use laptop (Getac S400, Windows 8.1 Pro 64-bit, Intel 
Core i5-4210M CPU, 8 GB RAM, Baoshan, Hsinchu, Taiwan) with LabVIEW (National Instruments, 
Austin, TX, USA) installed served as the operating terminal. Videos were collected by a FLIR (FLIR 
Systems, Wilsonville, OR, USA) T440 thermal camera mounted on a frame of Thorlabs (Thorlabs, 
Newton, NJ, USA) 25 mm steel rails and oriented towards the nadir. The T440 uses a focal plane 
array uncooled microbolometer with a resolution of 320 × 240 pixels, a sensitivity range of 7.5 to 
13μm, and a noise-equivalent temperature difference of 0.045 °C. The dimensions of the frame were 
24′′ wide by 24′′ long by 18′′ tall. Four 325-watt Sunlite (Sunlite, Brooklyn, NY, USA) heat lamps with 
adjustable clamp mounts provided thermal stimulation. A stainless steel plate was used as the 
sample stage (stainless steel is highly reflective in infrared wavelengths, minimizing heating due to 
the heat lamps and therefore maximizing contrast between the sample and background in collected 
videos). A USB-operated power relay module was used to activate and deactivate the lamps with 
high precision. 

 
Figure 3. Pulsed thermography system physical components. (A) operating terminal; (B) thermal 
camera; (C) heat lamps; (D) sample stage; (E) USB power relay for lamp control. 

A LabVIEW Virtual Instrument (VI) was created to automate the operation of this system 
(Figures 4 and 5). It consisted of three main tasks performed in parallel: activation and deactivation 
of the heat lamps, operation of the thermal camera, and memory management to rapidly acquire 
videos with no frame loss. 

Figure 2. Color photographs of foreign matter and cotton lint samples representative of the classes
used in this study.

2.2. Pulsed Thermographic Imaging System and Data Acquisition

A pulsed thermography system was constructed to facilitate the performance of pulsed
thermographic analysis (Figure 3). A general-use laptop (Getac S400, Windows 8.1 Pro 64-bit, Intel Core
i5-4210M CPU, 8 GB RAM, Baoshan, Hsinchu, Taiwan) with LabVIEW (National Instruments, Austin,
TX, USA) installed served as the operating terminal. Videos were collected by a FLIR (FLIR Systems,
Wilsonville, OR, USA) T440 thermal camera mounted on a frame of Thorlabs (Thorlabs, Newton,
NJ, USA) 25 mm steel rails and oriented towards the nadir. The T440 uses a focal plane array
uncooled microbolometer with a resolution of 320 × 240 pixels, a sensitivity range of 7.5 to 13 µm,
and a noise-equivalent temperature difference of 0.045 ◦C. The dimensions of the frame were 24′ ′

wide by 24′ ′ long by 18′ ′ tall. Four 325-watt Sunlite (Sunlite, Brooklyn, NY, USA) heat lamps with
adjustable clamp mounts provided thermal stimulation. A stainless steel plate was used as the sample
stage (stainless steel is highly reflective in infrared wavelengths, minimizing heating due to the heat
lamps and therefore maximizing contrast between the sample and background in collected videos).
A USB-operated power relay module was used to activate and deactivate the lamps with high precision.
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Figure 3. Pulsed thermography system physical components. (A) operating terminal; (B) thermal
camera; (C) heat lamps; (D) sample stage; (E) USB power relay for lamp control.

A LabVIEW Virtual Instrument (VI) was created to automate the operation of this system
(Figures 4 and 5). It consisted of three main tasks performed in parallel: activation and deactivation of
the heat lamps, operation of the thermal camera, and memory management to rapidly acquire videos
with no frame loss.
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VIs from the FLIR ThermoVision SDK were used to operate the thermal camera and receive 
frames during video acquisition. To operate the USB power relay module, VIs were used which call 
functions from a third-party digital link library. VIs from LabVIEW’s queueing system enabled 
high-speed data acquisition to memory. Lastly, videos were exported as binary files; other methods 
of export available in LabVIEW were not possible due to the relatively large file size of collected 
videos (approx. 300 megabytes). 

