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Abstract: We develop an interactive likelihood (ILH) for sequential Monte Carlo (SMC) methods
for image-based multiple target tracking applications. The purpose of the ILH is to improve
tracking accuracy by reducing the need for data association. In addition, we integrate a recently
developed deep neural network for pedestrian detection along with the ILH with a multi-Bernoulli
filter. We evaluate the performance of the multi-Bernoulli filter with the ILH and the pedestrian
detector in a number of publicly available datasets (2003 PETS INMOVE, Australian Rules Football
League (AFL) and TUD-Stadtmitte) using standard, well-known multi-target tracking metrics
(optimal sub-pattern assignment (OSPA) and classification of events, activities and relationships for
multi-object trackers (CLEAR MOT)). In all datasets, the ILH term increases the tracking accuracy of
the multi-Bernoulli filter.
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1. Introduction

Multi-target tracking (MTT) is a well-researched problem, with a history going back over
50 years [1]; however, it remains an open research problem [2,3]. It has many applications,
including aviation [4] and air traffic control [5], ballistic missile defense [6,7], smart surveillance [8,9],
robotics [10] and autonomous vehicles [11–15]. The goal of MTT is to simultaneously estimate both
the number of targets and their states (position, size, velocity, etc.) through time [16]. This can
be a difficult task for a number of different reasons; to name just a select few of these challenges:
(1) mathematically-consistent ways of defining and using estimation error; (2) mathematically modeling
targets entering and leaving the scene (target births and deaths); (3) the task of data association
(associating targets with correct measurements, as well as associating targets temporally); and
(4) robustness to different and dynamic scenarios.

In image-based tracking, measurements are in the form of individual image frames, and the
objective is to track the targets and their states through the image sequence. It is often the case
that multiple measurement observations are made within a given image frame, and it is necessary
to associate these measurements with targets or tracks. Tracks are defined by Ristic et al. [16] as
a “labeled temporal sequence of state estimates associated with the same target” (the terms “tracks”
and ”trajectories” are used interchangeably in this article).

In this paper, an interactive likelihood (ILH) for the multi-Bernoulli filter (MBF) (the abbreviation
MBF is used for the multi-Bernoulli filter as the implementation is slightly different from the common
MeMBer [17] and CB-MeMBer [18] variations) is developed and evaluated. The purpose of the ILH is
to reduce the need for data association, addressing Challenge 3. It is based entirely within the Bayesian
random finite set (RFS) framework and therefore does not require any external data association
mechanism(s). The proposed approach is a novel method for addressing the fundamental data
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association issue in the field of multi-target tracking [4]. The Bayesian-RFS framework simultaneously
handles Challenges 1 and 2 elegantly, and much progress has been made in recent years to also
address Challenge 3 using this framework in a mathematically-rigorous way through the labeled
multi-Bernoulli filter and its variants [19–24]. Our work corresponds to another important step in that
direction.

In order to address Challenge 4, a state-of-the-art deep neural network for pedestrian detection
is integrated into the MBF with the ILH. To the best of our knowledge, there has been no work on
integrating deep networks in a track-before-detect Bayesian-RFS framework. Because deep networks
achieve such promising results in object and pedestrian detection and of the lack of existing research in
using these detectors with RFS approaches, there is substantial unexplored potential in the combination
of these two state-of-the-art techniques.

Specifically, the main contributions presented in this paper are as follows:

1. a novel interactive likelihood (ILH) method for sequential Monte Carlo (SMC) image-based
trackers that can be computed non-iteratively to preclude the tracker from sampling from areas
that belong to different targets;

2. this interactive likelihood method is integrated with the multi-Bernoulli filter, a state-of-the-art
RFS tracker, which is referred to as MBFILH;

3. the deep learning technique for pedestrian detection proposed in [25] is combined with the
MBFILH; and

4. an extensive evaluation is carried out using several publicly available datasets and standard
evaluation metrics.

The rest of this paper is organized as follows: Section 2 discusses related works, including
a brief description of common multi-target tracking algorithms, as well as highlighting recent trends.
In Section 3, we present necessary background information, notation and definitions. We develop our
ILH in Section 4. In Section 5 we evaluate the ILH in a number of different datasets, report numerical
results and provide a brief discussion of these results. Finally, in Section 6, we briefly summarize
our contribution.

2. Related Work

In this section, we present a general discussion of multi-target tracking including standard
techniques and challenges and also identify a trend in the current research within the multi-target
tracking community.

2.1. Common Multi-Target Tracking Algorithms

Many different MTT methods have been proposed over the years, but the most mature and most
common algorithms are the joint probabilistic data association filter (JPDAF) [26] and the multiple
hypothesis tracking (MHT) method [4]. In the last decade [1], there has been substantial research in the
use of random finite sets within a Bayesian framework for multi-target tracking [27–34]. One benefit to
RFS-based approaches is that they have mathematically consistent and rigorous ways for handling
estimation error and target births and deaths. In other words, they are well equipped to handle
Challenges 1 and 2 listed in the first paragraph of Section 1. In the last two years, there has been a
resurgence of detection-based approaches, including new variations of the more mature multi-target
tracking algorithms, for example a revisiting of the JPDAF [35]. Most recently, due to the vast amount
of research on (deep) neural networks for object and pedestrian detection [25,36–43], track-by-detection
multi-target tracking approaches are starting to be proposed that make use of these state-of-the-art
detectors [44].

The process of associating measurements with appropriate targets or tracks is known as data
association. Historically, it is one of the major challenges in multi-target tracking [4] and is still an active
research topic [45–47]. It is desirable for targets to remain separated within the image and for no



Sensors 2017, 17, 501 3 of 23

occlusions to take place; however, this is often not the case. For example, in sport player tracking
situations, targets often are in close proximity, and occlusions are frequent. This type of situation can
lead to numerous, ambiguous measurements, where data association becomes especially important.
If the data association process is not handled adequately, target tracks or labels may be switched or
dropped entirely, resulting in overall tracking inaccuracy.

The two classical multi-target tracking algorithms, JPDAF and MHT, have internal mechanisms
to accomplish the data association task. However, traditional RFS approaches do not have such
mechanisms in place and, therefore, often require an additional layer of complexity external to the RFS
framework in order to perform data association. For example, in [27], a graph theoretical approach
(based on the work of Shafique and Shah in [47]) is used in conjunction with a multi-Bernoulli filter.
The significant recent contributions on the labeled multi-Bernoulli filter correspond to additional
attempts to overcome this limitation [19–24].

There are disadvantages to all of the most common multi-target tracking algorithms. Both the
JPDAF and the MHT require an exponential number of terms as time progresses in order to solve the
data association problem [48]. Theoretically, RFS methods should not require an additional, external
technique for data association; however, in practice, these trackers need to be implemented using Monte
Carlo approaches, and the sampling process introduces confusion that may cause incorrect associations.
Hence, in practice, data association is strictly necessary for multi-target tracking, even when RFS
approaches are employed, and is also still one of the most limiting factors.

To address this fundamental issue, an interactive likelihood for the multi-Bernoulli filter is
presented. The interactive likelihood technique exploits the spatial information that exists in any given
image observation and reduces the need for data association. It works by modifying the sequential
Monte Carlo sampling process so that the spatial probability distributions of nearby similar targets do
not overlap. As a result, it reduces the confusion among these targets and, hence, avoids estimation
errors in these challenging scenarios.

2.2. Current Trends

Most multi-target tracking algorithms can also be classified as either track-by-detection or
track-before-detection. Track-by-detection algorithms use post-processed data, that is the raw sensor
measurements have had some kind of thresholding performed [49]. There is a vast amount of work
currently being done on developing and evaluating new algorithms (since 2015) that fall into the
former category [3,50–54]. In track-by-detection approaches, there are often separate techniques for
detection and data association. In these approaches, detections are typically obtained by a scanning
algorithm that searches the entire image and determines where targets are likely to be located. These
detections are then processed by a separate algorithm for association. This effectively splits the
multi-target tracking problem into two separate problems: detection and association. In fact, in the
most recently-proposed multi-target tracking benchmarks [55,56], it is encouraged to use ‘standard’
detections to remove the problem of detection entirely and focus completely on association. This
means that new multi-target tracking methods can be proposed, which are incapable of producing
measurements from an image and therefore do not really even need to process images at all, but must
only be able to use these standard detections. This allows for relatively quick evaluations in large
datasets with large image sizes. While this paradigm is beneficial for the sake of fairly comparing all
track-by-detection approaches, it has a number of other effects: (1) it removes all image processing
from the task, and thus, it is no longer a computer vision problem; (2) it becomes difficult for sequential
Monte Carlo approaches to be included in the benchmarks, as Monte Carlo evaluations are necessary
and numerous trials must be performed, taking significantly longer in large datasets than using
standard, precomputed detections; (3) all track-before-detection approaches are also at a disadvantage,
as they solve both the detection and tracking problems simultaneously, adding more opportunities
for error; and (4) it assumes that detectors have plateaued in performance, which may inadvertently
reduce the amount of research to develop new and higher performing detectors.
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In situations in which target detection itself is challenging, such as in scenarios with substantial
clutter, track-before-detect methods tend to perform significantly better [57–59]. The contribution
presented in this paper, hence, falls into the second category, track-before-detection, in which there are
no scanning or searching schemes involved, and detections are not strictly necessary. This method is
also considered “online”, as new estimates about the current multi-target state are available at each
time instant.

3. Method

In this section, we provide some necessary background for presenting our method. We briefly
discuss the image-based multi-Bernoulli filter, its corresponding Bayes’ recursion and describe
a particle filter implementation.

3.1. Image-Based Multi-Bernoulli Filter

The interactive likelihood presented in this paper is constructed within the multi-Bernoulli filter
presented by Hoseinnezhad et al. in [27]. Therefore, the notation used for the multi-target Bayes’ and
multi-Bernoulli filter will be similar. Prior to describing the interactive likelihood and its development,
it is necessary to establish a number of definitions. A single image of m total pixels is represented by
a one-dimensional vector

y =
[
y0 · · · ym

]T
. (1)

For a single image within an image sequence, let the number of targets be n and their states
be x1, x2, · · · xn. In this paper, the state of each target xi consists of its horizontal u and vertical v
coordinates in the image, as well as its height h and width w, such that:

xi =
[
u v h w

]T
. (2)

Then, the multi-target state is represented as a finite set:

X = {x1, x2, · · · xn}. (3)

The defining feature of the multi-Bernoulli filter is the multi-Bernoulli RFS, which is a union of M
independent Bernoulli RFSs. The probability density of a Bernoulli RFS X(i) is (see [17,31] for details
regarding Bernoulli and multi-Bernoulli RFSs):

π(X(i)) =

{
1− r, if X(i) = ∅

r · p(·), if X(i) = {xi},
(4)

where r is the probability of existence for xi, the only element of X if it is non-empty, and xi is
distributed according to the probability density p(·). X(i) has the probability 1− r of being empty.
Then, a multi-Bernoulli RFS X is the union of M independent Bernoulli RFSs X(i):

X =
M⋃

i=1

X(i) (5)

and is fully characterized by the parameter set {(r(i), p(i)(·))}M
i=1 [27].