Videos of pulsed thermographic analysis were collected in the following format: a front buffer 
of 1 s; 5 s of thermal stimulation from the heat lamps; 10 s of cooling; and a rear buffer of 1 s. Videos 
were collected during two sessions in May 2016. A total of 240 videos, one each for each sample, 
were collected. The overall data processing pipeline was performed in four main steps (Figure 6): 
data collection, segmentation, feature extraction, and classification. 
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VIs from the FLIR ThermoVision SDK were used to operate the thermal camera and receive frames
during video acquisition. To operate the USB power relay module, VIs were used which call functions
from a third-party digital link library. VIs from LabVIEW’s queueing system enabled high-speed
data acquisition to memory. Lastly, videos were exported as binary files; other methods of export
available in LabVIEW were not possible due to the relatively large file size of collected videos (approx.
300 megabytes).

Videos of pulsed thermographic analysis were collected in the following format: a front buffer of
1 s; 5 s of thermal stimulation from the heat lamps; 10 s of cooling; and a rear buffer of 1 s. Videos were
collected during two sessions in May 2016. A total of 240 videos, one each for each sample, were
collected. The overall data processing pipeline was performed in four main steps (Figure 6): data
collection, segmentation, feature extraction, and classification.
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2.3. Segmentation

Samples were segmented in the following fashion: for cotton samples, a 100-by-100-pixel window
from the center of each video was extracted. For paper samples, a rectangular region from the center of
each sample was selected, taking care to leave ample space between the selected region and the dark
border marked with a permanent marker on each sample. For all other samples, Otsu thresholding of
the frame of peak temperature was used to create segmentation masks. Where necessary, the threshold
was manually adjusted to produce accurate masks. All portions of the segmentation procedure were
performed in MATLAB (The MathWorks, Inc., Natick, MA, USA).

2.4. Feature Extraction

2.4.1. Frequency-Domain Features

Two sets of features were extracted from the segmented videos: pulse-phase thermography
features of amplitude and phase values from complex components produced by Fourier analysis, and
waveform features produced by analyzing the temperature waveforms of each pixel of each sample.

Fourier analysis of the samples was performed using MATLAB’s fast Fourier transform (FFT)
algorithm. This process decomposes the input signal into a sum of sinusoids expressed as complex
phasors with evenly-spaced frequencies ranging from 0 to 30 Hz (the framerate of the acquiring device).
Prior to Fourier analysis, each video was trimmed to only the rising and falling portions, with the
pre- and post-stimulation buffers removed. This resulted in videos of precisely 450 frames. The input
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signal for Fourier analysis was the mean temperature of all of the sample’s pixels during each frame,
such as that shown in Figure 7. Following Fourier decomposition, a number of complex components
equal to the number of frames in each video (450) were produced. According to the Nyquist theorem,
all components with a frequency higher than half of the collection frequency are aliased and therefore
contain no additional information. Examination of the phase and amplitude values of the components
confirmed this. Accordingly, the 225 components with frequencies higher than 15 Hz were discarded,
leaving 225 components with frequencies from 0 Hz to 15 Hz. Each component, like all sinusoids, has
an amplitude value and a phase value. Amplitude values were extracted by calculating the absolute
value of each phasor, while phase values were determined by examining the angle of the phasor.
The phase value of the 0-Hz component is always zero and was thus discarded. The final set of
frequency-domain features produced by this process was 224 phase values and 225 amplitude values
for each sample.
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examine only the falling portion of the thermal signal, it is suspected that more meaningful 
frequency-domain features might be produced by independently performing Fourier analysis on the 
rising and falling portions of the full thermal signal. Additionally, this data may be of use for 
implementation in ginning facilities, where a possible point of examination is immediately after the 
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Figure 7. Segmented mean temperature waveform of cotton sample #4. (a) resting stage/front buffer;
(b) thermal stimulation; (c) cooling; (d) rear buffer; (1) lamp activation; (2) lamp deactivation; (3) data
cutoff. The red square wave represents the thermal stimulus provided by the heat lamps and shows
the times of activation and deactivation. The magnitude of the square wave is here arbitrary.