3.2. Bayes’ Recursion

Detailed discussions of the Bayes’ recursion and the multi-Bernoulli filter can be found
in [27–30,32]. Only the essential information will be given here. For a given multi-target state X and
image sequence y1:k−1, the multi-target Bayes’ filter computes the predicted state πk|k−1(Xk|y1:k−1) by
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propagating the multi-target posterior πk−1(·|y1:k−1) from time step k− 1 to k through the multi-target
transition density fk|k−1(·|·). Once a measurement is available, the posterior at time k, πk(Xk|y1:k),
is computed using the multi-target likelihood function g(·|·) (see Mahler’s FISST [60,61] for more
detailed information on the set integrals required to perform these steps). The Bayes’ recursion
is, in general, intractable [17,29–32], and therefore, approximations are necessary. We adopt the
commonly-used multi-target transition density discussed in [27,29], such that at time k− 1, the elements
xk−1 of the multi-target state Xk−1 either continue to exist at time k with probability pS,k(xk−1) and
transition to state xk with probability density fk|k−1(xk|xk−1) or die with probability 1− pS,k(xk−1).
The behavior of a target with state xk−1 at time k− 1 can then be modeled by Sk|k−1(xk−1), which are
the Bernoulli RFSs corresponding to each target that survived at time instant k [29]. At time k, the
multi-target state Xk is then:

Xk =
⋃

xk−1∈Xk−1

Sk|k−1(xk−1) ∪ Γk. (6)

The RFS Γk = {(r(i)Γ,k, p(i)Γ,k(·))}
MΓ,k
i=1 contains all of the targets born at time k. The likelihood of

an image observation y given the multi-target state X is:

g(y|X) =
n

∏
i=1

g f (yxi ), (7)

where g f (yxi ) is the likelihood that a target with state xi is present in image y.

3.3. Likelihood Functions

We first employ the same likelihood function g f (yxi ) as [27], and more detailed information can
be found there regarding how it is constructed. For the scope of this paper, it is sufficient to say that
it is based on hue-saturation-value (HSV) histograms, and the training data consist of ntrain = 850
references histograms to which target histograms are compared. It has the form:

g f (vi) =
ζ

ntrainhN

ntrain

∑
j=1

κ

(d(vi, v∗j )

h

)
, (8)

where ζ is a normalization constant, vi is the target histogram vector of y, {v∗j }
ntrain
j=1 is the set of reference

histograms, κ(·) is a Gaussian kernel function, h is the kernel bandwidth and N is the number of
histogram bins. The difference between histograms is measured using the Bhattacharyya distance,
given by:

d(vi, v∗j ) =
(

1−
N

∑
r=1

√
v∗j (r)vi(r)

)1/2

. (9)

We consider a second, simple, but more general likelihood function based on the pedestrian
detector presented in [25]:

g f (yxi ) = γPD(yxi )
2, (10)

where PD(yxi ) is the output of the pedestrian detector for the image observation yxi and γ is a scalar
coefficient. More information about the pedestrian detector will be presented in Section 4.1.

3.4. Particle Filter Implementation

RFS filters (including the multi-Bernoulli) are often implemented using sequential Monte
Carlo (SMC) methods, such as the particle filter [27,28,30,32,33,62]. We use the particle filter
implementation used by Hoseinnezhad et al. in [27], which is similar to those used in [29,30]. In order
to translate the multi-Bernoulli recursion to a particle filter implementation, let the proposal densities
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q(i)k (·|xk−1, yk) and b(i)k (·|yk) be known and the probability density p(i)k−1(·) be given by a set of weighted
samples (particles):

p(i)k−1(x) =
L(i)

k−1

∑
j=1

w(i,j)
k−1δ

x(i,j)k−1
(x). (11)

Furthermore, suppose that at time k− 1, the multi-target multi-Bernoulli posterior πk−1 is known,
then the multi-Bernoulli parameters for the predicted target state can be calculated as follows:

r(i)k|k−1 = r(i)k−1

L(i)
k−1

∑
j=1

w(i,j)
k−1 pS,k(x(i,j)k−1). (12)

p(i)k|k−1(x) =
L(i)

k−1

∑
j=1

w̃(i,j)
k|k−1δ

x(i,j)k|k−1
(x). (13)

r(i)Γ,k = birth model parameter. (14)

p(i)Γ,k(x) =
L(i)

Γ,k

∑
j=1

w̃(i,j)
Γ,k δ

x(i,j)Γ,k
(x), (15)

where:
x(i,j)k|k−1 ∼ q(i)k (·|x(i,j)k−1, yk), for j = 1, · · · , L(i)

k|k−1, (16)

w(i,j)
k|k−1 =

w(i,j)
k−1 fk|k−1(x(i,j)k|k−1|x

(i,j)
k−1)pS,k(x(i,j)k−1)

q(i)k (x(i,j)k|k−1|x
(i,j)
k−1)

, (17)

w̃(i,j)
k|k−1 =

w(i,j)
k|k−1

∑
L(i)

k|k−1
j=1 w(i,j)

k|k−1

, (18)

x(i,j)Γ,k ∼ b(i)k (·|yk) for j = 1, · · · , L(i)
Γ,k, (19)

w(i,j)
Γ,k =

pΓ,k(x(i,j)Γ,k )

b(i)k (x(i,j)Γ,k |yk)
, (20)

w̃(i,j)
Γ,k =

w(i,j)
Γ,k

∑
L(i)

Γ,k
j=1 w(i,j)

Γ,k

. (21)

Once the multi-Bernoulli parameters have been predicted, that is πk|k−1 = {(r(i)k|k−1, p(i)k|k−1(·))}
Mk|k−1
i=1

is known, the updated multi-Bernoulli parameters can be computed as follows:

r(i)k =
r(i)k|k−1$

(i)
k

1− r(i)k|k−1 + r(i)k|k−1$
(i)
k

, (22)

p(i)k =
1

$
(i)
k

L(i)k|k−1

∑
j=1

w(i,j)
k|k−1gyk(x

(i,j)
k|k−1)δx(i,j)k|k−1

(x), (23)
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$
(i)
k =

L(i)k|k−1

∑
j=1

w(i,j)
k|k−1gyk(x

(i,j)
k|k−1). (24)

4. Interactive Likelihood

A fundamental requirement of the multi-Bernoulli filter is that targets remain completely
separated within the image [27,29,32,33], that is they should not occlude one another. However, this is
rarely the case, and in most applications, targets are often in close proximity and occlusions frequent.
SMC implementations are especially sensitive to this requirement as particles are not inherently
associated with a given target. Therefore, when multiple targets are in close enough proximity, the
particles of one target are influenced by the other (see Figure 1 for an example of this happening).
What defines “close enough proximity” can depend on any number of parameters, and it is often
application specific.

(a) (b)

Figure 1. These two images illustrate the sensitivity of sequential Monte Carlo (SMC) methods to
clutter. (a) Two targets tracked by a particle filter implementation of a multi-Bernoulli filter. The solid
green and blue rectangles represent the estimated positions of the targets; (b) The same targets being
tracked while particles are visible. Dashed rectangles represent the particles. Note how some particles
of the target on the left (green) overlap and sample the target on the right (blue) (original images
obtained from the 2003 PETS INMOVE dataset).

One way to mitigate this effect is to weigh down the likelihood of the particles as they approach
particles corresponding to other existing targets and then incorporate this weighting into the standard
likelihood calculation of the multi-Bernoulli filter (Equation (7)). This approach is inspired by the work
done by Qu et al. in [63], where distributed particle filters were used to separately track multiple targets,
and an interactive likelihood was developed based on observation distances. It is also conceptually
similar to the occlusion handling heuristics proposed by Xiao and Oussalah in [64] and by Yang
and Yang in [65]. However, there are two major differences between these works and our approach:
(1) our interactive likelihood is based on particle distances, instead of the estimated target positions;
and (2) instead of keeping track of each target separately, we use a common RFS-based multi-target
tracker, the multi-Bernoulli filter of [27]. An undesirable consequence of the use of the estimated target
positions in [63] is that changing the particles causes the estimated position to change, which in turn
changes the particle positions. This iterative estimation can be avoided by using particle distances
directly as proposed here.

The first step in constructing the interactive likelihood is to associate particles with targets.
This requires augmenting the state of the target with a unique label. Particles are then associated
with a label, and distances can then be computed for particles associated with a given label to the
particles associated with all other labels. The distance between the j-th particle of target x(i), denoted
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x(i,j), and the `-th particle of target x(m), denoted x(m,`), is calculated in the image plane using the
Euclidean distance:

d(i,m)
j,` (x(i,j), x(m,`)) =

√
(u(i,j) − u(m,`))2 + (v(i,j) − v(m,`))2, (25)

where u(·) and v(·) are respectively the horizontal and vertical pixel coordinates of the centroid of the
corresponding particle rectangle (see Figure 2 for an illustration of this distance). We intentionally
refrain from using the 4D distance (that is, we do not include the width and height of the target)
because we want to avoid confusion between target samples regardless of the relative target sizes.
It should be noted that the case where i = m corresponds to the distance from a given target to
itself and therefore does not need to be calculated. This distance is then used within the interactive
likelihood weighting function.

Figure 2. The distance between particle x(i,j) of target x(i) and particle x(m,`) of target x(m). The green
and blue rectangles represent the particles associated with the two targets. The centers of the estimated
target positions are represented by the black circles.

Suppose that between the prediction step at time k− 1 and the update step to time k, the cardinality
of the multi-target state X is M. Let the number of particles associated with a given target x(i) be L(i).
The interactive likelihood weight α(i,j) for the j-th particle of target x(i) is determined by the interactive
likelihood weighting function (note that the time subscript is dropped for notational convenience,
but these calculations must be performed during each time step):

α(i,j)(x(i,j)) =
M

∏
m=1
m 6=i

L(m)

∏
`=1

1− ζe

−
(
d(i,m)

j,` (x(i,j), x(m,`))
)2

σ2 . (26)

Both ζ and σ can be considered tuning parameters. The threshold at which the interactive
likelihood starts to influence particle weights is determined by σ; it defines what is ‘close enough
proximity’ and corresponds to the (pixel) distance at which targets start to influence one another.
The higher the value of σ, the greater the distance of the influence of the interactive likelihood.
The intensity of the influence is determined by ζ. These two parameters can be adjusted to obtain the
desired particle interaction behavior for a given application. Figure 3a,b illustrates, in a 2D example,
how changing both σ and ζ affect the interactive likelihood magnitude. The interactive likelihood
term α(i,j) can then be integrated into the particle filter update steps Equations (23) and (24) by simply
multiplying the standard likelihood gyk (x(i,j)k|k−1) term by the interactive likelihood term α(i,j)(x(i,j)k|k−1),

p(i)k =
1

$
(i)
k

L(i)
k|k−1

∑
j=1

w(i,j)
k|k−1gyk (x(i,j)k|k−1) · α

(i,j)(x(i,j)k|k−1)δx(i,j)k|k−1
(x), (27)
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$
(i)
k =

L(i)
k|k−1

∑
j=1

w(i,j)
k|k−1gyk (x(i,j)k|k−1)α

(i,j)(x(i,j)k|k−1). (28)

It should be noted that Equation (22) also changes appropriately.
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Figure 3. (a) Effect of changing ζ while keeping σ = 250. The x-axis represents distance (in pixels), and
the y-axis is the corresponding interactive likelihood function value. The top, middle and lower lines
correspond to ζ values of 0.1, 0.5 and 0.9, respectively; (b) Effect of changing σ while keeping ζ = 0.5.
The x-axis represents distance (in pixels), and the y-axis is the corresponding interactive likelihood
function value. The top, middle and lower lines correspond to σ values of 50, 250, and 500, respectively.

4.1. Deep Learning for Pedestrian Detection

We integrate the deep learning technique for pedestrian detection described in [25] with
the multi-Bernoulli filter, with and without the ILH. The deep network consists of five layers
(in order): (1) a convolutional layer; (2) a layer for average pooling; (3) a second convolutional
layer; (4) a deformation layer; and finally, (5) a visibility reasoning and classification layer. The 2009
Caltech pedestrian detection dataset [66] was used for the training of the network.