In addition to the above frequency-domain features, which were produced by analyzing the entire
waveform, consisting of the rising and falling portions together, waveforms were also analyzed in
a split fashion. Since many prior applications [23,28] of pulse-phase thermography examine only the
falling portion of the thermal signal, it is suspected that more meaningful frequency-domain features
might be produced by independently performing Fourier analysis on the rising and falling portions of
the full thermal signal. Additionally, this data may be of use for implementation in ginning facilities,
where a possible point of examination is immediately after the cotton exits the dryers. This was
conducted, producing 223 phase values (74 rising and 149 falling) and 225 amplitude values (75 rising
and 150 falling). These will be referred to in analyses as “split features”, as opposed to “whole features”.

2.4.2. Waveform Features

Two waveform features were extracted from each video: peak temperature less resting temperature,
and final temperature less resting temperature. The first feature was derived by subtracting the mean
temperature of all of the pixels of each sample at the time labeled as 1 in Figure 7 from the mean
temperature at time 2. For the second feature, the mean temperature at time 1 was subtracted from
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the mean temperature at time 3. These features represent the temperature gain after heating and the
temperature gain after both heating and cooling, respectively.

Preliminary classification trials were performed in order to determine the optimal number
of amplitude features to use. For each of the three sets of amplitude features (whole, rising, and
falling), LDA and support vector machine (SVM) classifiers were trained to perform both the detection
(two-class, with one class being cotton and the other foreign matter) and identification (twelve-class,
with cotton lint and each foreign matter type receiving a unique class label) tasks. Cumulative sets of
features ranging from the lowest-frequency component’s amplitude alone to a set consisting of the
fifteen lowest-frequency amplitude values were used.

2.5. Statistical Analyses and Classification

In order to determine the degree of separation among the foreign matter types when all features
in a given set are considered together, Hotelling’s T-squared tests were performed for each pair of
foreign matter classes. Additionally, canonical discriminant analysis was performed on each feature
set. Both tests were performed using MATLAB’s manova1 function.

Classification trials were performed in MATLAB using leave-one-out cross-validated SVM and
LDA classifiers. Classification was performed using both waveform and amplitude features.

3. Results

3.1. Waveform Feature Analysis

Examining the mean thermal waveform of each foreign matter type shows that there were clear
differences in the mean thermal signals of the various foreign matter classes (Figure 8). For example,
it is clear that the peak temperature of brown leaf samples, with a mean value of about 75 ◦C,
was substantially higher than that of seed coats, with a mean peak temperature of about 35 ◦C.
Examining other features of the waveform, it can be seen that bract and cotton samples, which
achieved similar peak temperatures, had very different rates of cooling: the falling slope of the bract
samples was substantially steeper than that of the cotton samples.
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The maximum temperature achieved by any sample class, approximately 75 ◦C for brown leaf, is
notable for being well below the threshold temperature at which it is considered unsafe to dry cotton,
150–175 ◦C. Cotton may be dried at air temperatures of up to 120 ◦C [29]. Since this well exceeds the
maximum observed temperature of foreign matter in this study, it is reasonable to conclude that the
magnitude of thermal change that results from drying will meet or exceed those observed in this study,
and will therefore be sufficient to produce differences in thermal waveforms. This strengthens the
possibility of implementing this technique without the need for exogenous heat sources. Conversely,
this also suggests that the procedure, if conducted in isolation from the ginning process, poses no risk
of overheating and damaging the cotton.