As mentioned in Section 3.2, we use the pedestrian detector as a likelihood function, and therefore,
the algorithm still retains the track-before-detect characteristic. This is accomplished by feeding
the network with each particle associated with a given target and using the output of the network
straightforwardly as the likelihood of that particle. Therefore, Equations (27) and (28) remain the same;
however, the likelihood function is now given by Equation (10) instead of Equation (8). We refer to
the MBF and MBFILH with the pedestrian detector (PD) likelihood function as MBF PD and MBFILH
PD, respectively.

In order to use the pedestrian detector, it is necessary to preprocess the input data (the
randomly-sized particles/samples from the multi-Bernoulli filter shown as dashed-line rectangles in
Figure 1). Each particle is first converted to YUVcolor space and resized to 84× 28; hence, all three input
channels require an image of an overall size 84× 28. For Channel 2, the overall dimensions of 84× 28
are achieved by concatenating three images of size 42× 14 and padding with zeros. For Channel 3,
four 42× 14 images are concatenated. Explicitly, the input to each of the three channels is as follows:

1. Channel 1 input = the Y channel of the resized (to 84× 28) YUV converted image.
2. Channel 2 input = the Y, U and V channels of the 84× 28 image resized to 42× 14, concatenated

and zero padded to achieve the overall dimensions of 84× 28.
3. Channel 3 input = three edge maps (horizontal and vertical) obtained from each channel of the

YUV converted image using a Sobel edge detector, resized to be 42× 14 and concatenated along
with the maximum values of these three edge maps into an image of overall size 84× 28.
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See Figure 4 for further clarification.
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Figure 4. Composition of input channels to the pedestrian detector.

It should be noted that the pedestrian detector deep network uses a binary softmax function
and therefore returns two values: the first value is the probability of the image window containing
a pedestrian, and the second is the probability that it does not. We only use the former and simply
ignore the latter.

As with most likelihood functions, the pedestrian detector-based likelihood function requires
tuning in order to achieve the desired behavior. However, it only requires the adjustment of one
parameter γ. Adjusting this parameter is straightforward and relatively simple. Higher values
for γ result in higher likelihood values for all observations, and lower values result in lower
likelihood values.

5. Experiments and Results

We evaluate the performance of the multi-Bernoulli filter with and without the interactive
likelihood in a number of publicly available datasets and obtain quantitative results using standard,
well-known metrics. In all of our experiments, the determination of the parameters ζ, σ and γ is
empirical, but no exhaustive or rigorous search is employed; doing so could further improve our
results. A summary of the experiments is provided here:

1. 2003 PETS INMOVE: (the 2003 PETS INMOVE dataset was originally obtained from
ftp://ftp.cs.rdg.ac.uk/pub/VS-PETS/) In this dataset, the performance of the multi-Bernoulli
filter without (MBF) the ILH, with the ILH (MBFILH), an implementation of the multiple
hypothesis tracking (MHT) method [67], the multi-Bernoulli filter without the ILH and with a
fixed target size (MBF FS), and the multi-Bernoulli filter with the ILH with a fixed target size
(MBFILH FS) is evaluated; the HSV-based likelihood function in Equation (8) is used for all RFS
filter configurations (MBF, MBFILH, MBF FS and MBFILH FS) within this dataset.

• Empirically-determined interactive likelihood parameters: ζ = 0.15 and σ = 5.

2. Australian Rules Football League (AFL) [68]: In this dataset, the MBF and the MBFILH filter
configurations use the likelihood function in Equation (8).

• Empirically-determined interactive likelihood parameters: ζ = 0.15 and σ = 5 in reduced
resolution images and ζ = 0.15 and σ = 10 in full resolution images.

3. TUD-Stadtmitte [69]: in this dataset, the pedestrian detector-based likelihood function in
Equation (10) is used with the multi-Bernoulli filter without the ILH (MBF PD) and with the ILH
(MBFILH PD).

• Empirically-determined interactive likelihood parameters: ζ = 0.45 and σ = 150.
• Empirically-determined pedestrian detector parameters: γ = 0.30.

ftp://ftp.cs.rdg.ac.uk/pub/VS-PETS/
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It is an intentional choice to not use the most recent benchmarks [55,56] because the framework
(using standard detections) is not well suited for techniques that use SMC implementations and
precludes track-before-detect methods in general.

5.1. 2003 PETS INMOVE

We first present results in the 2003 PETS INMOVE dataset. This dataset consists of 2500 frames of
a soccer match. We use reduced resolution images (320 × 240) from the dataset to perform the
evaluation. This illustrates the flexibility of our approach, as it is able to perform well in low
signal-to-noise ratio (SNR) situations. Using reduced resolution also slightly reduces computation time.

Our implementation of the multi-Bernoulli filter is based on the source code kindly provided by
the authors of [27]. Except for a few minor changes in the birth model parameters and color histogram
computation, both implementations are identical. All trackers in this experiment are set up to track
only the players on the red team (Liverpool) in the 2003 PETS INMOVE dataset. Within the RFS filters,
targets are modeled as rectangular blobs and have states corresponding to Equation (2) with the u and
v position of the target along with the width w and height h of the target’s bounding box. Because the
implementation of the MHT in [67] does not estimate target size, we also evaluate the multi-Bernoulli
filters with fixed target size.

In order to show that the proposed interactive likelihood is able to almost entirely eliminate
the need for data association, we compare our method to the multi-Bernoulli filter proposed by
Hoseinnezhad et al. in [27] without the data association algorithm [47] in place and to the MHT
implementation of Antunes et al. [67]. Given the stochastic nature of the algorithms, a Monte Carlo
evaluation was necessary. Specifically, we carried out 20 experimental trials for each filter configuration
(MBF, MBFILH, MHT, MBF FS and MBFILH FS). We initialized the multi-Bernoulli filters with the
targets in the first frame in order to achieve a fair comparison to the window scanning detector in the
implementation of the MHT filter. Each trial progressed through all 2500 frames of the dataset.

The optimal sub-pattern assignment (OSPA) [70] and CLEAR MOT (classification of events,
activities and relationships for multi-object trackers) [71] metrics were used to obtain quantitative
results from each filter configuration. In the OSPA evaluation, a cutoff parameter of c = 100 was
used along with an order parameter of p = 1. See [70] for detailed information on the OSPA metric
along with an interpretation of the parameters c and p. Briefly, c corresponds to the maximum allowed
distance for two tracks to be considered comparable, and p determines how harshly outliers (tracks
that are farther away than the cutoff) are penalized. As p increases (with c fixed), the metric penalizes
outliers more severely. Figure 5 shows the average OSPA over the 20 trials at each of the 2500 frames.
This graph shows that the underlying behavior of the multi-Bernoulli filter is not altered with the
addition of the ILH term, and the OSPA score is, on average, lower with the ILH than it is without it.

The mean OSPA scores of the average Monte Carlo trials in Figure 5 are summarized in Table 1.
The results among the filter configurations that do not estimate target size (MBF FS, MBFILH FS
and MHT) are all comparable. The MBF FS performs about 3% poorer than the MHT, while the
MBFILH FS performs about 5% better than the MHT. It is expected that the configurations that estimate
target size (MBF and MBFILH) achieve significantly higher performance than the filters that do not
(MBF FS, MBFILH FS and MHT). It is somewhat surprising, however, that the MBFILH achieves
a reduction of approximately 22% on the average OSPA score in comparison with the MBF. Because
the OSPA metric does not incorporate labeling/track association errors, these results suggest that
the ILH may also improve the overall tracking accuracy of the multi-Bernoulli filter. This is most
likely due to fewer merging errors occurring with the ILH than without it; therefore, cardinality errors
are significantly less frequent. As can be seen in Figure 5, there are certain frames where there are
noticeable differences in OSPA scores for the different filter configurations. In order to illustrate why
these differences exist, we show a selected number of these frames in Figure 6.
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Figure 5. Average optimal sub-pattern assignment (OSPA) scores for all filter configurations over 2500
frames in the 2003 PETS INMOVE dataset. A lower score corresponds to better performance, as the
OSPA metric measures the distance between estimated target tracks and the ground truth.

Figure 6. Illustrative scenarios in which the OSPA scores of the trackers under consideration differ
significantly as is visible in Figure 5. The top row shows MHT results; the middle row shows MBF
results; and the bottom row shows MBFILH results all in the low resolution 2003 PETS INMOVE dataset.
The numbers in green in the top row correspond to the object identifiers for the MHT. The numbers
in black above the targets in the second and third rows correspond to the target identifier, as well as
the MBF estimated confidence level. In Frames 980, 2288 and 2360, both MHT and MBF incorrectly
associate two targets with a single estimate. In Frame 1350, the MBF allows the estimate for one target
to include a separate target, which was already correctly being tracked. In Frame 1936, MHT again
merges two targets, and MBF finds only one. Frame 2152 shows that MHT incorrectly estimating one
target in the region among three players. In all of these scenarios, the MBFILH correctly estimates all of
the targets.
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Table 1. Mean OSPA scores of the average Monte Carlo trials for all filter configurations in the
2003 PETS INMOVE dataset. Best score(s) emphasized in bold. MHT, multiple hypothesis tracking;
MBF, multi-Bernoulli filter; ILH, interactive likelihood; FS, fixed target size.

Method Mean OSPA Scores

MHT 42.30
MBF FS 43.57

MBFILH FS 40.02
MBF 26.29

MBFILH 20.39

We evaluate the same 20 previously discussed Monte Carlo trials from the PETS dataset using
the CLEAR MOT metric (CLEAR MOT source code was obtained from Andrew D. Bagdanov,
Alberto Del Bimbo, Fabrizio Dini, Giuseppe Lisanti and Iacopo Mas at https://github.com/glisanti/
CLEAR-MOT). For details on the CLEAR MOT metric, see [71]. We used a distance threshold (ratio of
intersection to union of the area of the target’s bounding box to the area of the ground truth bounding
box) of 0.1. This threshold is restricted to values between zero and one and is used to determine when
a correspondence can no longer be made between the estimate and the ground truth, and the error is
then labeled a missed detection. The CLEAR MOT metric is comprised of the following components
(↑↓ indicate when better performance is represented by higher and lower values, respectively):

1. FNR: false negative rate (↓).
2. TPR: true positive rate (↑).
3. FPR: false positive rate (↓).
4. TP: number of true positives (↑).
5. FN: number of false negatives (↓).
6. FP: number of false positives (↓).
7. IDSW: number of i.d. switches (↓).
8. MOTP: multi-object tracking precision (↑).
9. MOTA: multi-object tracking accuracy (↑).

Results for the the 20 Monte Carlo trials for each filter configuration are summarized in Table 2.
The FNR, TPR, FPR, MOTP and MOTA scores are shown in Figure 7a,b along with the corresponding
standard deviations to illustrate the variability in the trials.

Table 2. Summary of 2003 PETS INMOVE CLEAR MOT metric scores. Best score(s) emphasized in bold.
IDSW, number of label/i.d. switches; MOTP, multi-object tracking precision; MOTA, multi-object
tracking accuracy.

Method FNR TPR FPR TP FN FP IDSW MOTP MOTA

MHT 13.3% 86.0% 8.2% 14,789 2293 1415 104 20.9% 77.8%
MBF FS 17.4% 82.1% 2.7% 14,117 3004 465 65 24.4% 79.4%

MBFILH FS 10.7% 89.1% 2.9% 15,308 1846 496 33 24.0% 86.2%
MBF 16.3% 83.3% 1.5% 14,322 2803 264 62 45.1% 81.8%

MBFILH 9.2% 90.7% 1.4% 15,583 1585 234 20 45.7% 89.3%

https://github.com/glisanti/CLEAR-MOT
https://github.com/glisanti/CLEAR-MOT
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Figure 7. CLEAR MOT metric scores in the PETS dataset for (a) the MBF FS and MBFILH FS in the
PETS dataset and (b) the MBF and MBFILH.