3.2. Frequency-Domain Feature Analysis

Phase and amplitude data can be visualized by mapping the phase or amplitude values of
a selected frequency component for each pixel in an image to a color map. The resulting images are
known as phasegrams and ampligrams, respectively (Figure 9). In the thermal images, it can be seen
that bract, brown leaves, and green leaves achieve the highest temperatures, owing to the particulars
of their geometry (broad and thin); ampligrams are primarily a reflection of this peak temperature,
appearing as nearly identical to the thermal images, though with de-noised backgrounds. Phasegrams
are more difficult to interpret: they represent the dynamics of how quickly differing regions heat and
cool. Thus, for example, the edges of the module cover sample are clearly visible, implying a difference
between the rate of heating and cooling between the edges and center. Likewise, samples with a linear
geometry, such as bark, stem, and twine, all show a characteristic difference in phase values between
the tips and the centers.
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The accuracies produced by the preliminary feature selection trials were used to determine the
optimal number of amplitude features in the range from 1 to 15 components (Figure 10). For the
two-class task, accuracy was unstable until at least six components are used. For the twelve-class
task, accuracy rose until nine components were used, and then fluctuated. Based on these preliminary
trials, the first ten amplitude features were selected for use in further classification trials and
statistical analyses.
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3.3. Statistical Analyses

In the results of the paired Hotelling’s tests (Figure 11), it can be seen that, for waveform features,
almost every p-value between two groups was well below the stringent threshold p = 0.001. Exceptions
to this were: bark and paper, bract and green leaves, and bract and brown leaves. For amplitude
features, all p-values were below 0.001, indicating statistically significant separation for all foreign
matter types.
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3.4. Canonical Discriminant Analysis

The results of canonical discriminant analysis performed using the waveform features (Figure 12a)
showed that there was good separation between many foreign matter types. Seeds, module cover, hull,
and cotton samples were especially well-separated. Bract, brown leaves, and green leaves formed a
combined cluster; given their biological and material similarity, this is unsurprising. Other foreign
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matter types were less well-separated: paper, stems, and bark were mixed, and twine and seed coats
were only moderately well-separated.

The results of canonical discriminant analysis performed on amplitude features showed similarly
good separation between many classes (Figure 12b). What is most notable about this canonical scores
plot is its strong resemblance to the canonical scores plot of the waveform features. Cotton, hull,
module cover and seed samples were cleanly separated and clustered; bract, green leaves, and brown
leaves formed a complex; seed coats were clustered but not well-separated, and stems, bark, and paper
were not well-separated. Although it is a subjective analysis, the strong similarity of the canonical
score plots of the waveform and amplitude features seems to suggest that there is a large degree of
overlap in the discriminating information contained by these feature sets.
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3.5. Classification Results

The results of the classification trials produced very good results for the two-class detection
problem, with more mixed results for the twelve-class identification problem (see Table 1). In the
detection task, no combination of classifier and feature set produced an accuracy lower than 93%,
while two trials returned accuracies above 99%. For the identification task, LDA achieved 90%
accuracy of classification using whole amplitude features, while SVM provided 86.67% accuracy on
whole amplitude features. For both detection and identification, the features which produced the best
performance for SVM classifiers were whole amplitude features. With either classifier, whole amplitude
features produced better accuracies than either rising or falling amplitude features. In general, LDA
and SVM accuracies on most tasks were comparable, with the most notable exceptions being the
identification task when performed using waveform or rising amplitude features.

Table 1. Classification accuracies on two-class (detection) and twelve-class (identification) tasks using
leave-one-out cross-validated LDA and SVM classifiers and four feature sets.