The largest improvement observed from the addition of the ILH was in the IDSW and MOTA
metrics. Over the 20 trials and 2500 image frames, the MBFILH FS achieves 32 (approximately
49%) fewer identity switches than the MBF FS and 71 (approximately 68%) fewer than the MHT.
In addition, the MBFILH FS yields an MOTA score of 86.2%, while the MBF FS and MHT MOTA
scores are 79.4% and 77.8%, respectively. Superior performance is again seen in the MBF and MBFILH
configurations. The effect of the ILH is even more pronounced in comparing the MBF and MBFILH.
The MBFILH reduces the number of identity switches seen in the MBF by approximately 68% and
increases the MOTA score from 81.8% to 89.3%. Because these two metric scores are directly influenced
by labeling/i.d. error, the observed increases in these performance metrics suggest that the ILH term
is able to significantly reduce the need for data association.

5.2. Australian Rules Football League

The second dataset we considered was the AFL dataset presented by Milan et al. in [68].
This dataset consists of 299 frames of an Australian Rules Football league match. Milan et al. explain
that the AFL dataset is especially challenging for two reasons: (1) there is regular and frequent
crowding of targets; and (2) contact and overlap among targets is common. We evaluate the ILH in
this dataset using both reduced resolution images (320× 240) and, for direct comparison to the results
presented in [68], full resolution images (842× 638).

We trained the MBF and MBFILH configurations to track all players and performed 15 Monte
Carlo trials with the 320× 240 resolution. We then performed another 20 Monte Carlo trials with the
842× 638 resolution evaluating only the MBFILH.

The CLEAR MOT metrics were used to evaluate the performance of each configuration in the
reduced and full resolution trials. Again, a distance threshold of 0.1 was used. FNR, TPR, FPR, MOTP
and MOTA scores, along with standard deviations, are shown for the reduced resolution trials in
Figure 8. Full resolution results are compared in Table 3 to the results presented in [68].
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Figure 8. CLEAR MOT metric scores for the MBF and MBFILH in the reduced resolution Australian
Rules Football League (AFL) dataset.

Table 3. Summary of the full resolution AFL CLEAR MOT metric scores. Best score(s) emphasized
in bold.

Method MOTP MOTA

SMOT[72] 60.8% 16.7%
DCO [73] 63.3% 29.7%

[68] (no init) 64.1% 32.0%
[68] (no LDA) 63.6% 39.0%

[68] (full) 63.6% 41.4%
MBFILH 52.8% 66.3%

Figure 9. This is a particularly challenging sequence of low resolution AFL image frames (223 to 248).
There are numerous overlapping and interacting targets. The top row are MBF results, and the bottom
row are MBFILH results. Note that in Frame 223, the MBF drops a target (the one with the yellow
bounding box), while the MBFILH does not. Furthermore, in Frames 233 to 243, the MBF target with
the green bounding box starts to drift towards the target with the red bounding box, before finally
merging in Frame 248, while the MBFILH is able to track these targets without drifting or falsely
merging targets. However, the MBFILH does take longer to track the target farthest to the right in
the images.
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As expected, the results are generally lower (for both reduced and full resolution trials) in this
more challenging dataset than they were in the 2003 PETS INMOVE dataset. Despite overall lower
scores, in the reduced resolution trials, the ILH term still reduced the number of identity switches of
the MBF, on average, by four (approximately 22%) and increased the MOTA score from 64.8% to 68.2%.

Some qualitative results from the reduced resolution trials are shown in Figure 9. The sequence of
images consists of five targets interacting in close proximity, presenting a difficult tracking scenario
for any multi-target tracker. The performances of the MBF and MBFILH are qualitatively compared.
While both configurations fail to correctly track all five targets, the MBFILH is better able to track more
of the targets in extremely close proximity. See the caption of Figure 9 for a more detailed explanation.

The multi-Bernoulli filter, with and without the ILH, consistently estimated the size of the targets
within the AFL dataset to be significantly smaller than the size within the ground truth annotations,
probably due to the high concentration of color in the torso of the players (because the likelihood
function is based on HSV histograms and the players’ torsos have the highest contrast with the
background, the MBF is essentially only tracking the upper half of the players). In an attempt to
remedy this effect, the size estimates of the MBFILH in full resolution images were adjusted with a
constant offset; however, this did not entirely eliminate the problem and explains the relatively
poor performance of the MBFILH with respect to the MOTP metric in the full resolution trials
(52.8% compared to the best result of 64.1%).

Despite the unimpressive MOTP scores, the MBFILH scores extremely well in the full resolution
dataset with respect to the MOTA metric. As illustrated in Table 3, the MBFILH achieves an MOTA
score of 66.3%, and the next highest performing method achieves 41.4%.

5.3. TUD-Stadtmitte

We evaluate the performance of the ILH in a much different situation than the previously
examined ‘sport player tracking’ type of scenarios. For this, we use the TUD-Stadtmitte [69] dataset,
which consists of 179 images of real data as pedestrians navigate through a street. This dataset is
challenging because there are severe and frequent occlusions, and the position of the camera allows
for a wide range of target sizes (some targets are farther away and appear much smaller than targets
that are closer), which illustrates another advantage of our approach: the ability to adapt to different
target sizes online. We use full resolution images (640× 480) for this evaluation. In order to track
pedestrians in this dataset, we use the much more general pedestrian detector-based likelihood
function in Equation (10) with the multi-Bernoulli filter without the ILH (MBF PD) and with the ILH
(MBFILH PD).

We carried out 10 Monte Carlo trials for each filter configuration (MBF PD and MBFILH PD) and
used the evaluation code made publicly available by Milan et al. in [55] to compute the evaluation
metrics (source code for multi-object tracking evaluation obtained at https://motchallenge.net/devkit/).
The different measures calculated in this evaluation are:

1. Rcll: recall, the percentage of detected targets (↑).
2. Prcn: precision, the percentage of correctly detected targets (↑).
3. FAR: number of false alarms per frame (↓).
4. GT: number of ground truth trajectories.
5. MT: number of mostly tracked trajectories (↑).
6. PT: number of partially-tracked trajectories.
7. ML: number of mostly lost trajectories (↓).
8. FP: number of false positives (↓).
9. FN: number of false negatives (↓).