Feature Set Number of Features
Detection Identification

LDA SVM LDA SVM

Waveform features 2 0.9833 0.9917 0.7375 0.7917
Whole amp 1:10 10 0.9917 0.9792 0.9000 0.8667
Rising amp 1:10 10 0.9500 0.9458 0.7292 0.7708
Falling amp 1:10 10 0.9625 0.9375 0.7500 0.7708
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Examining the confusion matrix for the output of the identification task using LDA and waveform
features (Figure 13a), it can be seen that two foreign matter types were classified with 100% accuracy,
and two with better than 90% accuracy. The two worst-performing classes, green leaves and brown
leaves, had most errors as confusions of one another. Considering that there is no substantial difference
between these classes in their impact on the quality of the cotton lint, this confusion may be excusable.
Bract was also frequently confused with both green and brown leaves, and vice versa. Since bract is
physiologically and materially very similar to leaves, this is understandable. Another significant error
was the classification of bark samples as paper and vice versa. Since paper is essentially homogenized,
bleached wood pulp, it is unsurprising that its thermal properties are similar to thin strips of wood
such as the bark samples. All of these misclassifications are in agreement with the results of the
paired t-tests, finding no statistical significance between bark and paper or between bract and green
and brown leaves, and with the canonical scores plot of waveform features, in which green leaves,
brown leaves, and bract form a single complex, and paper and bark show significant overlap. It is also
notable that only a single cotton sample was misclassified, and no sample was misclassified as cotton:
differentiation between cotton and all foreign matter samples was performed with high accuracy.

Classification errors were more mixed for the identification task using LDA and whole amplitude
features (Figure 13b). Brown leaf was the most-misclassified class, for which the most common
mislabeling was green leaves, but the inverse misclassification is not present. Bract samples were also
misclassified often, with a wide variety of mislabelings. Just two classes were classified with perfect
accuracy: cotton and seeds; however, for this feature set, two samples were erroneously classified
as cotton, which in an implemented system would amount to these foreign matter samples passing
undetected. Although the overall accuracy was only marginally lower than that using waveform
features, the misclassifications were more scattered and less easily explained, suggesting that amplitude
features do not compare favorably to waveform features for the identification task.
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These results compare well with the accuracies obtained by researchers using other methods:
Fortier et al.’s classification rates of 97% and 98% using FT-NIR spectrography are superior but are
based on datasets with fewer foreign matter types (four and eight, respectively), and which did not
include cotton. The maximal detection accuracy of 99.58% well exceeds Yang et al.’s detection accuracy
of 92% [6,7], but does not top the 100% accuracy of Zhang et al. using shortwave infrared hyperspectral
imaging [13]. Although the results for bark are superior to those of Zhang et al., those for stems are not,



Sensors 2017, 17, 518 14 of 15

and it should be noted that Zhang et al. considered inner and outer bark and stem surfaces as separate
categories, with most misclassification for these foreign matter types being the complementary category.
Fortier et al.’s best results, those using the OPUS IDENT software (Bruker Corporation, Billerica, MA,
USA) with the NIR spectrum first derivative, surpass those for hulls and stems using either waveform
or amplitude features, and equal those for leaves using waveform features (Fortier et al. did not
consider two colors of leaves but only one category). For seed coats, their 91% accuracy exceeds the
85% achieved with amplitude features but not the 100% produced by waveform features [9].

Since cotton is dried several times during ginning, it is possible that this thermal stimulation
may produce data suitable for thermographic analysis. This would eliminate the need for additional
exogenous heat sources. However, two reservations should be noted: first, cotton driers function on
convective heating, not radiative heating, as was used in this study. This may entail changes to the
thermal responses of the cotton and foreign matter, which warrants more in-depth studies. However,
cooling should remain relatively unchanged, hence the examination in this study of amplitude features
drawn only from the falling portion of the thermal waveform. Second, cotton drying temperatures are
frequently adjusted according to the condition of the cotton being processed at the time. This variation
necessitates a system that can adjust to multiple drying temperatures. These factors need to be
considered in the implementation of such a system in a ginning facility.

4. Conclusions

The pulsed thermographic imaging system developed by this study was proven to be effective in
discriminating between cotton foreign matter types. Classification tasks using LDA and SVM classifiers
produce near-perfect detection of foreign matter using both waveform and frequency domain feature
sets, and respectable accuracies of identification comparable to and in some cases exceeding those
achieved by other groups. Waveform features provided perfect discrimination of cotton from foreign
matter types using LDA classifiers. This technique is a natural fit for the cotton processing floor,
on which cotton already undergoes significant rapid heating and cooling. These findings strongly
recommend pulsed thermography as a method for the detection of foreign matter in cotton lint.
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