10. IDs: number of i.d. switches (↓).
11. FM: number of fragmentations (↓).
12. MOTA: multi-object tracking accuracy in [0, 100] (↑).

https://motchallenge.net/devkit/
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13. MOTP: multi-object tracking precision in [0, 100] (↑).
14. MOTAL: multi-object tracking accuracy in [0, 100] with log10 (IDs) (↑).

Full results are presented in Table 4, and a selected number of CLEAR MOT metrics are shown in
Figure 10.

Table 4. Mean metric scores for 10 trials of the MBF pedestrian detector (PD) and MBFILH PD in the
TUD-Stadtmitte dataset. Best score(s) emphasized in bold where applicable. Rcll, recall; Prcn, precision;
FAR, number of false alarms per frame; MT, number of mostly tracked trajectories; PT, number of
partially-tracked trajectories; ML, number of mostly lost trajectories; FM, number of fragmentations;
MOTAL, multi-object tracking accuracy in [0, 100] with log10.

Method Rcll Prcn FAR MT PT ML FP FN IDs FM MOTA MOTP MOTAL

MBF PD 58.54% 88.00% 0.52 3.10 6.70 0.20 92.7 479.30 8.8 12.10 49.76% 66.53% 50.43%
MBFILH PD 60.91% 90.79% 0.40 3.70 6.10 0.20 71.50 451.90 5.70 12.90 54.23% 65.44% 54.65%
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Figure 10. CLEAR MOT metric scores for the MBFILH PD in the TUD-Stadtmitte dataset.

The ILH term improved the MOTA score of the MBF PD from 49.76% to 54.23%. In addition,
the average number of i.d. switches dropped from 8.8 to 5.7 (approximately a 35% reduction). In fact,
all scores were improved except for the ML metrics, which remained the same for both MBF PD and
MBFILH PD, and the MOTP, which was slightly lower for the MBFILH PD (65.44%), than the MBF
PD (66.53%). The reason for this slight decrease in MOTP performance is probably due to the ILH
term forcing targets apart when they are extremely close. While this prevents unnecessary merging
and i.d. switching, it may also cause estimates to be slightly shifted from the actual target. However,
this is a relatively small decrease in MOTP performance, especially in comparison to the increases
achieved in the MOTA, IDs and other metrics. Figure 11 shows some snapshots of the results on the
TUD-Stadtmitte dataset.
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Figure 11. Tracking results for both the MBF PD (top two rows) and the MBFILH PD (bottom two
rows) in the TUD-Stadtmitte dataset.

6. Conclusions

In this paper, an interactive likelihood for the multi-Bernoulli filter was introduced. The interactive
likelihood is a simple, yet effective way for reducing the need for data association. This is done by
making the particle likelihood proportional to its distance (in pixels) to all other particles for all other
existing targets. This allows for greater particle and target interaction. The most important feature of
the proposed interactive likelihood is that it is constructed entirely within the RFS-Bayesian framework
and therefore eliminates the need for heuristic ad hoc data association approaches.

The multi-Bernoulli filter augmented with the ILH term was also combined with a deep neural
network pedestrian detector. Several experiments were performed using publicly available datasets
(2003 PETS INMOVE, AFL and TUD-Stadtmitte) and well known metrics (OSPA and CLEAR MOT) in
order to evaluate the performance of the various different filter configurations. Results indicate that
the interactive likelihood term reduces the need for data association and increases the overall tracking
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performance of the multi-Bernoulli filter. Specifically, in all three datasets, the state-of-the-art RFS-based
multi-Bernoulli filter saw accuracy improvements with the addition of the ILH term. The addition of
the pedestrian detector makes the approach much more general, allowing the multi-Bernoulli filter to
perform well in “real tracking” situations, such as that depicted in the TUD-Stadtmitte dataset.

Despite the observed improvements, there are some limitations to this approach, the most relevant
of which is computation time. Even though, for a bounded number of particles, the computation time is
O(n2), where n is the number of targets, in practice, a significant amount of time is spent calculating all
of the distances between all particles. Therefore, plans for the immediate future are to investigate ways
for increasing the overall speed of the algorithm. For example, due to their nature, the calculations are
highly parallelizable and lend themselves to GPU implementations. Another potential way to achieve
speed increases is to use more efficient algorithms for particle computation, such as quadtrees [74].
It should be noted, however, that distance computation is not the main bottleneck of the tracking
algorithm as a whole. Sampling the image patches and computing their likelihoods is what dominates
the computation time.

As mentioned in Section 4, the parameters of the interactive likelihood σ and ζ and of the
pedestrian detector γ were all determined empirically. More sophisticated and rigorous search methods
could be employed or approaches to automatically learn these parameters based on characteristics of
the datasets could be developed. In particular, prior distributions parameterized by characteristics
of the dataset (such as the video resolution) could be employed to estimate these parameters within
a Bayesian framework. This would almost certainly result in improved performance.

Another limitation is that the RFS-based tracking methods require birth and death models.
These models are often application specific and therefore must be changed or modified based on the
application, which is cumbersome for obvious reasons. Hence, in order to make this approach much
more general, situation independent birth and death models are necessary. This would also allow
for a much closer comparison to the most current benchmarks [55,56]. Measurement-driven birth
models, as proposed initially in [75] and later extended to the multi-Bernoulli filter for radar tracking
applications in [76], provide a promising framework to address this problem.

Finally, our proposed approach does not take into consideration the extended target scenario
in which a single target may generate multiple distinct measurements. Hence, scenarios involving,
for example, extended concave targets [77] might still cause confusion. Although ad hoc solutions
that take into consideration the expected size and concavity of the targets could be employed to
overcome this limitation, a more principled solution would be to utilize RFS-based extended target
tracking approaches, such as proposed in [78], while taking into account the expected distribution of
the extended targets in the computation of the ILH.
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